Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/libctf/ctf-dedup.c
Line
Count
Source (jump to first uncovered line)
1
/* CTF type deduplication.
2
   Copyright (C) 2019-2025 Free Software Foundation, Inc.
3
4
   This file is part of libctf.
5
6
   libctf is free software; you can redistribute it and/or modify it under
7
   the terms of the GNU General Public License as published by the Free
8
   Software Foundation; either version 3, or (at your option) any later
9
   version.
10
11
   This program is distributed in the hope that it will be useful, but
12
   WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14
   See the GNU General Public License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with this program; see the file COPYING.  If not see
18
   <http://www.gnu.org/licenses/>.  */
19
20
#include <ctf-impl.h>
21
#include <string.h>
22
#include <errno.h>
23
#include <assert.h>
24
#include "hashtab.h"
25
26
/* (In the below, relevant functions are named in square brackets.)  */
27
28
/* Type deduplication is a three-phase process:
29
30
    [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
31
    1) come up with unambiguous hash values for all types: no two types may have
32
       the same hash value, and any given type should have only one hash value
33
       (for optimal deduplication).
34
35
    [ctf_dedup, ctf_dedup_detect_name_ambiguity,
36
     ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
37
    2) mark those distinct types with names that collide (and thus cannot be
38
       declared simultaneously in the same translation unit) as conflicting, and
39
       recursively mark all types that cite one of those types as conflicting as
40
       well.  Possibly mark all types cited in only one TU as conflicting, if
41
       the CTF_LINK_SHARE_DUPLICATED link mode is active.
42
43
    [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
44
    3) emit all the types, one hash value at a time.  Types not marked
45
       conflicting are emitted once, into the shared dictionary: types marked
46
       conflicting are emitted once per TU into a dictionary corresponding to
47
       each TU in which they appear.  Structs marked conflicting get at the very
48
       least a forward emitted into the shared dict so that other dicts can cite
49
       it if needed.
50
51
   [id_to_packed_id]
52
   This all works over an array of inputs (usually in the same order as the
53
   inputs on the link line).  We don't use the ctf_link_inputs hash directly
54
   because it is convenient to be able to address specific input types as a
55
   *global type ID* or 'GID', a pair of an array offset and a ctf_id_t.  Since
56
   both are already 32 bits or less or can easily be constrained to that range,
57
   we can pack them both into a single 64-bit hash word for easy lookups, which
58
   would be much more annoying to do with a ctf_dict_t * and a ctf_id_t.  (On
59
   32-bit platforms, we must do that anyway, since pointers, and thus hash keys
60
   and values, are only 32 bits wide).  We track which inputs are parents of
61
   which other inputs so that we can correctly recognize that types we have
62
   traversed in children may cite types in parents, and so that we can process
63
   the parents first.)
64
65
   Note that thanks to ld -r, the deduplicator can be fed its own output, so the
66
   inputs may themselves have child dicts.  Since we need to support this usage
67
   anyway, we can use it in one other place.  If the caller finds translation
68
   units to be too small a unit ambiguous types, links can be 'cu-mapped', where
69
   the caller provides a mapping of input TU names to output child dict names.
70
   This mapping can fuse many child TUs into one potential child dict, so that
71
   ambiguous types in any of those input TUs go into the same child dict.
72
   When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
73
   repeatedly, once for every output name that has more than one input, to fuse
74
   all the input TUs associated with a given output dict into one, and once again
75
   as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
76
   together.  This has much higher memory usage than otherwise, because in the
77
   intermediate state, all the output TUs are in memory at once and cannot be
78
   lazily opened.  It also has implications for the emission code: if types
79
   appear ambiguously in multiple input TUs that are all mapped to the same
80
   child dict, we cannot put them in children in the cu-mapping link phase
81
   because this output is meant to *become* a child in the next link stage and
82
   parent/child relationships are only one level deep: so instead, we just hide
83
   all but one of the ambiguous types.
84
85
   There are a few other subtleties here that make this more complex than it
86
   seems.  Let's go over the steps above in more detail.
87
88
   1) HASHING.
89
90
   [ctf_dedup_hash_type, ctf_dedup_rhash_type]
91
   Hashing proceeds recursively, mixing in the properties of each input type
92
   (including its name, if any), and then adding the hash values of every type
93
   cited by that type.  The result is stashed in the cd_type_hashes so other
94
   phases can find the hash values of input types given their IDs, and so that
95
   if we encounter this type again while hashing we can just return its hash
96
   value: it is also stashed in the *output mapping*, a mapping from hash value
97
   to the set of GIDs corresponding to that type in all inputs.  We also keep
98
   track of the GID of the first appearance of the type in any input (in
99
   cd_output_first_gid), the GID of structs, unions, and forwards that only
100
   appear in one TU (in cd_struct_origin), and an indication of whether this
101
   type is root-visible or not.  See below for where these things are used.
102
103
   Everything in this phase is time-critical, because it is operating over
104
   non-deduplicated types and so may have hundreds or thousands of times the
105
   data volume to deal with than later phases.  Trace output is hidden behind
106
   ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
107
   ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
108
   from the calls to ctf_dprintf(), even with debugging switched off), and keep
109
   down the volume of output (hundreds of gigabytes of debug output are not
110
   uncommon on larger links).
111
112
   We have to do *something* about potential cycles in the type graph.  We'd
113
   like to avoid emitting forwards in the final output if possible, because
114
   forwards aren't much use: they have no members.  We are mostly saved from
115
   needing to worry about this at emission time by ctf_add_struct*()
116
   automatically replacing newly-created forwards when the real struct/union
117
   comes along.  So we only have to avoid getting stuck in cycles during the
118
   hashing phase, while also not confusing types that cite members that are
119
   structs with each other.  It is easiest to solve this problem by noting two
120
   things:
121
122
    - all cycles in C depend on the presence of tagged structs/unions
123
    - all tagged structs/unions have a unique name they can be disambiguated by
124
125
   [ctf_dedup_is_stub]
126
   This means that we can break all cycles by ceasing to hash in cited types at
127
   every tagged struct/union and instead hashing in a stub consisting of the
128
   struct/union's *decorated name*, which is the name preceded by "s " or "u "
129
   depending on the namespace (cached in cd_decorated_names).  Forwards are
130
   decorated identically (so a forward to "struct foo" would be represented as
131
   "s foo"): this means that a citation of a forward to a type and a citation of
132
   a concrete definition of a type with the same name ends up getting the same
133
   hash value.
134
135
   Of course, it is quite possible to have two TUs with structs with the same
136
   name and different definitions, but that's OK because when we scan for types
137
   with ambiguous names we will identify these and mark them conflicting.
138
139
   We populate one thing to help conflictedness marking.  No unconflicted type
140
   may cite a conflicted one, but this means that conflictedness marking must
141
   walk from types to the types that cite them, which is the opposite of the
142
   usual order.  We can make this easier to do by constructing a *citers* graph
143
   in cd_citers, which points from types to the types that cite them: because we
144
   emit forwards corresponding to every conflicted struct/union, we don't need
145
   to do this for citations of structs/unions by other types.  This is very
146
   convenient for us, because that's the only type we don't traverse
147
   recursively: so we can construct the citers graph at the same time as we
148
   hash, rather than needing to add an extra pass.  (This graph is a dynhash of
149
   *type hash values*, so it's small: in effect it is automatically
150
   deduplicated.)
151
152
   2) COLLISIONAL MARKING.
153
154
   [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
155
   We identify types whose names collide during the hashing process, and count
156
   the rough number of uses of each name (caching may throw it off a bit: this
157
   doesn't need to be accurate).  We then mark the less-frequently-cited types
158
   with each names conflicting: the most-frequently-cited one goes into the
159
   shared type dictionary, while all others are duplicated into per-TU
160
   dictionaries, named after the input TU, that have the shared dictionary as a
161
   parent.  For structures and unions this is not quite good enough: we'd like
162
   to have citations of forwards to ambiguously named structures and unions
163
   *stay* as citations of forwards, so that the user can tell that the caller
164
   didn't actually know which structure definition was meant: but if we put one
165
   of those structures into the shared dictionary, it would supplant and replace
166
   the forward, leaving no sign.  So structures and unions do not take part in
167
   this popularity contest: if their names are ambiguous, they are just
168
   duplicated, and only a forward appears in the shared dict.
169
170
   [ctf_dedup_propagate_conflictedness]
171
   The process of marking types conflicted is itself recursive: we recursively
172
   traverse the cd_citers graph populated in the hashing pass above and mark
173
   everything that we encounter conflicted (without wasting time re-marking
174
   anything that is already marked).  This naturally terminates just where we
175
   want it to (at types that are cited by no other types, and at structures and
176
   unions) and suffices to ensure that types that cite conflicted types are
177
   always marked conflicted.
178
179
   [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
180
   When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
181
   are used in only one TU to end up in a per-CU dict. The easiest way to do
182
   that is to mark them conflicted.  ctf_dedup_conflictify_unshared does this,
183
   traversing the output mapping and using ctf_dedup_multiple_input_dicts to
184
   check the number of input dicts each distinct type hash value came from:
185
   types that only came from one get marked conflicted.  One caveat here is that
186
   we need to consider both structs and forwards to them: a struct that appears
187
   in one TU and has a dozen citations to an opaque forward in other TUs should
188
   *not* be considered to be used in only one TU, because users would find it
189
   useful to be able to traverse into opaque structures of that sort: so we use
190
   cd_struct_origin to check both structs/unions and the forwards corresponding
191
   to them.
192
193
   3) EMISSION.
194
195
   [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
196
    ctf_dedup_rwalk_one_output_mapping]
197
   Emission involves another walk of the entire output mapping, this time
198
   traversing everything other than struct members, recursively.  Types are
199
   emitted from leaves to trunk, emitting all types a type cites before emitting
200
   the type itself.  We sort the output mapping before traversing it, for
201
   reproducibility and also correctness: the input dicts may have parent/child
202
   relationships, so we simply sort all types that first appear in parents
203
   before all children, then sort types that first appear in dicts appearing
204
   earlier on the linker command line before those that appear later, then sort
205
   by input ctf_id_t.  (This is where we use cd_output_first_gid, collected
206
   above.)
207
208
   The walking is done using a recursive traverser which arranges to not revisit
209
   any type already visited and to call its callback once per input GID for
210
   input GIDs corresponding to conflicted output types.  The traverser only
211
   finds input types and calls a callback for them as many times as the output
212
   needs to appear: it doesn't try to figure out anything about where the output
213
   might go.  That's done by the callback based on whether the type is
214
   marked conflicted or not.
215
216
   [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
217
   ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
218
   Conflicted types have all necessary dictionaries created, and then we emit
219
   the type into each dictionary in turn, working over each input CTF type
220
   corresponding to each hash value and using ctf_dedup_id_to_target to map each
221
   input ctf_id_t into the corresponding type in the output (dealing with input
222
   ctf_id_t's with parents in the process by simply chasing to the parent dict
223
   if the type we're looking up is in there).  Emitting structures involves
224
   simply noting that the members of this structure need emission later on:
225
   because you cannot cite a single structure member from another type, we avoid
226
   emitting the members at this stage to keep recursion depths down a bit.
227
228
   At this point, if we have by some mischance decided that two different types
229
   with child types that hash to different values have in fact got the same hash
230
   value themselves and *not* marked it conflicting, the type walk will walk
231
   only *one* of them and in all likelihood we'll find that we are trying to
232
   emit a type into some child dictionary that references a type that was never
233
   emitted into that dictionary and assertion-fail.  This always indicates a bug
234
   in the conflictedness marking machinery or the hashing code, or both.
235
236
   ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
237
   thing, alluded to above: if this is a conflicted tagged structure or union,
238
   and the target is the shared dict (i.e., the type we're being asked to emit
239
   is not itself conflicted so can't just point straight at the conflicted
240
   type), we instead synthesise a forward with the same name, emit it into the
241
   shared dict, record it in cd_output_emission_conflicted_forwards so that we
242
   don't re-emit it, and return it.  This means that cycles that contain
243
   conflicts do not cause the entire cycle to be replicated in every child: only
244
   that piece of the cycle which takes you back as far as the closest tagged
245
   struct/union needs to be replicated.  This trick means that no part of the
246
   deduplicator needs a cycle detector: every recursive walk can stop at tagged
247
   structures.
248
249
   [ctf_dedup_emit_struct_members]
250
   The final stage of emission is to walk over all structures with members
251
   that need emission and emit all of them. Every type has been emitted at
252
   this stage, so emission cannot fail.
253
254
   [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
255
   Finally, we update the input -> output type ID mappings used by the ctf-link
256
   machinery to update all the other sections.  This is surprisingly expensive
257
   and may be replaced with a scheme which lets the ctf-link machinery extract
258
   the needed info directly from the deduplicator.  */
259
260
/* Possible future optimizations are flagged with 'optimization opportunity'
261
   below.  */
262
263
/* Global optimization opportunity: a GC pass, eliminating types with no direct
264
   or indirect citations from the other sections in the dictionary.  */
265
266
/* Internal flag values for ctf_dedup_hash_type.  */
267
268
/* Child call: consider forwardable types equivalent to forwards or stubs below
269
   this point.  */
270
0
#define CTF_DEDUP_HASH_INTERNAL_CHILD         0x01
271
272
/* Transform references to single ctf_id_ts in passed-in inputs into a number
273
   that will fit in a uint64_t.  Needs rethinking if CTF_MAX_TYPE is boosted.
