Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/gas/atof-generic.c
Line
Count
Source (jump to first uncovered line)
1
/* atof_generic.c - turn a string of digits into a Flonum
2
   Copyright (C) 1987-2025 Free Software Foundation, Inc.
3
4
   This file is part of GAS, the GNU Assembler.
5
6
   GAS is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 3, or (at your option)
9
   any later version.
10
11
   GAS is distributed in the hope that it will be useful, but WITHOUT
12
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14
   License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with GAS; see the file COPYING.  If not, write to the Free
18
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19
   02110-1301, USA.  */
20
21
#include "as.h"
22
#include "safe-ctype.h"
23
#include <limits.h>
24
25
#ifdef TRACE
26
static void flonum_print (const FLONUM_TYPE *);
27
#endif
28
29
#define ASSUME_DECIMAL_MARK_IS_DOT
30
31
/***********************************************************************\
32
 *                  *
33
 *  Given a string of decimal digits , with optional decimal  *
34
 *  mark and optional decimal exponent (place value) of the   *
35
 *  lowest_order decimal digit: produce a floating point    *
36
 *  number. The number is 'generic' floating point: our   *
37
 *  caller will encode it for a specific machine architecture.  *
38
 *                  *
39
 *  Assumptions             *
40
 *    uses base (radix) 2         *
41
 *    this machine uses 2's complement binary integers  *
42
 *    target flonums use "      "         "       "   *
43
 *    target flonums exponents fit in a long      *
44
 *                  *
45
 \***********************************************************************/
46
47
/*
48
49
  Syntax:
50
51
  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
52
  <optional-sign> ::= '+' | '-' | {empty}
53
  <decimal-number> ::= <integer>
54
  | <integer> <radix-character>
55
  | <integer> <radix-character> <integer>
56
  | <radix-character> <integer>
57
58
  <optional-exponent> ::= {empty}
59
  | <exponent-character> <optional-sign> <integer>
60
61
  <integer> ::= <digit> | <digit> <integer>
62
  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
63
  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
64
  <radix-character> ::= {one character from "string_of_decimal_marks"}
65
66
  */
67
68
int
69
atof_generic (/* return pointer to just AFTER number we read.  */
70
        char **address_of_string_pointer,
71
        /* At most one per number.  */
72
        const char *string_of_decimal_marks,
73
        const char *string_of_decimal_exponent_marks,
74
        FLONUM_TYPE *address_of_generic_floating_point_number)
75
9.39k
{
76
9.39k
  int return_value = 0;   /* 0 means OK.  */
77
9.39k
  char *first_digit;
78
9.39k
  unsigned int number_of_digits_before_decimal;
79
9.39k
  unsigned int number_of_digits_after_decimal;
80
9.39k
  unsigned long decimal_exponent;
81
9.39k
  unsigned int number_of_digits_available;
82
9.39k
  char digits_sign_char;
83
84
  /*
85
   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
86
   * It would be simpler to modify the string, but we don't; just to be nice
87
   * to caller.
88
   * We need to know how many digits we have, so we can allocate space for
89
   * the digits' value.
90
   */
91
92
9.39k
  char *p;
93
9.39k
  char c;
94
9.39k
  int seen_significant_digit;
95
96
9.39k
#ifdef ASSUME_DECIMAL_MARK_IS_DOT
97
9.39k
  gas_assert (string_of_decimal_marks[0] == '.'
98
9.39k
    && string_of_decimal_marks[1] == 0);
99
23.5k
#define IS_DECIMAL_MARK(c)  ((c) == '.')