274
275
   On 32-bit platforms, we pack things together differently: see the note
276
   above.  */
277
278
#if UINTPTR_MAX < UINT64_MAX
279
# define IDS_NEED_ALLOCATION 1
280
# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
281
# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
282
# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
283
#else
284
# define CTF_DEDUP_GID(fp, input, type) \
285
0
  (void *) (((uint64_t) input) << 32 | (type))
286
0
# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
287
0
# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
288
#endif
289
290
#ifdef IDS_NEED_ALLOCATION
291
292
 /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
293
    into the pool.  It is notably less efficient than the 64-bit direct storage
294
    approach, but with a smaller key, this is all we can do.  */
295
296
static void *
297
id_to_packed_id (ctf_dict_t *fp, int input_num, ctf_id_t type)
298
{
299
  const void *lookup;
300
  ctf_type_id_key_t *dynkey = NULL;
301
  ctf_type_id_key_t key = { input_num, type };
302
303
  if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
304
            &key, &lookup, NULL))
305
    {
306
      if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
307
  goto oom;
308
      memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
309
310
      if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_dict_t, dynkey, NULL) < 0)
311
  goto oom;
312
313
      ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
314
           dynkey, &lookup, NULL);
315
    }
316
  /* We use a raw assert() here because there isn't really a way to get any sort
317
     of error back from this routine without vastly complicating things for the
318
     much more common case of !IDS_NEED_ALLOCATION.  */
319
  assert (lookup);
320
  return (void *) lookup;
321
322
 oom:
323
  free (dynkey);
324
  ctf_set_errno (fp, ENOMEM);
325
  return NULL;
326
}
327
328
static int
329
packed_id_to_input (const void *id)
330
{
331
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
332
333
  return key->ctii_input_num;
334
}
335
336
static ctf_id_t
337
packed_id_to_type (const void *id)
338
{
339
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
340
341
  return key->ctii_type;
342
}
343
#endif
344
345
/* Make an element in a dynhash-of-dynsets, or return it if already present.  */
346
347
static ctf_dynset_t *
348
make_set_element (ctf_dynhash_t *set, const void *key)
349
0
{
350
0
  ctf_dynset_t *element;
351
352
0
  if ((element = ctf_dynhash_lookup (set, key)) == NULL)
353
0
    {
354
0
      if ((element = ctf_dynset_create (htab_hash_string,
355
0
          htab_eq_string,
356
0
          NULL)) == NULL)
357
0
  return NULL;
358
359
0
      if (ctf_dynhash_insert (set, (void *) key, element) < 0)
360
0
  {
361
0
    ctf_dynset_destroy (element);
362
0
    return NULL;
363
0
  }
364
0
    }
365
366
0
  return element;
367
0
}
368
369
/* Initialize the dedup atoms table.  */
370
int
371
ctf_dedup_atoms_init (ctf_dict_t *fp)
372
0
{
373
0
  if (fp->ctf_dedup_atoms)
374
0
    return 0;
375
376
0
  if (!fp->ctf_dedup_atoms_alloc)
377
0
    {
378
0
      if ((fp->ctf_dedup_atoms_alloc
379
0
     = ctf_dynset_create (htab_hash_string, htab_eq_string,
380
0
        free)) == NULL)
381
0
  return ctf_set_errno (fp, ENOMEM);
382
0
    }
383
0
  fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
384
0
  return 0;
385
0
}
386
387
/* Intern things in the dedup atoms table.  */
388
389
static const char *
390
intern (ctf_dict_t *fp, char *atom)
391
0
{
392
0
  const void *foo;
393
394
0
  if (atom == NULL)
395
0
    return NULL;
396
397
0
  if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
398
0
    {
399
0
      if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
400
0
  {
401
0
    ctf_set_errno (fp, ENOMEM);
402
0
    return NULL;
403
0
  }
404
0
      foo = atom;
405
0
    }
406
0
  else
407
0
    free (atom);
408
409
0
  return (const char *) foo;
410
0
}
411
412
/* Add an indication of the namespace to a type name in a way that is not valid
413
   for C identifiers.  Used to maintain hashes of type names to other things
414
   while allowing for the four C namespaces (normal, struct, union, enum).
415
   Return a pointer into the cd_decorated_names atoms table.  */
416
static const char *
417
ctf_decorate_type_name (ctf_dict_t *fp, const char *name, int kind)
418
0
{
419
0
  ctf_dedup_t *d = &fp->ctf_dedup;
420
0
  const char *ret;
421
0
  const char *k;
422
0
  char *p;
423
0
  size_t i;
424
425
0
  switch (kind)
426
0
    {
427
0
    case CTF_K_STRUCT:
428
0
      k = "s ";
429
0
      i = 0;
430
0
      break;
431
0
    case CTF_K_UNION:
432
0
      k = "u ";
433
0
      i = 1;
434
0
      break;
435
0
    case CTF_K_ENUM:
436
0
      k = "e ";
437
0
      i = 2;
438
0
      break;
439
0
    default:
440
0
      k = "";
441
0
      i = 3;
442
0
    }
443
444
0
  if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
445
0
    {
446
0
      char *str;
447
448
0
      if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
449
0
  goto oom;
450
451
0
      p = stpcpy (str, k);
452
0
      strcpy (p, name);
453
0
      ret = intern (fp, str);
454
0
      if (!ret)
455
0
  goto oom;
456
457
0
      if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
458
0
  goto oom;
459
0
    }
460
461
0
  return ret;
462
463
0
 oom:
464
0
  ctf_set_errno (fp, ENOMEM);
465
0
  return NULL;
466
0
}
467
468
/* Hash a type, possibly debugging-dumping something about it as well.  */
469
static inline void
470
ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
471
        const char *description _libctf_unused_,
472
        unsigned long depth _libctf_unused_)
473
0
{
474
0
  ctf_sha1_add (sha1, buf, len);
475
476
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
477
  ctf_sha1_t tmp;
478
  char tmp_hval[CTF_SHA1_SIZE];
479
  tmp = *sha1;
480
  ctf_sha1_fini (&tmp, tmp_hval);
481
  ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
482
         tmp_hval);
483
#endif
484
0
}
485
486
static const char *
487
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
488
         ctf_dict_t **inputs, int input_num,
489
         ctf_id_t type, int flags, unsigned long depth,
490
         int (*populate_fun) (ctf_dict_t *fp,
491
            ctf_dict_t *input,
492
            ctf_dict_t **inputs,
493
            int input_num,
494
            ctf_id_t type,
495
            int isroot,
496
            void *id,
497
            const char *decorated_name,
498
            const char *hash));
499
500
/* Determine whether this type is being hashed as a stub (in which case it is
501
   unsafe to cache it).  */
502
static int
503
ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
504
0
{
505
  /* We can cache all types unless we are recursing to children and are hashing
506
     in a tagged struct, union or forward, all of which are replaced with their
507
     decorated name as a stub and will have different hash values when hashed at
508
     the top level.  */
509
510
0
  return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
511
0
    && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
512
0
        || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
513
0
              || fwdkind == CTF_K_UNION))));
514
0
}
515
516
/* Populate struct_origin if need be (not already populated, or populated with
517
   a different origin), in which case it must go to -1, "shared".)
518
519
   Only called for forwards or forwardable types with names, when the link mode
520
   is CTF_LINK_SHARE_DUPLICATED.  */
521
static int
522
ctf_dedup_record_origin (ctf_dict_t *fp, int input_num, const char *decorated,
523
       void *id)
524
0
{
525
0
  ctf_dedup_t *d = &fp->ctf_dedup;
526
0
  void *origin;
527
0
  int populate_origin = 0;
528
529
0
  if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
530
0
    {
531
0
      if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
532
0
    && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
533
0
  {
534
0
    populate_origin = 1;
535
0
    origin = CTF_DEDUP_GID (fp, -1, -1);
536
0
  }
537
0
    }
538
0
  else
539
0
    {
540
0
      populate_origin = 1;
541
0
      origin = id;
542
0
    }
543
544
0
  if (populate_origin)
545
0
    if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
546
0
      return ctf_set_errno (fp, errno);
547
0
  return 0;
548
0
}
549
550
/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
551
   calls, recursively).  */
552
553
static const char *
554
ctf_dedup_rhash_type (ctf_dict_t *fp, ctf_dict_t *input, ctf_dict_t **inputs,
555
          int input_num, ctf_id_t type, void *type_id,
556
          const ctf_type_t *tp, const char *name,
557
          const char *decorated, int kind, int flags,
558
          unsigned long depth,
559
          int (*populate_fun) (ctf_dict_t *fp,
560
             ctf_dict_t *input,
561
             ctf_dict_t **inputs,
562
             int input_num,
563
             ctf_id_t type,
564
             int isroot,
565
             void *id,
566
             const char *decorated_name,
567
             const char *hash))
568
0
{
569
0
  ctf_dedup_t *d = &fp->ctf_dedup;
570
0
  ctf_next_t *i = NULL;
571
0
  ctf_sha1_t hash;
572
0
  ctf_id_t child_type;
573
0
  char hashbuf[CTF_SHA1_SIZE];
574
0
  const char *hval = NULL;
575
0
  const char *whaterr;
576
0
  int err = 0;
577
578
0
  const char *citer = NULL;
579
0
  ctf_dynset_t *citers = NULL;
580
581
  /* Add a citer to the citers set.  */
582
0
#define ADD_CITER(citers, hval)           \
583
0
  do                  \
584
0
    {                 \
585
0
      whaterr = N_("error updating citers");        \
586
0
      if (!citers)             \
587
0
  if ((citers = ctf_dynset_create (htab_hash_string,    \
588
0
           htab_eq_string,    \
589
0
           NULL)) == NULL)   \
590
0
    goto oom;             \
591
0
      if (ctf_dynset_cinsert (citers, hval) < 0)     \
592
0
  goto oom;             \
593
0
    }                 \
594
0
  while (0)
595
596
  /* If this is a named struct or union or a forward to one, and this is a child
597
     traversal, treat this type as if it were a forward -- do not recurse to
598
     children, ignore all content not already hashed in, and hash in the
599
     decorated name of the type instead.  */
600
601
0
  if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
602
0
    {
603
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
604
      ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
605
       "stub with decorated name %s\n", decorated);
606
607
#endif
608
0
      ctf_sha1_init (&hash);
609
0
      ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
610
0
        "decorated struct/union/forward name", depth);
611
0
      ctf_sha1_fini (&hash, hashbuf);
612
613
0
      if ((hval = intern (fp, strdup (hashbuf))) == NULL)
614
0
  {
615
0
    ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
616
0
            "stub hashing for type with GID %p"),
617
0
      ctf_link_input_name (input), input_num, type_id);
618
0
    return NULL;        /* errno is set for us.  */
619
0
  }
620
621
      /* In share-duplicated link mode, make sure the origin of this type is
622
   recorded, even if this is a type in a parent dict which will not be
623
   directly traversed.  */
624
0
      if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
625
0
    && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
626
0
  return NULL;       /* errno is set for us.  */
627
628
0
      return hval;
629
0
    }
630
631
  /* Now ensure that subsequent recursive calls (but *not* the top-level call)
632
     get this treatment.  */
633
0
  flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
634
635
  /* If this is a struct, union, or forward with a name, record the unique
636
     originating input TU, if there is one.  */
637
638
0
  if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
639
0
    if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
640
0
  && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
641
0
      return NULL;       /* errno is set for us.  */
642
643
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
644
  ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
645
         depth, input_num, type, kind, name ? name : "");
646
#endif
647
648
  /* Some type kinds don't have names: the API provides no way to set the name,
649
     so the type the deduplicator outputs will be nameless even if the input
650
     somehow has a name, and the name should not be mixed into the hash.  */
651
652
0
  switch (kind)
653
0
    {
654
0
    case CTF_K_POINTER:
655
0
    case CTF_K_ARRAY:
656
0
    case CTF_K_FUNCTION:
657
0
    case CTF_K_VOLATILE:
658
0
    case CTF_K_CONST:
659
0
    case CTF_K_RESTRICT:
660
0
    case CTF_K_SLICE:
661
0
      name = NULL;
662
0
    }
663
664
  /* Mix in invariant stuff, transforming the type kind if needed.  Note that
665
     the vlen is *not* hashed in: the actual variable-length info is hashed in
666
     instead, piecewise.  The vlen is not part of the type, only the
667
     variable-length data is: identical types with distinct vlens are quite
668
     possible.  Equally, we do not want to hash in the isroot flag: both the
669
     compiler and the deduplicator set the nonroot flag to indicate clashes with
670
     *other types in the same TU* with the same name: so two types can easily
671
     have distinct nonroot flags, yet be exactly the same type.  This means we
672
     can never use the non-root-visible flag from the input for anything,
673
     because if there are several distinct values the one chosen is basically
674
     random.  We unify non-root-visible flags separately: see the uses of
675
     cd_nonroot_consistency.  */
676
677
0
  ctf_sha1_init (&hash);
678
0
  if (name)
679
0
    ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