100
#else
101
#define IS_DECIMAL_MARK(c)  (0 != strchr (string_of_decimal_marks, (c)))
102
#endif
103
104
9.39k
  first_digit = *address_of_string_pointer;
105
9.39k
  c = *first_digit;
106
107
9.39k
  if (c == '-' || c == '+')
108
70
    {
109
70
      digits_sign_char = c;
110
70
      first_digit++;
111
70
    }
112
9.32k
  else
113
9.32k
    digits_sign_char = '+';
114
115
9.39k
  switch (first_digit[0])
116
9.39k
    {
117
0
    case 's':
118
85
    case 'S':
119
103
    case 'q':
120
103
    case 'Q':
121
103
      if (!strncasecmp ("nan", first_digit + 1, 3))
122
0
  {
123
0
    address_of_generic_floating_point_number->sign =
124
0
      digits_sign_char == '+' ? TOUPPER (first_digit[0])
125
0
            : TOLOWER (first_digit[0]);
126
0
    address_of_generic_floating_point_number->exponent = 0;
127
0
    address_of_generic_floating_point_number->leader =
128
0
      address_of_generic_floating_point_number->low;
129
0
    *address_of_string_pointer = first_digit + 4;
130
0
    return 0;
131
0
  }
132
103
      break;
133
134
103
    case 'n':
135
5
    case 'N':
136
5
      if (!strncasecmp ("nan", first_digit, 3))
137
0
  {
138
0
    address_of_generic_floating_point_number->sign =
139
0
      digits_sign_char == '+' ? 0 : 'q';
140
0
    address_of_generic_floating_point_number->exponent = 0;
141
0
    address_of_generic_floating_point_number->leader =
142
0
      address_of_generic_floating_point_number->low;
143
0
    *address_of_string_pointer = first_digit + 3;
144
0
    return 0;
145
0
  }
146
5
      break;
147
148
5
    case 'i':
149
0
    case 'I':
150
0
      if (!strncasecmp ("inf", first_digit, 3))
151
0
  {
152
0
    address_of_generic_floating_point_number->sign =
153
0
      digits_sign_char == '+' ? 'P' : 'N';
154
0
    address_of_generic_floating_point_number->exponent = 0;
155
0
    address_of_generic_floating_point_number->leader =
156
0
      address_of_generic_floating_point_number->low;
157
158
0
    first_digit += 3;
159
0
    if (!strncasecmp ("inity", first_digit, 5))
160
0
      first_digit += 5;
161
162
0
    *address_of_string_pointer = first_digit;
163
164
0
    return 0;
165
0
  }
166
0
      break;
167
9.39k
    }
168
169
9.39k
  number_of_digits_before_decimal = 0;
170
9.39k
  number_of_digits_after_decimal = 0;
171
9.39k
  decimal_exponent = 0;
172
9.39k
  seen_significant_digit = 0;
173
9.39k
  for (p = first_digit;
174
14.1k
       (((c = *p) != '\0')
175
14.1k
  && (!c || !IS_DECIMAL_MARK (c))
176
14.1k
  && (!c || !strchr (string_of_decimal_exponent_marks, c)));
177
9.39k
       p++)
178
8.64k
    {
179
8.64k
      if (ISDIGIT (c))
180
4.73k
  {
181
4.73k
    if (seen_significant_digit || c > '0')
182
4.66k
      {
183
4.66k
        ++number_of_digits_before_decimal;
184
4.66k
        seen_significant_digit = 1;
185
4.66k
      }
186
75
    else
187
75
      {
188
75
        first_digit++;
189
75
      }
190
4.73k
  }
191
3.90k
      else
192
3.90k
  {
193
3.90k
    break;    /* p -> char after pre-decimal digits.  */
194
3.90k
  }
195
8.64k
    }        /* For each digit before decimal mark.  */
196
197
9.39k
#ifndef OLD_FLOAT_READS
198
  /* Ignore trailing 0's after the decimal point.  The original code here
199
     (ifdef'd out) does not do this, and numbers like
200
      4.29496729600000000000e+09  (2**31)
201
     come out inexact for some reason related to length of the digit
202
     string.  */
203
204
  /* The case number_of_digits_before_decimal = 0 is handled for
205
     deleting zeros after decimal.  In this case the decimal mark and
206
     the first zero digits after decimal mark are skipped.  */
207
9.39k
  seen_significant_digit = 0;
208
9.39k
  unsigned long subtract_decimal_exponent = 0;
209
210
9.39k