680
0
  ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
681
682
  /* Hash content of this type.  */
683
0
  switch (kind)
684
0
    {
685
0
    case CTF_K_UNKNOWN:
686
      /* No extra state.  */
687
0
      break;
688
0
    case CTF_K_FORWARD:
689
690
      /* Add the forwarded kind, stored in the ctt_type.  */
691
0
      ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
692
0
        "forwarded kind", depth);
693
0
      break;
694
0
    case CTF_K_INTEGER:
695
0
    case CTF_K_FLOAT:
696
0
      {
697
0
  ctf_encoding_t ep;
698
0
  memset (&ep, 0, sizeof (ctf_encoding_t));
699
700
0
  ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
701
0
          depth);
702
0
  if (ctf_type_encoding (input, type, &ep) < 0)
703
0
    {
704
0
      whaterr = N_("error getting encoding");
705
0
      goto input_err;
706
0
    }
707
0
  ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
708
0
          depth);
709
0
  break;
710
0
      }
711
      /* Types that reference other types.  */
712
0
    case CTF_K_TYPEDEF:
713
0
    case CTF_K_VOLATILE:
714
0
    case CTF_K_CONST:
715
0
    case CTF_K_RESTRICT:
716
0
    case CTF_K_POINTER:
717
      /* Hash the referenced type, if not already hashed, and mix it in.  */
718
0
      child_type = ctf_type_reference (input, type);
719
0
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num, child_type,
720
0
               flags, depth, populate_fun)) == NULL)
721
0
  {
722
0
    whaterr = N_("error doing referenced type hashing");
723
0
    goto err;
724
0
  }
725
0
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
726
0
        depth);
727
0
      citer = hval;
728
729
0
      break;
730
731
      /* The slices of two types hash identically only if the type they overlay
732
   also has the same encoding.  This is not ideal, but in practice will work
733
   well enough.  We work directly rather than using the CTF API because
734
   we do not want the slice's normal automatically-shine-through
735
   semantics to kick in here.  */
736
0
    case CTF_K_SLICE:
737
0
      {
738
0
  const ctf_slice_t *slice;
739
0
  const ctf_dtdef_t *dtd;
740
0
  ssize_t size;
741
0
  ssize_t increment;
742
743
0
  child_type = ctf_type_reference (input, type);
744
0
  ctf_get_ctt_size (input, tp, &size, &increment);
745
0
  ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
746
747
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
748
0
           child_type, flags, depth,
749
0
           populate_fun)) == NULL)
750
0
    {
751
0
      whaterr = N_("error doing slice-referenced type hashing");
752
0
      goto err;
753
0
    }
754
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
755
0
          depth);
756
0
  citer = hval;
757
758
0
  if ((dtd = ctf_dynamic_type (input, type)) != NULL)
759
0
    slice = (ctf_slice_t *) dtd->dtd_vlen;
760
0
  else
761
0
    slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
762
763
0
  ctf_dedup_sha1_add (&hash, &slice->cts_offset,
764
0
          sizeof (slice->cts_offset), "slice offset", depth);
765
0
  ctf_dedup_sha1_add (&hash, &slice->cts_bits,
766
0
          sizeof (slice->cts_bits), "slice bits", depth);
767
0
  break;
768
0
      }
769
770
0
    case CTF_K_ARRAY:
771
0
      {
772
0
  ctf_arinfo_t ar;
773
774
0
  if (ctf_array_info (input, type, &ar) < 0)
775
0
    {
776
0
      whaterr = N_("error getting array info");
777
0
      goto input_err;
778
0
    }
779
780
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
781
0
           ar.ctr_contents, flags, depth,
782
0
           populate_fun)) == NULL)
783
0
    {
784
0
      whaterr = N_("error doing array contents type hashing");
785
0
      goto err;
786
0
    }
787
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
788
0
          depth);
789
0
  ADD_CITER (citers, hval);
790
791
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
792
0
           ar.ctr_index, flags, depth,
793
0
           populate_fun)) == NULL)
794
0
    {
795
0
      whaterr = N_("error doing array index type hashing");
796
0
      goto err;
797
0
    }
798
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
799
0
          depth);
800
0
  ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
801
0
          "element count", depth);
802
0
  ADD_CITER (citers, hval);
803
804
0
  break;
805
0
      }
806
0
    case CTF_K_FUNCTION:
807
0
      {
808
0
  ctf_funcinfo_t fi;
809
0
  ctf_id_t *args;
810
0
  uint32_t j;
811
812
0
  if (ctf_func_type_info (input, type, &fi) < 0)
813
0
    {
814
0
      whaterr = N_("error getting func type info");
815
0
      goto input_err;
816
0
    }
817
818
0
  if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
819
0
           fi.ctc_return, flags, depth,
820
0
           populate_fun)) == NULL)
821
0
    {
822
0
      whaterr = N_("error getting func return type");
823
0
      goto err;
824
0
    }
825
0
  ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
826
0
          depth);
827
0
  ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
828
0
          "func argc", depth);
829
0
  ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
830
0
          "func flags", depth);
831
0
  ADD_CITER (citers, hval);
832
833
0
  if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
834
0
    {
835
0
      err = ENOMEM;
836
0
      whaterr = N_("error doing memory allocation");
837
0
      goto err;
838
0
    }
839
840
0
  if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
841
0
    {
842
0
      free (args);
843
0
      whaterr = N_("error getting func arg type");
844
0
      goto input_err;
845
0
    }
846
0
  for (j = 0; j < fi.ctc_argc; j++)
847
0
    {
848
0
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
849
0
               args[j], flags, depth,
850
0
               populate_fun)) == NULL)
851
0
        {
852
0
    free (args);
853
0
    whaterr = N_("error doing func arg type hashing");
854
0
    goto err;
855
0
        }
856
0
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
857
0
        depth);
858
0
      ADD_CITER (citers, hval);
859
0
    }
860
0
  free (args);
861
0
  break;
862
0
      }
863
0
    case CTF_K_ENUM:
864
0
      {
865
0
  int val;
866
0
  const char *ename;
867
868
0
  ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
869
0
          "enum size", depth);
870
0
  while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
871
0
    {
872
0
      ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
873
0
        depth);
874
0
      ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
875
0
    }
876
0
  if (ctf_errno (input) != ECTF_NEXT_END)
877
0
    {
878
0
      whaterr = N_("error doing enum member iteration");
879
0
      goto input_err;
880
0
    }
881
0
  break;
882
0
      }
883
    /* Top-level only.  */
884
0
    case CTF_K_STRUCT:
885
0
    case CTF_K_UNION:
886
0
      {
887
0
  ssize_t offset;
888
0
  const char *mname;
889
0
  ctf_id_t membtype;
890
0
  ssize_t size;
891
892
0
  ctf_get_ctt_size (input, tp, &size, NULL);
893
0
  ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
894
0
          depth);
895
896
0
  while ((offset = ctf_member_next (input, type, &i, &mname, &membtype,
897
0
            0)) >= 0)
898
0
    {
899
0
      if (mname == NULL)
900
0
        mname = "";
901
0
      ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
902
0
        "member name", depth);
903
904
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
905
      ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
906
#endif
907
0
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
908
0
               membtype, flags, depth,
909
0
               populate_fun)) == NULL)
910
0
        {
911
0
    whaterr = N_("error doing struct/union member type hashing");
912
0
    goto iterr;
913
0
        }
914
915
0
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
916
0
        depth);
917
0
      ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
918
0
        depth);
919
0
      ADD_CITER (citers, hval);
920
0
    }
921
0
  if (ctf_errno (input) != ECTF_NEXT_END)
922
0
    {
923
0
      whaterr = N_("error doing struct/union member iteration");
924
0
      goto input_err;
925
0
    }
926
0
  break;
927
0
      }
928
0
    default:
929
0
      whaterr = N_("error: unknown type kind");
930
0
      goto err;
931
0
    }
932
0
  ctf_sha1_fini (&hash, hashbuf);
933
934
0
  if ((hval = intern (fp, strdup (hashbuf))) == NULL)
935
0
    {
936
0
      whaterr = N_("cannot intern hash");
937
0
      goto oom;
938
0
    }
939
940
  /* Populate the citers for this type's subtypes, now the hash for the type
941
     itself is known.  */
942
0
  whaterr = N_("error tracking citers");
943
944
0
  if (citer)
945
0
    {
946
0
      ctf_dynset_t *citer_hashes;
947
948
0
      if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
949
0
  goto oom;
950
0
      if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
951
0
  goto oom;
952
0
    }
953
0
  else if (citers)
954
0
    {
955
0
      const void *k;
956
957
0
      while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
958
0
  {
959
0
    ctf_dynset_t *citer_hashes;
960
0
    citer = (const char *) k;
961
962
0
    if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
963
0
      goto oom;
964
965
0
    if (ctf_dynset_exists (citer_hashes, hval, NULL))
966
0
      continue;
967
0
    if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
968
0
      goto oom;
969
0
  }
970
0
      if (err != ECTF_NEXT_END)
971
0
  goto err;
972
0
      ctf_dynset_destroy (citers);
973
0
    }
974
975
0
  return hval;
976
977
0
 iterr:
978
0
  ctf_next_destroy (i);
979
0
 input_err:
980
0
  err = ctf_errno (input);
981
0
 err:
982
0
  ctf_sha1_fini (&hash, NULL);
983
0
  ctf_err_warn (fp, 0, err, _("%s (%i): %s: during type hashing for type %lx, "
984
0
            "kind %i"), ctf_link_input_name (input),
985
0
    input_num, gettext (whaterr), type, kind);
986
0
  return NULL;
987
0
 oom:
988
0
  ctf_set_errno (fp, errno);
989
0
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
990
0
          "kind %i"), ctf_link_input_name (input),
991
0
    input_num, gettext (whaterr), type, kind);
992
0
  return NULL;
993
0
}
994
995
/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
996
   state is stored.  INPUT_NUM is the number of this input in the set of inputs.
997
   Record its hash in FP's cd_type_hashes once it is known.
998
999
   (The flags argument currently accepts only the flag
1000
   CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
1001
   struct/union hashing in recursive traversals below the TYPE.)
1002
1003
   We use the CTF API rather than direct access wherever possible, because types
1004
   that appear identical through the API should be considered identical, with
1005
   one exception: slices should only be considered identical to other slices,
1006
   not to the corresponding unsliced type.
1007
1008
   The POPULATE_FUN is a mandatory hook that populates other mappings with each
1009
   type we see (excepting types that are recursively hashed as stubs).  The
1010
   caller should not rely on the order of calls to this hook, though it will be
1011
   called at least once for every non-stub reference to every type.
1012
1013
   Returns a hash value (an atom), or NULL on error.  */
1014
1015
static const char *
1016
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
1017
         ctf_dict_t **inputs, int input_num, ctf_id_t type,
1018
         int flags, unsigned long depth,
1019
         int (*populate_fun) (ctf_dict_t *fp,
1020
            ctf_dict_t *input,
1021
            ctf_dict_t **inputs,
1022
            int input_num,
1023
            ctf_id_t type,
1024
            int isroot,
1025
            void *id,
1026
            const char *decorated_name,
1027
            const char *hash))
1028
0
{
1029
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1030
0
  const ctf_type_t *tp;
1031
0
  void *type_id;
1032
0
  const char *hval = NULL;
1033
0
  const char *name;
1034
0
  const char *whaterr;
1035
0
  const char *decorated = NULL;
1036
0
  uint32_t kind, fwdkind;
1037
0
  int isroot;
1038
1039
0
  depth++;
1040
1041
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1042
  ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
1043
#endif
1044
1045
  /* The unimplemented type doesn't really exist, but must be noted in parent
1046
     hashes: so it gets a fixed, arbitrary hash.  */
1047
0
  if (type == 0)
1048
0
    return "00000000000000000000";
1049
1050
  /* Possible optimization: if the input type is in the parent type space, just
1051
     copy recursively-cited hashes from the parent's types into the output
1052
     mapping rather than rehashing them.  */
1053
1054
0
  type_id = CTF_DEDUP_GID (fp, input_num, type);
1055
1056
0
  if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
1057
0
    {
1058
0
      ctf_set_errno (fp, ctf_errno (input));
1059
0
      ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
1060
0
        "flags %x"), ctf_link_input_name (input),
1061
0
        input_num, type, flags);
1062
0
      return NULL;    /* errno is set for us.  */
1063
0
    }
1064
1065
0
  kind = LCTF_INFO_KIND (input, tp->ctt_info);
1066
0
  name = ctf_strraw (input, tp->ctt_name);
1067
0
  isroot = LCTF_INFO_ISROOT (input, tp->ctt_info);
1068
1069
0
  if (tp->ctt_name == 0 || !name || name[0] == '\0')
1070
0
    name = NULL;
1071
1072
  /* Decorate the name appropriately for the namespace it appears in: forwards
1073
     appear in the namespace of their referent.  */
1074
1075
0
  fwdkind = kind;
1076
0
  if (name)
1077
0
    {
1078
0
      if (kind == CTF_K_FORWARD)
1079
0
  fwdkind = tp->ctt_type;
1080
1081
0
      if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
1082
0
  return NULL;       /* errno is set for us.  */
1083
0
    }
1084
1085
  /* If not hashing a stub, we can rely on various sorts of caches.