  if (c && IS_DECIMAL_MARK (c))
211
5.47k
    {
212
5.47k
      unsigned int zeros = 0; /* Length of current string of zeros.  */
213
214
5.47k
      if (number_of_digits_before_decimal == 0)
215
  /* Skip decimal mark.  */
216
5.35k
  first_digit++;
217
218
46.0k
      for (p++; (c = *p) && ISDIGIT (c); p++)
219
40.5k
  {
220
40.5k
    if (c == '0')
221
31.1k
      {
222
31.1k
        if (number_of_digits_before_decimal == 0
223
31.1k
      && !seen_significant_digit)
224
27.9k
    {
225
      /* Skip '0' and the decimal mark.  */
226
27.9k
      first_digit++;
227
27.9k
      subtract_decimal_exponent--;
228
27.9k
    }
229
3.22k
        else
230
3.22k
    zeros++;
231
31.1k
      }
232
9.38k
    else
233
9.38k
      {
234
9.38k
        seen_significant_digit = 1;
235
9.38k
        number_of_digits_after_decimal += 1 + zeros;
236
9.38k
        zeros = 0;
237
9.38k
      }
238
40.5k
  }
239
5.47k
    }
240
#else
241
  if (c && IS_DECIMAL_MARK (c))
242
    {
243
      for (p++;
244
     (((c = *p) != '\0')
245
      && (!c || !strchr (string_of_decimal_exponent_marks, c)));
246
     p++)
247
  {
248
    if (ISDIGIT (c))
249
      {
250
        /* This may be retracted below.  */
251
        number_of_digits_after_decimal++;
252
253
        if ( /* seen_significant_digit || */ c > '0')
254
    {
255
      seen_significant_digit = true;
256
    }
257
      }
258
    else
259
      {
260
        if (!seen_significant_digit)
261
    {
262
      number_of_digits_after_decimal = 0;
263
    }
264
        break;
265
      }
266
  }     /* For each digit after decimal mark.  */
267
    }
268
269
  while (number_of_digits_after_decimal
270
   && first_digit[number_of_digits_before_decimal
271
      + number_of_digits_after_decimal] == '0')
272
    --number_of_digits_after_decimal;
273
#endif
274
275
9.39k
  if (flag_m68k_mri)
276
0
    {
277
0
      while (c == '_')
278
0
  c = *++p;
279
0
    }
280
9.39k
  if (c && strchr (string_of_decimal_exponent_marks, c))
281
4.01k
    {
282
4.01k
      char digits_exponent_sign_char;
283
284
4.01k
      c = *++p;
285
4.01k
      if (flag_m68k_mri)
286
0
  {
287
0
    while (c == '_')
288
0
      c = *++p;
289
0
  }
290
4.01k
      if (c && strchr ("+-", c))
291
3.96k
  {
292
3.96k
    digits_exponent_sign_char = c;
293
3.96k
    c = *++p;
294
3.96k
  }
295
52
      else
296
52
  {
297
52
    digits_exponent_sign_char = '+';
298
52
  }
299
300
4.42k
      for (; (c); c = *++p)
301
4.38k
  {
302
4.38k
    if (ISDIGIT (c))
303
407
      {
304
407
        if (decimal_exponent > LONG_MAX / 10
305
407
      || (decimal_exponent == LONG_MAX / 10
306
405
          && c > '0' + (char) (LONG_MAX - LONG_MAX / 10 * 10)))
307
2
    return_value = ERROR_EXPONENT_OVERFLOW;
308
407
        decimal_exponent = decimal_exponent * 10 + c - '0';
309
407
      }
310
3.97k
    else
311
3.97k
      {
312
3.97k
        break;
313
3.97k
      }
314
4.38k
  }
315
316
4.01k
      if (digits_exponent_sign_char == '-')
317
3.96k
  {
318
3.96k
    decimal_exponent = -decimal_exponent;
319
3.96k
  }
320
4.01k
    }
321
322
9.39k
#ifndef OLD_FLOAT_READS
323
  /* Subtract_decimal_exponent != 0 when number_of_digits_before_decimal = 0
324
     and first digit after decimal is '0'.  */
325
9.39k
  decimal_exponent += subtract_decimal_exponent;
326
9.39k
#endif
327
328
9.39k
  *address_of_string_pointer = p;
329
330
9.39k
  number_of_digits_available =
331
9.39k
    number_of_digits_before_decimal + number_of_digits_after_decimal;
332
9.39k
  if (number_of_digits_available == 0)
333
1.20k
    {
334
1.20k
      address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
335
1.20k
      address_of_generic_floating_point_number->leader
336
1.20k
  = -1 + address_of_generic_floating_point_number->low;