1086
1087
     Optimization opportunity: we may be able to avoid calling the populate_fun
1088
     sometimes here.  */
1089
1090
0
  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1091
0
    {
1092
0
      if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
1093
0
  {
1094
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1095
    ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
1096
           type,  hval);
1097
#endif
1098
0
    populate_fun (fp, input, inputs, input_num, type, isroot, type_id,
1099
0
      decorated, hval);
1100
1101
0
    return hval;
1102
0
  }
1103
0
    }
1104
1105
  /* We have never seen this type before, and must figure out its hash and the
1106
     hashes of the types it cites.
1107
1108
     Hash this type, and call ourselves recursively.  (The hashing part is
1109
     optional, and is disabled if overidden_hval is set.)  */
1110
1111
0
  if ((hval = ctf_dedup_rhash_type (fp, input, inputs, input_num,
1112
0
            type, type_id, tp, name, decorated,
1113
0
            kind, flags, depth, populate_fun)) == NULL)
1114
0
    return NULL;       /* errno is set for us.  */
1115
1116
  /* The hash of this type is now known: record it unless caching is unsafe
1117
     because the hash value will change later.  This will be the final storage
1118
     of this type's hash, so we call the population function on it.  */
1119
1120
0
  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1121
0
    {
1122
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1123
      ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
1124
       type_id, name ? name : "", hval);
1125
#endif
1126
1127
0
      if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
1128
0
  {
1129
0
    whaterr = N_("error hash caching");
1130
0
    goto oom;
1131
0
  }
1132
1133
0
      if (populate_fun (fp, input, inputs, input_num, type, isroot, type_id,
1134
0
      decorated, hval) < 0)
1135
0
  {
1136
0
    whaterr = N_("error calling population function");
1137
0
    goto err;       /* errno is set for us. */
1138
0
  }
1139
0
    }
1140
1141
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1142
  ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
1143
         input_num, type, hval);
1144
#endif
1145
0
  return hval;
1146
1147
0
 oom:
1148
0
  ctf_set_errno (fp, errno);
1149
0
 err:
1150
0
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
1151
0
          "type %lx, kind %i"),
1152
0
    ctf_link_input_name (input), input_num,
1153
0
    gettext (whaterr), type, kind);
1154
0
  return NULL;
1155
0
}
1156
1157
static int
1158
ctf_dedup_count_name (ctf_dict_t *fp, const char *name, void *id);
1159
1160
/* Populate a number of useful mappings not directly used by the hashing
1161
   machinery: the output mapping, the cd_name_counts mapping from name -> hash
1162
   -> count of hashval deduplication state for a given hashed type; the
1163
   cd_output_first_gid mapping; and the cd_nonroot_consistency mapping.  */
1164
1165
static int
1166
ctf_dedup_populate_mappings (ctf_dict_t *fp, ctf_dict_t *input _libctf_unused_,
1167
           ctf_dict_t **inputs _libctf_unused_,
1168
           int input_num _libctf_unused_,
1169
           ctf_id_t type _libctf_unused_, int isroot,
1170
           void *id, const char *decorated_name,
1171
           const char *hval)
1172
0
{
1173
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1174
0
  ctf_dynset_t *type_ids;
1175
0
  void *root_visible;
1176
1177
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1178
  ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
1179
         hval, decorated_name ? decorated_name : "(unnamed)",
1180
         input_num, type, ctf_link_input_name (input));
1181
1182
  const char *orig_hval;
1183
1184
  /* Make sure we never map a single GID to multiple hash values.  */
1185
1186
  if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
1187
    {
1188
      /* We can rely on pointer identity here, since all hashes are
1189
   interned.  */
1190
      if (!ctf_assert (fp, orig_hval == hval))
1191
  return -1;
1192
    }
1193
  else
1194
    if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
1195
      return ctf_set_errno (fp, errno);
1196
#endif
1197
1198
  /* Record the type in the output mapping: if this is the first time this type
1199
     has been seen, also record it in the cd_output_first_gid.  Because we
1200
     traverse types in TU order and we do not merge types after the hashing
1201
     phase, this will be the lowest TU this type ever appears in.  */
1202
1203
0
  if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
1204
0
              hval)) == NULL)
1205
0
    {
1206
0
      if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
1207
0
  return ctf_set_errno (fp, errno);
1208
1209
0
      if ((type_ids = ctf_dynset_create (htab_hash_pointer,
1210
0
           htab_eq_pointer,
1211
0
           NULL)) == NULL)
1212
0
  return ctf_set_errno (fp, errno);
1213
0
      if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
1214
0
            type_ids) < 0)
1215
0
  {
1216
0
    ctf_dynset_destroy (type_ids);
1217
0
    return ctf_set_errno (fp, errno);
1218
0
  }
1219
0
    }
1220
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1221
    {
1222
      /* Verify that all types with this hash are of the same kind, and that the
1223
   first TU a type was seen in never falls.  */
1224
1225
      int err;
1226
      const void *one_id;
1227
      ctf_next_t *i = NULL;
1228
      int orig_kind = ctf_type_kind_unsliced (input, type);
1229
      int orig_first_tu;
1230
1231
      orig_first_tu = CTF_DEDUP_GID_TO_INPUT
1232
  (ctf_dynhash_lookup (d->cd_output_first_gid, hval));
1233
      if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
1234
  return -1;
1235
1236
      while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
1237
  {
1238
    ctf_dict_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
1239
    ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
1240
    if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
1241
      {
1242
        ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
1243
          "for hash %s named %s: %p/%lx from %s is "
1244
          "kind %i, but newly-added %p/%lx from %s is "
1245
          "kind %i", hval,
1246
          decorated_name ? decorated_name : "(unnamed)",
1247
          (void *) foo, bar,
1248
          ctf_link_input_name (foo),
1249
          ctf_type_kind_unsliced (foo, bar),
1250
          (void *) input, type,
1251
          ctf_link_input_name (input), orig_kind);
1252
        if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
1253
             == orig_kind))
1254
    return -1;
1255
      }
1256
  }
1257
      if (err != ECTF_NEXT_END)
1258
  return ctf_set_errno (fp, err);
1259
    }
1260
#endif
1261
1262
  /* Track the consistency of the non-root flag for this type.
1263
     0: all root-visible; 1: all non-root-visible; 2: inconsistent.  */
1264
1265
0
  if (!ctf_dynhash_lookup_kv (d->cd_nonroot_consistency, hval, NULL,
1266
0
            &root_visible))
1267
0
    {
1268
0
      if (isroot)
1269
0
  root_visible = (void *) 0;
1270
0
      else
1271
0
  root_visible = (void *) 1;
1272
1273
0
      if (ctf_dynhash_cinsert (d->cd_nonroot_consistency, hval, root_visible) < 0)
1274
0
  return ctf_set_errno (fp, errno);
1275
0
    }
1276
0
  else
1277
0
    {
1278
0
      if (((uintptr_t) root_visible == 0 && !isroot)
1279
0
    || ((uintptr_t) root_visible == 1 && isroot))
1280
0
  {
1281
0
    root_visible = (void *) 2;
1282
1283
0
    if (ctf_dynhash_cinsert (d->cd_nonroot_consistency, hval, root_visible) < 0)
1284
0
      return ctf_set_errno (fp, errno);
1285
0
  }
1286
0
    }
1287
1288
  /* This function will be repeatedly called for the same types many times:
1289
     don't waste time reinserting the same keys in that case.  */
1290
0
  if (!ctf_dynset_exists (type_ids, id, NULL)
1291
0
      && ctf_dynset_insert (type_ids, id) < 0)
1292
0
    return ctf_set_errno (fp, errno);
1293
1294
0
  if (ctf_type_kind_unsliced (input, type) == CTF_K_ENUM)
1295
0
    {
1296
0
      ctf_next_t *i = NULL;
1297
0
      const char *enumerator;
1298
1299
0
      while ((enumerator = ctf_enum_next (input, type, &i, NULL)) != NULL)
1300
0
  {
1301
0
    if (ctf_dedup_count_name (fp, enumerator, id) < 0)
1302
0
      {
1303
0
        ctf_next_destroy (i);
1304
0
        return -1;
1305
0
      }
1306
0
  }
1307
0
      if (ctf_errno (input) != ECTF_NEXT_END)
1308
0
  return ctf_set_errno (fp, ctf_errno (input));
1309
0
    }
1310
1311
  /* The rest only needs to happen for types with names.  */
1312
0
  if (!decorated_name)
1313
0
    return 0;
1314
1315
0
  if (ctf_dedup_count_name (fp, decorated_name, id) < 0)
1316
0
    return -1;         /* errno is set for us. */
1317
1318
0
  return 0;
1319
0
}
1320
1321
/* Clean up things no longer needed after hashing is over.  */
1322
static int
1323
ctf_dedup_hash_type_fini (ctf_dict_t *fp)
1324
0
{
1325
0
  ctf_next_t *i = NULL;
1326
0
  int err;
1327
0
  void *hval, *root_visible;
1328
1329
  /* Clean up cd_nonroot_consistency.  We only care now about types we are sure
1330
     are non-root-visible everywhere: root-visible types and types that are
1331
     sometimes root-visible and sometimes not are treated as root-visible.  */
1332
1333
0
  while ((err = ctf_dynhash_next (fp->ctf_dedup.cd_nonroot_consistency, &i,
1334
0
          &hval, &root_visible)) == 0)
1335
0
    {
1336
0
      if ((uintptr_t) root_visible != 1)
1337
0
  ctf_dynhash_next_remove (&i);
1338
0
    }
1339
0
    if (err != ECTF_NEXT_END)
1340
0
    {
1341
0
      ctf_err_warn (fp, 0, err, _("iteration failure cleaning up type hashes"));
1342
0
      return ctf_set_errno (fp, err);
1343
0
    }
1344
1345
0
    return 0;
1346
0
}
1347
1348
static int
1349
ctf_dedup_count_name (ctf_dict_t *fp, const char *name, void *id)
1350
0
{
1351
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1352
0
  ctf_dynhash_t *name_counts;
1353
0
  long int count;
1354
0
  const char *hval;
1355
1356
  /* Count the number of occurrences of the hash value for this GID.  */
1357
1358
0
  hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
1359
1360
  /* Mapping from name -> hash(hashval, count) not already present?  */
1361
0
  if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts, name)) == NULL)
1362
0
    {
1363
0
      if ((name_counts = ctf_dynhash_create (ctf_hash_string,
1364
0
               ctf_hash_eq_string,
1365
0
               NULL, NULL)) == NULL)
1366
0
    return ctf_set_errno (fp, errno);
1367
0
      if (ctf_dynhash_cinsert (d->cd_name_counts, name, name_counts) < 0)
1368
0
  {
1369
0
    ctf_dynhash_destroy (name_counts);
1370
0
    return ctf_set_errno (fp, errno);
1371
0
  }
1372
0
    }
1373
1374
  /* This will, conveniently, return NULL (i.e. 0) for a new entry.  */
1375
0
  count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
1376
1377
0
  if (ctf_dynhash_cinsert (name_counts, hval,
1378
0
         (const void *) (uintptr_t) (count + 1)) < 0)
1379
0
    return ctf_set_errno (fp, errno);
1380
1381
0
  return 0;
1382
0
}
1383
1384
/* Mark a single hash as corresponding to a conflicting type.  Mark all types
1385
   that cite it as conflicting as well, terminating the recursive walk only when
1386
   types that are already conflicted or types do not cite other types are seen.
1387
   (Tagged structures and unions do not appear in the cd_citers graph, so the
1388
   walk also terminates there, since any reference to a conflicting structure is
1389
   just going to reference an unconflicting forward instead: see
1390
   ctf_dedup_maybe_synthesize_forward.)  */
1391
1392
static int
1393
ctf_dedup_mark_conflicting_hash (ctf_dict_t *fp, const char *hval)
1394
0
{
1395
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1396
0
  ctf_next_t *i = NULL;
1397
0
  int err;
1398
0
  const void *k;
1399
0
  ctf_dynset_t *citers;
1400
1401
  /* Mark conflicted if not already so marked.  */
1402
0
  if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
1403
0
    return 0;
1404
1405
0
  ctf_dprintf ("Marking %s as conflicted\n", hval);
1406
1407
0
  if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
1408
0
    {
1409
0
      ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
1410
0
      return ctf_set_errno (fp, errno);
1411
0
    }
1412
1413
  /* If any types cite this type, mark them conflicted too.  */
1414
0
  if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
1415
0
    return 0;
1416
1417
0
  while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
1418
0
    {
1419
0
      const char *hv = (const char *) k;
1420
1421
0
      if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
1422
0
  continue;
1423
1424
0
      if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
1425
0
  {
1426
0
    ctf_next_destroy (i);
1427
0
    return -1;        /* errno is set for us.  */
1428
0
  }
1429
0
    }
1430
0
  if (err != ECTF_NEXT_END)
1431
0
    return ctf_set_errno (fp, err);
1432
1433
0
  return 0;
1434
0
}
1435
1436
/* Look up a type kind from the output mapping, given a type hash value.  */
1437
static int
1438
ctf_dedup_hash_kind (ctf_dict_t *fp, ctf_dict_t **inputs, const char *hash)
1439
0
{
1440
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1441
0
  void *id;
1442
0
  ctf_dynset_t *type_ids;
1443
1444
  /* Precondition: the output mapping is populated.  */
1445
0
  if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
1446
0
    return -1;
1447
1448
  /* Look up some GID from the output hash for this type.  (They are all
1449
     identical, so we can pick any).  Don't assert if someone calls this
1450
     function wrongly, but do assert if the output mapping knows about the hash,
1451
     but has nothing associated with it.  */
1452
1453
0
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
1454
0
  if (!type_ids)
1455
0
    {
1456
0
      ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
1457
0
      return ctf_set_errno (fp, ECTF_INTERNAL);
1458
0
    }
1459
0
  id = ctf_dynset_lookup_any (type_ids);
1460
0
  if (!ctf_assert (fp, id))
1461
0
    return -1;
1462
1463
0
  return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1464
0
         CTF_DEDUP_GID_TO_TYPE (id));
1465
0
}
1466
1467
/* Used to keep a count of types: i.e. distinct type hash values.  */
1468
typedef struct ctf_dedup_type_counter
1469
{
1470
  ctf_dict_t *fp;
1471
  ctf_dict_t **inputs;
1472
  int num_non_forwards;
1473
} ctf_dedup_type_counter_t;
1474
1475
/* Add to the type counter for one name entry from the cd_name_counts.  */
1476
static int
1477
ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
1478
0
{
1479
0
  const char *hval = (const char *) key_;
1480
0
  int kind;
1481
0
  ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
1482
1483
0
  kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
1484
1485
  /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
1486
     smuggle errors out of here.  */
1487
1488
0
  if (kind != CTF_K_FORWARD)
1489
0
    {
1490
0
      arg->num_non_forwards++;
1491
0
      ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
1492
0
       hval, kind, arg->num_non_forwards);
1493
0
    }
1494
1495
  /* We only need to know if there is more than one non-forward (an ambiguous
1496
     type): don't waste time iterating any more than needed to figure that
1497
     out.  */
1498
1499
0
  if (arg->num_non_forwards > 1)
1500
0
    return 1;
1501
1502
0
  return 0;
1503
0
}
1504
1505
/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
1506
   most common.  */
1507
static int
1508
ctf_dedup_detect_name_ambiguity (ctf_dict_t *fp, ctf_dict_t **inputs)
1509
0
{
1510
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1511
0
  ctf_next_t *i = NULL;
1512
0
  void *k;
1513
0
  void *v;
1514
0
  int err;
1515
0
  const char *whaterr;
1516
1517
  /* Go through cd_name_counts for all CTF namespaces in turn.  */
1518
1519
0
  while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
1520
0
    {
1521
0
      const char *decorated = (const char *) k;
1522
0
      ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
1523
0
      ctf_next_t *j = NULL;
1524
1525
      /* If this is a forwardable kind or a forward (which we can tell without
1526
   consulting the type because its decorated name has a space as its
1527
   second character: see ctf_decorate_type_name), we are only interested
1528
   in whether this name has many hashes associated with it: any such name
1529
   is necessarily ambiguous, and types with that name are conflicting.
1530
   Once we know whether this is true, we can skip to the next name: so use
1531
   ctf_dynhash_iter_find for efficiency.  */
1532
1533
0
      if (decorated[0] != '\0' && decorated[1] == ' ')
1534
0
  {
1535
0
    ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
1536
1537
0
    ctf_dynhash_iter_find (name_counts, ctf_dedup_count_types, &counters);
1538
1539
    /* Check for assertion failure and pass it up.  */
1540
0
    if (ctf_errno (fp) == ECTF_INTERNAL)
1541
0
      goto assert_err;
1542
1543
0
    if (counters.num_non_forwards > 1)
1544
0
      {
1545
0
        const void *hval_;
1546
1547
0
        while ((err = ctf_dynhash_cnext (name_counts, &j, &hval_, NULL)) == 0)
1548
0
    {
1549
0
      const char *hval = (const char *) hval_;
1550
0
      ctf_dynset_t *type_ids;
1551
0
      void *id;
1552
0
      int kind;
1553
1554
      /* Dig through the types in this hash to find the non-forwards
1555
         and mark them ambiguous.  */
1556
1557
0
      type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1558
1559
      /* Nonexistent? Must be a forward with no referent.  */
1560
0
      if (!type_ids)
1561
0
        continue;
1562
1563
0
      id = ctf_dynset_lookup_any (type_ids);
1564
1565
0
      kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1566
0
          CTF_DEDUP_GID_TO_TYPE (id));
1567
1568
0
      if (kind != CTF_K_FORWARD)
1569
0
        {
1570
0
          ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
1571
0
           "of many non-forward GIDs for %s\n", id,
1572
0
           hval, (char *) k);
1573
0
          ctf_dedup_mark_conflicting_hash (fp, hval);
1574
0
        }
1575
0
    }
1576
0
        if (err != ECTF_NEXT_END)
1577
0
    {
1578
0
      whaterr = N_("error marking conflicting structs/unions");
1579
0
      goto iterr;
1580
0
    }
1581
0
      }
1582
0
  }
1583
0
      else
1584
0
  {
1585
    /* This is an ordinary type.  Find the most common type with this
1586
       name, and mark it unconflicting: all others are conflicting.  (We
1587
       cannot do this sort of popularity contest with forwardable types
1588
       because any forwards to that type would be immediately unified with
1589
       the most-popular type on insertion, and we want conflicting structs
1590
       et al to have all forwards left intact, so the user is notified
1591
       that this type is conflicting.  TODO: improve this in future by
1592
       setting such forwards non-root-visible.)
1593
1594
       If multiple distinct types are "most common", pick the one that
1595
       appears first on the link line, and within that, the one with the
1596
       lowest type ID.  (See sort_output_mapping.)  */
1597
1598
0
    const void *key;
1599
0
    const void *count;
1600
0
    const char *hval;
1601
0
    long max_hcount = -1;
1602
0
    void *max_gid = NULL;
1603
0
    const char *max_hval = NULL;
1604
1605
0
    if (ctf_dynhash_elements (name_counts) <= 1)
1606
0
      continue;
1607
1608
    /* First find the most common.  */
1609
0
    while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
1610
0
      {
1611
0
        hval = (const char *) key;
1612
1613
0
        if ((long int) (uintptr_t) count > max_hcount)
1614
0
    {
1615
0
      max_hcount = (long int) (uintptr_t) count;
1616
0
      max_hval = hval;
1617
0
      max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1618
0
    }
1619
0
        else if ((long int) (uintptr_t) count == max_hcount)
1620
0
    {
1621
0
      void *gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1622
1623
0
      if (CTF_DEDUP_GID_TO_INPUT(gid) < CTF_DEDUP_GID_TO_INPUT(max_gid)
1624
0
          || (CTF_DEDUP_GID_TO_INPUT(gid) == CTF_DEDUP_GID_TO_INPUT(max_gid)
1625
0
        && CTF_DEDUP_GID_TO_TYPE(gid) < CTF_DEDUP_GID_TO_TYPE(max_gid)))
1626
0
        {
1627
0
          max_hval = hval;
1628
0
          max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1629
0
        }
1630
0
    }
1631
0
      }
1632
0
    if (err != ECTF_NEXT_END)
1633
0
      {
1634
0
        whaterr = N_("error finding commonest conflicting type");
1635
0
        goto iterr;
1636
0
      }
1637
1638
    /* Mark all the others as conflicting.   */
1639
0
    while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
1640
0
      {
1641
0
        hval = (const char *) key;
1642
0
        if (strcmp (max_hval, hval) == 0)
1643
0
    continue;
1644
1645
0
        ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
1646
0
         hval, (const char *) k);
1647
0
        if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
1648
0
    {
1649
0
      whaterr = N_("error marking hashes as conflicting");
1650
0
      goto err;
1651
0
    }
1652
0
      }
1653
0
    if (err != ECTF_NEXT_END)
1654
0
      {
1655
0
        whaterr = N_("marking uncommon conflicting types");
1656
0
        goto iterr;
1657
0
      }
1658
0
  }
1659
0
    }
1660
0
  if (err != ECTF_NEXT_END)
1661
0
    {
1662
0
      whaterr = N_("scanning for ambiguous names");
1663
0
      goto iterr;
1664
0
    }
1665
1666
0
  return 0;
1667
1668
0
 err:
1669
0
  ctf_next_destroy (i);
1670
0
  ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
1671
0
  return -1;          /* errno is set for us.  */
1672
1673
0
 iterr:
1674
0
  ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
1675
0
  return ctf_set_errno (fp, err);
1676
1677
0
 assert_err:
1678
0
  ctf_next_destroy (i);
1679
0
  return -1;           /* errno is set for us.  */
1680
0
}
1681
1682
/* Initialize the deduplication machinery.  */
1683
1684
static int
1685
ctf_dedup_init (ctf_dict_t *fp)
1686
0
{
1687
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1688
0
  size_t i;
1689
1690
0
  if (ctf_dedup_atoms_init (fp) < 0)
1691
0
      goto oom;
1692
1693
#if IDS_NEED_ALLOCATION
1694
  if ((d->cd_id_to_dict_t = ctf_dynhash_create (ctf_hash_type_id_key,
1695
            ctf_hash_eq_type_id_key,
1696
            free, NULL)) == NULL)
1697
    goto oom;
1698
#endif
1699
1700
0
  for (i = 0; i < 4; i++)
1701
0
    {
1702
0
      if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
1703
0
                ctf_hash_eq_string,
1704
0
                NULL, NULL)) == NULL)
1705
0
  goto oom;
1706
0
    }
1707
1708
0
  if ((d->cd_name_counts
1709
0
       = ctf_dynhash_create (ctf_hash_string,
1710
0
           ctf_hash_eq_string, NULL,
1711
0
           (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
1712
0
    goto oom;
1713
1714
0
  if ((d->cd_type_hashes
1715
0
       = ctf_dynhash_create (ctf_hash_integer,
1716
0
           ctf_hash_eq_integer,
1717
0
           NULL, NULL)) == NULL)
1718
0
    goto oom;
1719
1720
0
  if ((d->cd_struct_origin
1721
0
       = ctf_dynhash_create (ctf_hash_string,
1722
0
           ctf_hash_eq_string,
1723
0
           NULL, NULL)) == NULL)
1724
0
    goto oom;
1725
1726
0
  if ((d->cd_citers
1727
0
       = ctf_dynhash_create (ctf_hash_string,
1728
0
           ctf_hash_eq_string, NULL,
1729
0
           (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1730
0
    goto oom;
1731
1732
0
  if ((d->cd_output_mapping
1733
0
       = ctf_dynhash_create (ctf_hash_string,
1734
0
           ctf_hash_eq_string, NULL,
1735
0
           (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1736
0
    goto oom;
1737
1738
0
  if ((d->cd_output_first_gid
1739
0
       = ctf_dynhash_create (ctf_hash_string,
1740
0
           ctf_hash_eq_string,
1741
0
           NULL, NULL)) == NULL)
1742
0
    goto oom;
1743
1744
0
  if ((d->cd_nonroot_consistency
1745
0
       = ctf_dynhash_create (ctf_hash_string,
1746
0
           ctf_hash_eq_string,
1747
0
           NULL, NULL)) == NULL)
1748
0
    goto oom;
1749
1750
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1751
  if ((d->cd_output_mapping_guard
1752
       = ctf_dynhash_create (ctf_hash_integer,
1753
           ctf_hash_eq_integer, NULL, NULL)) == NULL)
1754
    goto oom;
1755
#endif
1756
1757
0
  if ((d->cd_input_nums
1758
0
       = ctf_dynhash_create (ctf_hash_integer,
1759
0
           ctf_hash_eq_integer,
1760
0
           NULL, NULL)) == NULL)
1761
0
    goto oom;
1762
1763
0
  if ((d->cd_emission_struct_members
1764
0
       = ctf_dynhash_create (ctf_hash_integer,
1765
0
           ctf_hash_eq_integer,
1766
0
           NULL, NULL)) == NULL)
1767
0
    goto oom;
1768
1769
0
  if ((d->cd_conflicting_types
1770
0
       = ctf_dynset_create (htab_hash_string,
1771
0
          htab_eq_string, NULL)) == NULL)
1772
0
    goto oom;
1773
1774
0
  return 0;
1775
1776
0
 oom:
1777
0
  ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
1778
0
         "out of memory"));
1779
0
  return ctf_set_errno (fp, ENOMEM);
1780
0
}
1781
1782
/* No ctf_dedup calls are allowed after this call other than starting a new
1783
   deduplication via ctf_dedup (not even ctf_dedup_type_mapping lookups).  */
1784
void
1785
ctf_dedup_fini (ctf_dict_t *fp, ctf_dict_t **outputs, uint32_t noutputs)