337
1.20k
      address_of_generic_floating_point_number->sign = digits_sign_char;
338
      /* We have just concocted (+/-)0.0E0 */
339
340
1.20k
    }
341
8.19k
  else
342
8.19k
    {
343
8.19k
      int count;    /* Number of useful digits left to scan.  */
344
345
8.19k
      LITTLENUM_TYPE *temporary_binary_low = NULL;
346
8.19k
      LITTLENUM_TYPE *power_binary_low = NULL;
347
8.19k
      LITTLENUM_TYPE *digits_binary_low;
348
8.19k
      unsigned int precision;
349
8.19k
      unsigned int maximum_useful_digits;
350
8.19k
      unsigned int number_of_digits_to_use;
351
8.19k
      unsigned int more_than_enough_bits_for_digits;
352
8.19k
      unsigned int more_than_enough_littlenums_for_digits;
353
8.19k
      unsigned int size_of_digits_in_littlenums;
354
8.19k
      unsigned int size_of_digits_in_chars;
355
8.19k
      FLONUM_TYPE power_of_10_flonum;
356
8.19k
      FLONUM_TYPE digits_flonum;
357
358
8.19k
      precision = (address_of_generic_floating_point_number->high
359
8.19k
       - address_of_generic_floating_point_number->low
360
8.19k
       + 1);  /* Number of destination littlenums.  */
361
362
      /* precision includes two littlenums worth of guard bits,
363
   so this gives us 10 decimal guard digits here.  */
364
8.19k
      maximum_useful_digits = (precision
365
8.19k
             * LITTLENUM_NUMBER_OF_BITS
366
8.19k
             * 1000000 / 3321928
367
8.19k
             + 1);  /* round up.  */
368
369
8.19k
      if (number_of_digits_available > maximum_useful_digits)
370
22
  {
371
22
    number_of_digits_to_use = maximum_useful_digits;
372
22
  }
373
8.16k
      else
374
8.16k
  {
375
8.16k
    number_of_digits_to_use = number_of_digits_available;
376
8.16k
  }
377
378
      /* Cast these to SIGNED LONG first, otherwise, on systems with
379
   LONG wider than INT (such as Alpha OSF/1), unsignedness may
380
   cause unexpected results.  */
381
8.19k
      decimal_exponent += ((long) number_of_digits_before_decimal
382
8.19k
         - (long) number_of_digits_to_use);
383
384
8.19k
      more_than_enough_bits_for_digits
385
8.19k
  = (number_of_digits_to_use * 3321928 / 1000000 + 1);
386
387
8.19k
      more_than_enough_littlenums_for_digits
388
8.19k
  = (more_than_enough_bits_for_digits
389
8.19k
     / LITTLENUM_NUMBER_OF_BITS)
390
8.19k
  + 2;
391
392
      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
393
   Arithmetic is exact here. If no digits are supplied then this
394
   part is a 0 valued binary integer.  Allocate room to build up
395
   the binary number as littlenums.  We want this memory to
396
   disappear when we leave this function.  Assume no alignment
397
   problems => (room for n objects) == n * (room for 1
398
   object).  */
399
400
8.19k
      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
401
8.19k
      size_of_digits_in_chars = size_of_digits_in_littlenums
402
8.19k
  * sizeof (LITTLENUM_TYPE);
403
404
8.19k
      digits_binary_low = (LITTLENUM_TYPE *)
405
8.19k
  xmalloc (size_of_digits_in_chars);
406
407
8.19k
      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
408
409
      /* Digits_binary_low[] is allocated and zeroed.  */
410
411
      /*
412
       * Parse the decimal digits as if * digits_low was in the units position.
413
       * Emit a binary number into digits_binary_low[].
414
       *
415
       * Use a large-precision version of:
416
       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
417
       */
418
419
22.4k
      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
420
14.2k
  {
421
14.2k
    c = *p;
422
14.2k
    if (ISDIGIT (c))
423
14.2k
      {
424
        /*
425
         * Multiply by 10. Assume can never overflow.
426
         * Add this digit to digits_binary_low[].