1786
0
{
1787
0
  ctf_dedup_t *d = &fp->ctf_dedup;
1788
0
  size_t i;
1789
1790
  /* ctf_dedup_atoms is kept across links.  */
1791
#if IDS_NEED_ALLOCATION
1792
  ctf_dynhash_destroy (d->cd_id_to_dict_t);
1793
#endif
1794
0
  for (i = 0; i < 4; i++)
1795
0
    ctf_dynhash_destroy (d->cd_decorated_names[i]);
1796
0
  ctf_dynhash_destroy (d->cd_name_counts);
1797
0
  ctf_dynhash_destroy (d->cd_type_hashes);
1798
0
  ctf_dynhash_destroy (d->cd_struct_origin);
1799
0
  ctf_dynhash_destroy (d->cd_citers);
1800
0
  ctf_dynhash_destroy (d->cd_output_mapping);
1801
0
  ctf_dynhash_destroy (d->cd_output_first_gid);
1802
0
  ctf_dynhash_destroy (d->cd_nonroot_consistency);
1803
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1804
  ctf_dynhash_destroy (d->cd_output_mapping_guard);
1805
#endif
1806
0
  ctf_dynhash_destroy (d->cd_input_nums);
1807
0
  ctf_dynhash_destroy (d->cd_emission_struct_members);
1808
0
  ctf_dynset_destroy (d->cd_conflicting_types);
1809
1810
  /* Free the per-output state.  */
1811
0
  if (outputs)
1812
0
    {
1813
0
      for (i = 0; i < noutputs; i++)
1814
0
  {
1815
0
    ctf_dedup_t *od = &outputs[i]->ctf_dedup;
1816
0
    ctf_dynhash_destroy (od->cd_output_emission_hashes);
1817
0
    ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
1818
0
    ctf_dict_close (od->cd_output);
1819
0
  }
1820
0
    }
1821
0
  memset (d, 0, sizeof (ctf_dedup_t));
1822
0
}
1823
1824
/* Return 1 if this type is cited by multiple input dictionaries.  */
1825
1826
static int
1827
ctf_dedup_multiple_input_dicts (ctf_dict_t *output, ctf_dict_t **inputs,
1828
        const char *hval)
1829
0
{
1830
0
  ctf_dedup_t *d = &output->ctf_dedup;
1831
0
  ctf_dynset_t *type_ids;
1832
0
  ctf_next_t *i = NULL;
1833
0
  void *id;
1834
0
  ctf_dict_t *found = NULL, *relative_found = NULL;
1835
0
  const char *type_id;
1836
0
  ctf_dict_t *input_fp;
1837
0
  ctf_id_t input_id;
1838
0
  const char *name;
1839
0
  const char *decorated;
1840
0
  int fwdkind;
1841
0
  int multiple = 0;
1842
0
  int err;
1843
1844
0
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1845
0
  if (!ctf_assert (output, type_ids))
1846
0
    return -1;
1847
1848
  /* Scan across the IDs until we find proof that two disjoint dictionaries
1849
     are referenced.  Exit as soon as possible.  Optimization opportunity, but
1850
     possibly not worth it, given that this is only executed in
1851
     CTF_LINK_SHARE_DUPLICATED mode.  */
1852
1853
0
  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
1854
0
    {
1855
0
      ctf_dict_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
1856
1857
0
      if (fp == found || fp == relative_found)
1858
0
  continue;
1859
1860
0
      if (!found)
1861
0
  {
1862
0
    found = fp;
1863
0
    continue;
1864
0
  }
1865
1866
0
      if (!relative_found
1867
0
    && (fp->ctf_parent == found || found->ctf_parent == fp))
1868
0
  {
1869
0
    relative_found = fp;
1870
0
    continue;
1871
0
  }
1872
1873
0
      multiple = 1;
1874
0
      ctf_next_destroy (i);
1875
0
      break;
1876
0
    }
1877
0
  if ((err != ECTF_NEXT_END) && (err != 0))
1878
0
    {
1879
0
      ctf_err_warn (output, 0, err, _("iteration error "
1880
0
              "propagating conflictedness"));
1881
0
      return ctf_set_errno (output, err);
1882
0
    }
1883
1884
0
  if (multiple)
1885
0
    return multiple;
1886
1887
  /* This type itself does not appear in multiple input dicts: how about another
1888
     related type with the same name (e.g. a forward if this is a struct,
1889
     etc).  */
1890
1891
0
  type_id = ctf_dynset_lookup_any (type_ids);
1892
0
  if (!ctf_assert (output, type_id))
1893
0
    return -1;
1894
1895
0
  input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
1896
0
  input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
1897
0
  fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
1898
0
  name = ctf_type_name_raw (input_fp, input_id);
1899
1900
0
  if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
1901
0
      && name[0] != '\0')
1902
0
    {
1903
0
      const void *origin;
1904
1905
0
      if ((decorated = ctf_decorate_type_name (output, name,
1906
0
                 fwdkind)) == NULL)
1907
0
  return -1;       /* errno is set for us.  */
1908
1909
0
      origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
1910
0
      if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
1911
0
  multiple = 1;
1912
0
    }
1913
1914
0
  return multiple;
1915
0
}
1916
1917
/* Demote unconflicting types which reference only one input, or which reference
1918
   two inputs where one input is the parent of the other, into conflicting
1919
   types.  Only used if the link mode is CTF_LINK_SHARE_DUPLICATED.  */
1920
1921
static int
1922
ctf_dedup_conflictify_unshared (ctf_dict_t *output, ctf_dict_t **inputs)
1923
0
{
1924
0
  ctf_dedup_t *d = &output->ctf_dedup;
1925
0
  ctf_next_t *i = NULL;
1926
0
  int err;
1927
0
  const void *k;
1928
0
  ctf_dynset_t *to_mark = NULL;
1929
1930
0
  if ((to_mark = ctf_dynset_create (htab_hash_string, htab_eq_string,
1931
0
            NULL)) == NULL)
1932
0
    goto err_no;
1933
1934
0
  while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
1935
0
    {
1936
0
      const char *hval = (const char *) k;
1937
0
      int conflicting;
1938
1939
      /* Types referenced by only one dict, with no type appearing under that
1940
   name elsewhere, are marked conflicting.  */
1941
1942
0
      conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
1943
1944
0
      if (conflicting < 0)
1945
0
  goto err;       /* errno is set for us.  */
1946
1947
0
      if (conflicting)
1948
0
  if (ctf_dynset_cinsert (to_mark, hval) < 0)
1949
0
    goto err;
1950
0
    }
1951
0
  if (err != ECTF_NEXT_END)
1952
0
    goto iterr;
1953
1954
0
  while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
1955
0
    {
1956
0
      const char *hval = (const char *) k;
1957
1958
0
      if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
1959
0
  goto err;
1960
0
    }
1961
0
  if (err != ECTF_NEXT_END)
1962
0
    goto iterr;
1963
1964
0
  ctf_dynset_destroy (to_mark);
1965
1966
0
  return 0;
1967
1968
0
 err_no:
1969
0
  ctf_set_errno (output, errno);
1970
0
 err:
1971
0
  err = ctf_errno (output);
1972
0
  ctf_next_destroy (i);
1973
0
 iterr:
1974
0
  ctf_dynset_destroy (to_mark);
1975
0
  ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
1976
0
  return ctf_set_errno (output, err);
1977
0
}
1978
1979
/* The core deduplicator.  Populate cd_output_mapping in the output ctf_dedup with a
1980
   mapping of all types that belong in this dictionary and where they come from, and
1981
   cd_conflicting_types with an indication of whether each type is conflicted or not.
1982
   OUTPUT is the top-level output: INPUTS is the array of input dicts; NINPUTS is the
1983
   size of that array.
1984
1985
   If CU_MAPPING_PHASE is nonzero, this is a link with a non-empty CU mapping:
1986
   in phase 1, only one output will result.
1987
1988
   Only deduplicates: does not emit the types into the output.  Call
1989
   ctf_dedup_emit afterwards to do that.  */
1990
1991
int
1992
ctf_dedup (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
1993
     int cu_mapping_phase)
1994
0
{
1995
0
  ctf_dedup_t *d = &output->ctf_dedup;
1996
0
  size_t i;
1997
0
  ctf_next_t *it = NULL;
1998
1999
0
  if (ctf_dedup_init (output) < 0)
2000
0
    return -1;           /* errno is set for us.  */
2001
2002
0
  for (i = 0; i < ninputs; i++)
2003
0
    {
2004
0
      ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
2005
0
      if (ctf_dynhash_insert (d->cd_input_nums, inputs[i],
2006
0
            (void *) (uintptr_t) i) < 0)
2007
0
  {
2008
0
    ctf_set_errno (output, errno);
2009
0
    ctf_err_warn (output, 0, errno, _("ctf_dedup: cannot initialize: %s\n"),
2010
0
      ctf_errmsg (errno));
2011
0
    goto err;
2012
0
  }
2013
0
    }
2014
2015
  /* Some flags do not apply in the first phase of CU-mapped links: this is not
2016
     a share-duplicated link, because there is only one output and we really
2017
     don't want to end up marking all nonconflicting but appears-only-once types
2018
     as conflicting.  */
2019
2020
0
  d->cd_link_flags = output->ctf_link_flags;
2021
0
  if (cu_mapping_phase == 1)
2022
0
    d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
2023
2024
  /* Compute hash values for all types, recursively, treating child structures
2025
     and unions equivalent to forwards, and hashing in the name of the referent
2026
     of each such type into structures, unions, and non-opaque forwards.
2027
     Populate a mapping from decorated name (including an indication of
2028
     struct/union/enum namespace) to count of type hash values in
2029
     cd_name_counts, a mapping from and a mapping from hash values to input type
2030
     IDs in cd_output_mapping.  */
2031
2032
0
  ctf_dprintf ("Computing type hashes\n");
2033
0
  for (i = 0; i < ninputs; i++)
2034
0
    {
2035
0
      ctf_id_t id;
2036
2037
0
      while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
2038
0
  {
2039
0
    if (ctf_dedup_hash_type (output, inputs[i], inputs,
2040
0
           i, id, 0, 0,
2041
0
           ctf_dedup_populate_mappings) == NULL)
2042
0
      goto err;       /* errno is set for us.  */
2043
0
  }
2044
0
      if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
2045
0
  {
2046
0
    ctf_set_errno (output, ctf_errno (inputs[i]));
2047
0
    ctf_err_warn (output, 0, 0, _("iteration failure "
2048
0
          "computing type hashes"));
2049
0
    goto err;
2050
0
  }
2051
0
    }
2052
2053
  /* Drop state no longer needed after hashing is over.  */
2054
2055
0
  ctf_dedup_hash_type_fini (output);
2056
2057
  /* Go through the cd_name_counts name->hash->count mapping for all CTF
2058
     namespaces: any name with many hashes associated with it at this stage is
2059
     necessarily ambiguous.  Mark all the hashes except the most common as
2060
     conflicting in the output.  */
2061
2062
0
  ctf_dprintf ("Detecting type name ambiguity\n");
2063
0
  if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
2064
0
      goto err;         /* errno is set for us.  */
2065
2066
  /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
2067
     types whose output mapping references only one input dict into a
2068
     conflicting type, so that they end up in the per-CU dictionaries.  */
2069
2070
0
  if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
2071
0
    {
2072
0
      ctf_dprintf ("Conflictifying unshared types\n");
2073
0
      if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
2074
0
  goto err;       /* errno is set for us.  */
2075
0
    }
2076
0
  return 0;
2077
2078
0
 err:
2079
0
  ctf_dedup_fini (output, NULL, 0);
2080
0
  return -1;
2081
0
}
2082
2083
static int
2084
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2085
        uint32_t ninputs, uint32_t *parents,
2086
        ctf_dynset_t *already_visited,
2087
        const char *hval,
2088
        int (*visit_fun) (const char *hval,
2089
              ctf_dict_t *output,
2090
              ctf_dict_t **inputs,
2091
              uint32_t ninputs,
2092
              uint32_t *parents,
2093
              int already_visited,
2094
              ctf_dict_t *input,
2095
              ctf_id_t type,
2096
              void *id,
2097
              int depth,
2098
              void *arg),
2099
        void *arg, unsigned long depth);
2100
2101
/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
2102
   type and visits it.  */
2103
static int
2104
ctf_dedup_rwalk_one_output_mapping (ctf_dict_t *output,
2105
            ctf_dict_t **inputs, uint32_t ninputs,
2106
            uint32_t *parents,
2107
            ctf_dynset_t *already_visited,
2108
            int visited, void *type_id,
2109
            const char *hval,
2110
            int (*visit_fun) (const char *hval,
2111
                  ctf_dict_t *output,
2112
                  ctf_dict_t **inputs,
2113
                  uint32_t ninputs,
2114
                  uint32_t *parents,
2115
                  int already_visited,
2116
                  ctf_dict_t *input,
2117
                  ctf_id_t type,
2118
                  void *id,
2119
                  int depth,
2120
                  void *arg),
2121
            void *arg, unsigned long depth)
2122
0
{
2123
0
  ctf_dedup_t *d = &output->ctf_dedup;
2124
0
  ctf_dict_t *fp;
2125
0
  int input_num;
2126
0
  ctf_id_t type;
2127
0
  int ret;
2128
0
  const char *whaterr;
2129
2130
0
  input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
2131
0
  fp = inputs[input_num];
2132
0
  type = CTF_DEDUP_GID_TO_TYPE (type_id);
2133
2134
0
  ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
2135
0
         "kind %i\n", depth, hval, input_num, type, (void *) fp,
2136
0
         ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
2137
2138
  /* Get the single call we do if this type has already been visited out of the
2139
     way.  */
2140
0
  if (visited)
2141
0
    return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
2142
0
          type, type_id, depth, arg);
2143
2144
  /* This macro is really ugly, but the alternative is repeating this code many
2145
     times, which is worse.  */
2146
2147
0
#define CTF_TYPE_WALK(type, errlabel, errmsg)       \
2148
0
  do                  \
2149
0
    {                 \
2150
0
      void *type_id;              \
2151
0
      const char *hashval;            \
2152
0
      int cited_type_input_num = input_num;       \
2153
0
                  \
2154
0
      if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
2155
0
  cited_type_input_num = parents[input_num];     \
2156
0
                  \
2157
0
      type_id = CTF_DEDUP_GID (output, cited_type_input_num, type);  \
2158
0
                  \
2159
0
      if (type == 0)             \
2160
0
  {               \
2161
0
    ctf_dprintf ("Walking: unimplemented type\n");    \
2162
0
    break;              \
2163
0
  }                \
2164
0
                  \
2165
0
      ctf_dprintf ("Looking up ID %i/%lx in type hashes\n",   \
2166
0
       cited_type_input_num, type);       \
2167
0
      hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id);  \
2168
0
      if (!ctf_assert (output, hashval))       \
2169
0
  {               \
2170
0
    whaterr = N_("error looking up ID in type hashes");   \
2171
0
    goto errlabel;            \
2172
0
  }               \
2173
0
      ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
2174
0
       hashval);            \
2175
0
                  \
2176
0
      ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
2177
0
              already_visited, hashval, \
2178
0
              visit_fun, arg, depth); \
2179
0
      if (ret < 0)             \
2180
0
  {               \
2181
0
    whaterr = errmsg;           \
2182
0
    goto errlabel;            \
2183
0
  }                \
2184
0
    }                 \
2185
0
  while (0)
2186
2187
0
  switch (ctf_type_kind_unsliced (fp, type))
2188
0
    {
2189
0
    case CTF_K_UNKNOWN:
2190
0
    case CTF_K_FORWARD:
2191
0
    case CTF_K_INTEGER:
2192
0
    case CTF_K_FLOAT:
2193
0
    case CTF_K_ENUM:
2194
      /* No types referenced.  */
2195
0
      break;
2196
2197
0
    case CTF_K_TYPEDEF:
2198
0
    case CTF_K_VOLATILE:
2199
0
    case CTF_K_CONST:
2200
0
    case CTF_K_RESTRICT:
2201
0
    case CTF_K_POINTER:
2202
0
    case CTF_K_SLICE:
2203
0
      CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
2204
0
         N_("error during referenced type walk"));
2205
0
      break;
2206
2207
0
    case CTF_K_ARRAY:
2208
0
      {
2209
0
  ctf_arinfo_t ar;
2210
2211
0
  if (ctf_array_info (fp, type, &ar) < 0)
2212
0
    {
2213
0
      whaterr = N_("error during array info lookup");
2214
0
      goto err_msg;
2215
0
    }
2216
2217
0
  CTF_TYPE_WALK (ar.ctr_contents, err,
2218
0
           N_("error during array contents type walk"));
2219
0
  CTF_TYPE_WALK (ar.ctr_index, err,
2220
0
           N_("error during array index type walk"));
2221
0
  break;
2222
0
      }
2223
2224
0
    case CTF_K_FUNCTION:
2225
0
      {
2226
0
  ctf_funcinfo_t fi;
2227
0
  ctf_id_t *args;
2228
0
  uint32_t j;
2229
2230
0
  if (ctf_func_type_info (fp, type, &fi) < 0)
2231
0
    {
2232
0
      whaterr = N_("error during func type info lookup");
2233
0
      goto err_msg;
2234
0
    }
2235
2236
0
  CTF_TYPE_WALK (fi.ctc_return, err,
2237
0
           N_("error during func return type walk"));
2238
2239
0
  if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2240
0
    {
2241
0
      whaterr = N_("error doing memory allocation");
2242
0
      goto err_msg;
2243
0
    }
2244
2245
0
  if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
2246
0
    {
2247
0
      whaterr = N_("error doing func arg type lookup");
2248
0
      free (args);
2249
0
      goto err_msg;
2250
0
    }
2251
2252
0
  for (j = 0; j < fi.ctc_argc; j++)
2253
0
    CTF_TYPE_WALK (args[j], err_free_args,
2254
0
       N_("error during Func arg type walk"));
2255
0
  free (args);
2256
0
  break;
2257
2258
0
      err_free_args:
2259
0
  free (args);
2260
0
  goto err;
2261
0
      }
2262
0
    case CTF_K_STRUCT:
2263
0
    case CTF_K_UNION:
2264
      /* We do not recursively traverse the members of structures: they are
2265
   emitted later, in a separate pass.  */
2266
0
  break;
2267
0
    default:
2268
0
      whaterr = N_("CTF dict corruption: unknown type kind");
2269
0
      goto err_msg;
2270
0
    }
2271
2272
0
  return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
2273
0
        type_id, depth, arg);
2274
2275
0
 err_msg:
2276
0
  ctf_set_errno (output, ctf_errno (fp));
2277
0
  ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
2278
0
    gettext (whaterr), ctf_link_input_name (fp), type);
2279
0
 err:
2280
0
  return -1;
2281
0
}
2282
/* Recursively traverse the output mapping, and do something with each type
2283
   visited, from leaves to root.  VISIT_FUN, called as recursion unwinds,
2284
   returns a negative error code or zero.  Type hashes may be visited more than
2285
   once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
2286
   types have already been visited.  */
2287
static int
2288
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2289
        uint32_t ninputs, uint32_t *parents,
2290
        ctf_dynset_t *already_visited,
2291
        const char *hval,
2292
        int (*visit_fun) (const char *hval,
2293
              ctf_dict_t *output,
2294
              ctf_dict_t **inputs,
2295
              uint32_t ninputs,
2296
              uint32_t *parents,
2297
              int already_visited,
2298
              ctf_dict_t *input,
2299
              ctf_id_t type,
2300
              void *id,
2301
              int depth,
2302
              void *arg),
2303
        void *arg, unsigned long depth)
2304
0
{
2305
0
  ctf_dedup_t *d = &output->ctf_dedup;
2306
0
  ctf_next_t *i = NULL;
2307
0
  int err;
2308
0
  int visited = 1;
2309
0
  ctf_dynset_t *type_ids;
2310
0
  void *id;
2311
2312
0
  depth++;
2313
2314
0
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
2315
0
  if (!type_ids)
2316
0
    {
2317
0
      ctf_err_warn (output, 0, ECTF_INTERNAL,
2318
0
        _("looked up type kind by nonexistent hash %s"), hval);
2319
0
      return ctf_set_errno (output, ECTF_INTERNAL);
2320
0
    }
2321
2322
  /* Have we seen this type before?  */
2323
2324
0
  if (!ctf_dynset_exists (already_visited, hval, NULL))
2325
0
    {
2326
      /* Mark as already-visited immediately, to eliminate the possibility of
2327
   cycles: but remember we have not actually visited it yet for the
2328
   upcoming call to the visit_fun.  (All our callers handle cycles
2329
   properly themselves, so we can just abort them aggressively as soon as
2330
   we find ourselves in one.)  */
2331
2332
0
      visited = 0;
2333
0
      if (ctf_dynset_cinsert (already_visited, hval) < 0)
2334
0
  {
2335
0
    ctf_err_warn (output, 0, ENOMEM,
2336
0
      _("out of memory tracking already-visited types"));
2337
0
    return ctf_set_errno (output, ENOMEM);
2338
0
  }
2339
0
    }
2340
2341
  /* If this type is marked conflicted, traverse members and call
2342
     ctf_dedup_rwalk_one_output_mapping on all the unique ones: otherwise, just
2343
     pick a random one and use it.  */
2344
2345
0
  if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
2346
0
    {
2347
0
      id = ctf_dynset_lookup_any (type_ids);
2348
0
      if (!ctf_assert (output, id))
2349
0
  return -1;
2350
2351
0
      return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2352
0
             parents, already_visited,
2353
0
             visited, id, hval, visit_fun,
2354
0
             arg, depth);
2355
0
    }
2356
2357
0
  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
2358
0
    {
2359
0
      int ret;
2360
2361
0
      ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2362
0
            parents, already_visited,
2363
0
            visited, id, hval,
2364
0
            visit_fun, arg, depth);
2365
0
      if (ret < 0)
2366
0
  {
2367
0
    ctf_next_destroy (i);
2368
0
    return ret;       /* errno is set for us.  */
2369
0
  }
2370
0
    }
2371
0
  if (err != ECTF_NEXT_END)
2372
0
    {
2373
0
      ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
2374
0
      return ctf_set_errno (output, err);
2375
0
    }
2376
2377
0
  return 0;
2378
0
}
2379
2380
typedef struct ctf_sort_om_cb_arg
2381
{
2382
  ctf_dict_t **inputs;
2383
  uint32_t ninputs;
2384
  ctf_dedup_t *d;
2385
} ctf_sort_om_cb_arg_t;
2386
2387
/* Sort the output mapping into order: types first appearing in earlier inputs
2388
   first, parents preceding children: if types first appear in the same input,
2389
   sort those with earlier ctf_id_t's first.  */
2390
static int
2391
sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
2392
         void *arg_)
2393
0
{
2394
0
  ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
2395
0
  ctf_dedup_t *d = arg->d;
2396
0
  const char *one_hval = (const char *) one->hkv_key;
2397
0
  const char *two_hval = (const char *) two->hkv_key;
2398
0
  void *one_gid, *two_gid;
2399
0
  uint32_t one_ninput;
2400
0
  uint32_t two_ninput;
2401
0
  ctf_dict_t *one_fp;
2402
0
  ctf_dict_t *two_fp;
2403
0
  ctf_id_t one_type;
2404
0
  ctf_id_t two_type;
2405
2406
  /* Inputs are always equal to themselves.  */
2407
0
  if (one == two)
2408
0
    return 0;
2409
2410
0
  one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
2411
0
  two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
2412
2413
0
  one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
2414
0
  two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
2415
2416
0
  one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
2417
0
  two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
2418
2419
  /* It's kind of hard to smuggle an assertion failure out of here.  */
2420
0
  assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
2421
2422
0
  one_fp = arg->inputs[one_ninput];
2423
0
  two_fp = arg->inputs[two_ninput];
2424
2425
  /* Parents before children.  */
2426
2427
0
  if (!(one_fp->ctf_flags & LCTF_CHILD)
2428
0
      && (two_fp->ctf_flags & LCTF_CHILD))
2429
0
    return -1;
2430
0
  else if ((one_fp->ctf_flags & LCTF_CHILD)
2431
0
      && !(two_fp->ctf_flags & LCTF_CHILD))
2432
0
    return 1;
2433
2434
  /* ninput order, types appearing in earlier TUs first.  */
2435
2436
0
  if (one_ninput < two_ninput)
2437
0
    return -1;
2438
0
  else if (two_ninput < one_ninput)
2439
0
    return 1;
2440
2441
  /* Same TU.  Earliest ctf_id_t first.  They cannot be the same.  */
2442
2443
0
  assert (one_type != two_type);
2444
0
  if (one_type < two_type)
2445
0
    return -1;
2446
0
  else
2447
0
    return 1;
2448
0
}
2449
2450
/* The public entry point to ctf_dedup_rwalk_output_mapping, above.  */
2451
static int
2452
ctf_dedup_walk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2453
             uint32_t ninputs, uint32_t *parents,
2454
             int (*visit_fun) (const char *hval,
2455
             ctf_dict_t *output,
2456
             ctf_dict_t **inputs,
2457
             uint32_t ninputs,
2458
             uint32_t *parents,
2459
             int already_visited,
2460
             ctf_dict_t *input,
2461
             ctf_id_t type,
2462
             void *id,
2463
             int depth,
2464
             void *arg),
2465
             void *arg)
2466
0
{
2467
0
  ctf_dynset_t *already_visited;
2468
0
  ctf_next_t *i = NULL;
2469
0
  ctf_sort_om_cb_arg_t sort_arg;
2470
0
  int err;
2471
0
  void *k;
2472
2473
0
  if ((already_visited = ctf_dynset_create (htab_hash_string,
2474
0
              htab_eq_string,
2475
0
              NULL)) == NULL)
2476
0
    return ctf_set_errno (output, ENOMEM);
2477
2478
0
  sort_arg.inputs = inputs;
2479
0
  sort_arg.ninputs = ninputs;
2480
0
  sort_arg.d = &output->ctf_dedup;
2481
2482
0
  while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
2483
0
           &i, &k, NULL, sort_output_mapping,
2484
0
           &sort_arg)) == 0)
2485
0
    {
2486
0
      const char *hval = (const char *) k;
2487
2488
0
      err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
2489
0
              already_visited, hval, visit_fun,
2490
0
              arg, 0);
2491
0
      if (err < 0)
2492
0
  {
2493
0
    ctf_next_destroy (i);
2494
0
    goto err;       /* errno is set for us.  */
2495
0
  }
2496
0
    }
2497
0
  if (err != ECTF_NEXT_END)
2498
0
    {
2499
0
      ctf_set_errno (output, err);
2500
0
      ctf_err_warn (output, 0, 0, _("cannot recurse over output mapping"));
2501
0
      goto err;
2502
0
    }
2503
0
  ctf_dynset_destroy (already_visited);
2504
2505
0
  return 0;
2506
0
 err:
2507
0
  ctf_dynset_destroy (already_visited);
2508
0
  return -1;
2509
0
}
2510
2511
/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
2512
   conflicted per-TU type ID in INPUT with hash HVAL.  Return its CTF ID, or 0
2513
   if none was needed.  */
2514
static ctf_id_t
2515
ctf_dedup_maybe_synthesize_forward (ctf_dict_t *output, ctf_dict_t *target,
2516
            ctf_dict_t *input, ctf_id_t id,
2517
            const char *hval)
2518
0
{
2519
0
  ctf_dedup_t *od = &output->ctf_dedup;
2520
0
  ctf_dedup_t *td = &target->ctf_dedup;
2521
0
  int kind;
2522
0
  int fwdkind;
2523
0
  const char *name = ctf_type_name_raw (input, id);
2524
0
  const char *decorated;
2525
0
  void *v;
2526
0
  ctf_id_t emitted_forward;
2527
2528
0
  if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
2529
0
      || target->ctf_flags & LCTF_CHILD
2530
0
      || name[0] == '\0'
2531
0
      || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
2532
0
     && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
2533
0
    return 0;
2534
2535
0
  fwdkind = ctf_type_kind_forwarded (input, id);
2536
2537
0
  ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
2538
0
         "hval %s\n", hval);
2539
2540
0
  if (!ctf_assert (output, name))
2541
0
    return CTF_ERR;
2542
2543
0
  if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
2544
0
    return CTF_ERR;
2545
2546
0
  if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
2547
0
            decorated, NULL, &v))
2548
0
    {
2549
0
      if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
2550
0
                fwdkind)) == CTF_ERR)
2551
0
  return ctf_set_typed_errno (output, ctf_errno (target));
2552
2553
0
      if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
2554
0
             decorated, (void *) (uintptr_t)
2555
0
             emitted_forward) < 0)
2556
0
  return ctf_set_typed_errno (output, ENOMEM);
2557
0
    }
2558
0
  else
2559
0
    emitted_forward = (ctf_id_t) (uintptr_t) v;
2560
2561
0
  ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
2562
0
         emitted_forward);
2563
2564
0
  return emitted_forward;
2565
0
}
2566
2567
/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
2568
   into a GID in a target output dict.  If it returns 0, this is the
2569
   unimplemented type, and the input type must have been 0.  The OUTPUT dict is
2570
   assumed to be the parent of the TARGET, if it is not the TARGET itself.