427
         */
428
429
14.2k
        long carry;
430
14.2k
        LITTLENUM_TYPE *littlenum_pointer;
431
14.2k
        LITTLENUM_TYPE *littlenum_limit;
432
433
14.2k
        littlenum_limit = digits_binary_low
434
14.2k
    + more_than_enough_littlenums_for_digits
435
14.2k
    - 1;
436
437
14.2k
        carry = c - '0';  /* char -> binary */
438
439
14.2k
        for (littlenum_pointer = digits_binary_low;
440
60.6k
       littlenum_pointer <= littlenum_limit;
441
46.4k
       littlenum_pointer++)
442
46.4k
    {
443
46.4k
      long work;
444
445
46.4k
      work = carry + 10 * (long) (*littlenum_pointer);
446
46.4k
      *littlenum_pointer = work & LITTLENUM_MASK;
447
46.4k
      carry = work >> LITTLENUM_NUMBER_OF_BITS;
448
46.4k
    }
449
450
14.2k
        if (carry != 0)
451
0
    {
452
      /*
453
       * We have a GROSS internal error.
454
       * This should never happen.
455
       */
456
0
      as_fatal (_("failed sanity check"));
457
0
    }
458
14.2k
      }
459
0
    else
460
0
      {
461
0
        ++count;    /* '.' doesn't alter digits used count.  */
462
0
      }
463
14.2k
  }
464
465
      /*
466
       * Digits_binary_low[] properly encodes the value of the digits.
467
       * Forget about any high-order littlenums that are 0.
468
       */
469
16.6k
      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
470
16.6k
       && size_of_digits_in_littlenums >= 2)
471
8.46k
  size_of_digits_in_littlenums--;
472
473
8.19k
      digits_flonum.low = digits_binary_low;
474
8.19k
      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
475
8.19k
      digits_flonum.leader = digits_flonum.high;
476
8.19k
      digits_flonum.exponent = 0;
477
      /*
478
       * The value of digits_flonum . sign should not be important.
479
       * We have already decided the output's sign.
480
       * We trust that the sign won't influence the other parts of the number!
481
       * So we give it a value for these reasons:
482
       * (1) courtesy to humans reading/debugging
483
       *     these numbers so they don't get excited about strange values
484
       * (2) in future there may be more meaning attached to sign,
485
       *     and what was
486
       *     harmless noise may become disruptive, ill-conditioned (or worse)
487
       *     input.
488
       */
489
8.19k
      digits_flonum.sign = '+';
490
491
8.19k
      {
492
  /*
493
   * Compute the mantissa (& exponent) of the power of 10.
494
   * If successful, then multiply the power of 10 by the digits
495
   * giving return_binary_mantissa and return_binary_exponent.
496
   */
497
498
8.19k
  int decimal_exponent_is_negative;
499
  /* This refers to the "-56" in "12.34E-56".  */
500
  /* FALSE: decimal_exponent is positive (or 0) */
501
  /* TRUE:  decimal_exponent is negative */
502
8.19k
  FLONUM_TYPE temporary_flonum;
503
8.19k
  unsigned int size_of_power_in_littlenums;
504
8.19k
  unsigned int size_of_power_in_chars;
505
506
8.19k
  size_of_power_in_littlenums = precision;
507
  /* Precision has a built-in fudge factor so we get a few guard bits.  */
508
509
8.19k
  decimal_exponent_is_negative = (long) decimal_exponent < 0;
510
8.19k
  if (decimal_exponent_is_negative)
511
4.96k
    {
512
4.96k
      decimal_exponent = -decimal_exponent;
513
4.96k
    }
514
515
  /* From now on: the decimal exponent is > 0. Its sign is separate.  */
516
517
8.19k
  size_of_power_in_chars = size_of_power_in_littlenums
518
8.19k
    * sizeof (LITTLENUM_TYPE) + 2;
519
520
8.19k
  power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
521
8.19k
  temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
522
523
8.19k
  memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
524
8.19k
  *power_binary_low = 1;
525
8.19k
  power_of_10_flonum.exponent = 0;
526
8.19k
  power_of_10_flonum.low = power_binary_low;
527
8.19k
  power_of_10_flonum.leader = power_binary_low;
528
8.19k
  power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
529
8.19k
  power_of_10_flonum.sign = '+';
530
8.19k
  temporary_flonum.low = temporary_binary_low;
531
8.19k
  temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
532
  /*
533
   * (power) == 1.
534
   * Space for temporary_flonum allocated.
535
   */
536
537
  /*
538
   * ...
539
   *
540
   * WHILE  more bits
541
   * DO find next bit (with place value)
542
   *  multiply into power mantissa
543
   * OD
544
   */
545
8.19k
  {
546
8.19k
    int place_number_limit;
547
    /* Any 10^(2^n) whose "n" exceeds this */
548
    /* value will fall off the end of */
549
    /* flonum_XXXX_powers_of_ten[].  */
550
8.19k
    int place_number;
551
8.19k
    const FLONUM_TYPE *multiplicand;  /* -> 10^(2^n) */
552
553
8.19k
    place_number_limit = table_size_of_flonum_powers_of_ten;
554
555
8.19k
    multiplicand = (decimal_exponent_is_negative
556
8.19k
        ? flonum_negative_powers_of_ten
557
8.19k
        : flonum_positive_powers_of_ten);
558
559
8.19k
    for (place_number = 1;/* Place value of this bit of exponent.  */
560
17.8k
         decimal_exponent;/* Quit when no more 1 bits in exponent.  */
561
9.63k
         decimal_exponent >>= 1, place_number++)
562
9.63k
      {
563
9.63k
        if (decimal_exponent & 1)
564
7.12k
    {
565
7.12k
      if (place_number > place_number_limit)
566
15
        {
567
          /* The decimal exponent has a magnitude so great
568
       that our tables can't help us fragment it.
569
       Although this routine is in error because it
570
       can't imagine a number that big, signal an
571
       error as if it is the user's fault for
572
       presenting such a big number.  */
573
15
          return_value = ERROR_EXPONENT_OVERFLOW;
574
          /* quit out of loop gracefully */
575
15
          decimal_exponent = 0;
576
15
        }
577
7.11k
      else
578
7.11k
        {
579
#ifdef TRACE
580
          printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
581
            place_number);
582
583
          flonum_print (&power_of_10_flonum);
584
          (void) putchar ('\n');
585
#endif
586
#ifdef TRACE
587
          printf ("multiplier:\n");
588
          flonum_print (multiplicand + place_number);
589
          (void) putchar ('\n');
590
#endif
591
7.11k
          flonum_multip (multiplicand + place_number,
592
7.11k
             &power_of_10_flonum, &temporary_flonum);
593
#ifdef TRACE
594
          printf ("after multiply:\n");
595
          flonum_print (&temporary_flonum);
596
          (void) putchar ('\n');
597
#endif
598
7.11k
          flonum_copy (&temporary_flonum, &power_of_10_flonum);
599
#ifdef TRACE
600
          printf ("after copy:\n");
601
          flonum_print (&power_of_10_flonum);
602
          (void) putchar ('\n');
603
#endif
604
7.11k
        } /* If this bit of decimal_exponent was computable.*/
605
7.12k
    } /* If this bit of decimal_exponent was set.  */
606
9.63k
      } /* For each bit of binary representation of exponent */
607
#ifdef TRACE
608
    printf ("after computing power_of_10_flonum:\n");
609
    flonum_print (&power_of_10_flonum);
610
    (void) putchar ('\n');
611
#endif
612
8.19k
  }
613
8.19k
      }
614
615
      /*
616
       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
617
       * It may be the number 1, in which case we don't NEED to multiply.
618
       *
619
       * Multiply (decimal digits) by power_of_10_flonum.
620
       */
621
622
8.19k
      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
623
      /* Assert sign of the number we made is '+'.  */
624
8.19k
      address_of_generic_floating_point_number->sign = digits_sign_char;
625
626
8.19k
      free (temporary_binary_low);
627
8.19k
      free (power_binary_low);
628
8.19k
      free (digits_binary_low);
629
8.19k
    }
630
9.39k
  return return_value;
631
9.39k
}
632
633
#ifdef TRACE
634
static void
635
flonum_print (f)
636
     const FLONUM_TYPE *f;
637
{
638
  LITTLENUM_TYPE *lp;
639
  char littlenum_format[10];
640
  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
641
#define print_littlenum(LP) (printf (littlenum_format, LP))
642
  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
643
  if (f->low < f->high)
644
    for (lp = f->high; lp >= f->low; lp--)
645
      print_littlenum (*lp);
646
  else
647
    for (lp = f->low; lp <= f->high; lp++)
648
      print_littlenum (*lp);
649
  printf ("\n");
650
  fflush (stdout);
651
}
652
#endif
653
654
/* end of atof_generic.c */