2571
2572
   Returns CTF_ERR on failure.  Responds to an incoming CTF_ERR as an 'id' by
2573
   returning CTF_ERR, to simplify callers.  Errors are always propagated to the
2574
   input, even if they relate to the target, for the same reason.  (Target
2575
   errors are expected to be very rare.)
2576
2577
   If the type in question is a citation of a conflicted type in a different TU,
2578
   emit a forward of the right type in its place (if not already emitted), and
2579
   record that forward in cd_output_emission_conflicted_forwards.  This avoids
2580
   the need to replicate the entire type graph below this point in the current
2581
   TU (an appalling waste of space).
2582
2583
   TODO: maybe replace forwards in the same TU with their referents?  Might
2584
   make usability a bit better.  */
2585
2586
static ctf_id_t
2587
ctf_dedup_id_to_target (ctf_dict_t *output, ctf_dict_t *target,
2588
      ctf_dict_t **inputs, uint32_t ninputs,
2589
      uint32_t *parents, ctf_dict_t *input, int input_num,
2590
      ctf_id_t id)
2591
0
{
2592
0
  ctf_dedup_t *od = &output->ctf_dedup;
2593
0
  ctf_dedup_t *td = &target->ctf_dedup;
2594
0
  ctf_dict_t *err_fp = input;
2595
0
  const char *hval;
2596
0
  void *target_id;
2597
0
  ctf_id_t emitted_forward;
2598
2599
  /* The target type of an error is an error.  */
2600
0
  if (id == CTF_ERR)
2601
0
    return CTF_ERR;
2602
2603
  /* The unimplemented type's ID never changes.  */
2604
0
  if (!id)
2605
0
    {
2606
0
      ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
2607
0
      return 0;
2608
0
    }
2609
2610
0
  ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
2611
0
         id, (void *) target, ctf_link_input_name (target));
2612
2613
  /* If the input type is in the parent type space, and this is a child, reset
2614
     the input to the parent (which must already have been emitted, since
2615
     emission of parent dicts happens before children).  */
2616
0
  if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
2617
0
    {
2618
0
      if (!ctf_assert (output, parents[input_num] <= ninputs))
2619
0
  return CTF_ERR;
2620
0
      input = inputs[parents[input_num]];
2621
0
      input_num = parents[input_num];
2622
0
    }
2623
2624
0
  hval = ctf_dynhash_lookup (od->cd_type_hashes,
2625
0
           CTF_DEDUP_GID (output, input_num, id));
2626
2627
0
  if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
2628
0
    return CTF_ERR;
2629
2630
  /* If this type is a conflicted tagged structure, union, or forward,
2631
     substitute a synthetic forward instead, emitting it if need be.  Only do
2632
     this if the target is in the parent dict: if it's in the child dict, we can
2633
     just point straight at the thing itself.  Of course, we might be looking in
2634
     the child dict right now and not find it and have to look in the parent, so
2635
     we have to do this check twice.  */
2636
2637
0
  emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
2638
0
              input, id, hval);
2639
0
  switch (emitted_forward)
2640
0
    {
2641
0
    case 0: /* No forward needed.  */
2642
0
      break;
2643
0
    case -1:
2644
0
      ctf_set_errno (err_fp, ctf_errno (output));
2645
0
      ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
2646
0
            "%i/%lx"), input_num, id);
2647
0
      return CTF_ERR;
2648
0
    default:
2649
0
      return emitted_forward;
2650
0
    }
2651
2652
0
  ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
2653
2654
0
  target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
2655
0
  if (!target_id)
2656
0
    {
2657
      /* Must be in the parent, so this must be a child, and they must not be
2658
   the same dict.  */
2659
0
      ctf_dprintf ("Checking shared parent for target\n");
2660
0
      if (!ctf_assert (output, (target != output)
2661
0
           && (target->ctf_flags & LCTF_CHILD)))
2662
0
  return CTF_ERR;
2663
2664
0
      target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
2665
2666
0
      emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
2667
0
                  input, id, hval);
2668
0
      switch (emitted_forward)
2669
0
  {
2670
0
  case 0: /* No forward needed.  */
2671
0
    break;
2672
0
  case -1:
2673
0
    ctf_err_warn (err_fp, 0, ctf_errno (output),
2674
0
      _("cannot add synthetic forward for type %i/%lx"),
2675
0
      input_num, id);
2676
0
    return ctf_set_typed_errno (err_fp, ctf_errno (output));
2677
0
  default:
2678
0
    return emitted_forward;
2679
0
  }
2680
0
    }
2681
0
  if (!ctf_assert (output, target_id))
2682
0
    return CTF_ERR;
2683
0
  return (ctf_id_t) (uintptr_t) target_id;
2684
0
}
2685
2686
/* Emit a single deduplicated TYPE with the given HVAL, located in a given
2687
   INPUT, with the given (G)ID, into the shared OUTPUT or a
2688
   possibly-newly-created per-CU dict.  All the types this type depends upon
2689
   have already been emitted.  (This type itself may also have been emitted.)
2690
2691
   If the ARG is 1, this is a CU-mapped deduplication round mapping many
2692
   ctf_dict_t's into precisely one: conflicting types should be marked
2693
   non-root-visible.  If the ARG is 0, conflicting types go into per-CU
2694
   dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
2695
   is emitted directly into the output.  No struct/union members are emitted.
2696
2697
   Optimization opportunity: trace the ancestry of non-root-visible types and
2698
   elide all that neither have a root-visible type somewhere towards their root,
2699
   nor have the type visible via any other route (the function info section,
2700
   data object section, backtrace section etc).  */
2701
2702
static int
2703
ctf_dedup_emit_type (const char *hval, ctf_dict_t *output, ctf_dict_t **inputs,
2704
         uint32_t ninputs, uint32_t *parents, int already_visited,
2705
         ctf_dict_t *input, ctf_id_t type, void *id, int depth,
2706
         void *arg)
2707
0
{
2708
0
  ctf_dedup_t *d = &output->ctf_dedup;
2709
0
  int kind = ctf_type_kind_unsliced (input, type);
2710
0
  const char *name;
2711
0
  ctf_dict_t *target = output;
2712
0
  ctf_dict_t *real_input;
2713
0
  const ctf_type_t *tp;
2714
0
  int input_num = CTF_DEDUP_GID_TO_INPUT (id);
2715
0
  int output_num = (uint32_t) -1;   /* 'shared' */
2716
0
  int cu_mapping_phase = *(int *)arg;
2717
0
  int isroot = 1;
2718
0
  int is_conflicting;
2719
2720
0
  ctf_next_t *i = NULL;
2721
0
  ctf_id_t new_type;
2722
0
  ctf_id_t ref;
2723
0
  ctf_id_t maybe_dup = 0;
2724
0
  ctf_encoding_t ep;
2725
0
  const char *errtype;
2726
0
  int emission_hashed = 0;
2727
2728
  /* We don't want to re-emit something we've already emitted.  */
2729
2730
0
  if (already_visited)
2731
0
    return 0;
2732
2733
0
  ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
2734
0
         depth, hval, ctf_link_input_name (input));
2735
2736
  /* Conflicting types go into a per-CU output dictionary, unless this is a
2737
     CU-mapped run.  The import is not refcounted, since it goes into the
2738
     ctf_link_outputs dict of the output that is its parent.  */
2739
0
  is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
2740
2741
0
  if (is_conflicting && cu_mapping_phase != 1)
2742
0
    {
2743
0
      ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
2744
0
       "inserting into per-CU target.\n",
2745
0
       depth, hval, input_num, type);
2746
2747
0
      if (input->ctf_dedup.cd_output)
2748
0
  target = input->ctf_dedup.cd_output;
2749
0
      else
2750
0
  {
2751
0
    int err;
2752
2753
0
    if ((target = ctf_create (&err)) == NULL)
2754
0
      {
2755
0
        ctf_err_warn (output, 0, err,
2756
0
          _("cannot create per-CU CTF archive for CU %s"),
2757
0
          ctf_link_input_name (input));
2758
0
        return ctf_set_errno (output, err);
2759
0
      }
2760
2761
0
    target->ctf_flags |= LCTF_STRICT_NO_DUP_ENUMERATORS;
2762
0
    ctf_import_unref (target, output);
2763
0
    if (ctf_cuname (input) != NULL)
2764
0
      ctf_cuname_set (target, ctf_cuname (input));
2765
0
    else
2766
0
      ctf_cuname_set (target, "unnamed-CU");
2767
0
    ctf_parent_name_set (target, _CTF_SECTION);
2768
2769
0
    input->ctf_dedup.cd_output = target;
2770
0
    input->ctf_link_in_out = target;
2771
0
    target->ctf_link_in_out = input;
2772
0
  }
2773
0
      output_num = input_num;
2774
0
    }
2775
2776
0
  if (!target->ctf_dedup.cd_output_emission_hashes)
2777
0
    if ((target->ctf_dedup.cd_output_emission_hashes
2778
0
   = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2779
0
            NULL, NULL)) == NULL)
2780
0
      goto oom_hash;
2781
2782
0
  if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
2783
0
    if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
2784
0
   = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2785
0
            NULL, NULL)) == NULL)
2786
0
      goto oom_hash;
2787
2788
  /* When cu-mapping mode is turned on, we merge types derived from multiple CUs
2789
     into one target dict: in phase 1, by merging them according to the mapping;
2790
     in phase 2, as a consequence of taking the merged results from phase 1.
2791
     Any given type appears only once in the type mapping, but in
2792
     ctf_dedup_rwalk_output_mapping we loop inserting conflicting types into a
2793
     child dict corresponding to every input dict they came from.  This means
2794
     that if those dicts are mapped together, in phase 1 we can attempt to
2795
     insert them *multiple times* into the same dict, which then causes them to
2796
     be duplicated in phase 2 as well.  Avoid this by making sure this hval
2797
     isn't already present in the emission hash in phase 1: if it is, we in
2798
     effect already visited this type, and can return as we did above.  */
2799
2800
0
  if (cu_mapping_phase == 1
2801
0
      && ctf_dynhash_lookup (target->ctf_dedup.cd_output_emission_hashes, hval))
2802
0
    return 0;
2803
2804
0
  real_input = input;
2805
0
  if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
2806
0
    {
2807
0
      ctf_err_warn (output, 0, ctf_errno (input),
2808
0
        _("%s: lookup failure for type %lx"),
2809
0
        ctf_link_input_name (real_input), type);
2810
0
      return ctf_set_errno (output, ctf_errno (input));
2811
0
    }
2812
2813
0
  name = ctf_strraw (real_input, tp->ctt_name);
2814
2815
  /* cu_mapped links at phase 1 get absolutely *everything* marked non-root,
2816
     named or not.  Such links, when we are merging multiple child CUs into one,
2817
     are the only point at which we can ever put conflicting and nonconflicting
2818
     instances of the same type into the same dict, and which one comes first is
2819
     arbitrary.  Rather than having to figure out when we insert a type whether
2820
     another one is coming that might conflict with it without being so marked,
2821
     just mark everything as non-root: we'll disregard it in the next phase of
2822
     cu-mapped linking anyway.
2823
2824
     In phase 2 (the final dedup phase) of cu-mapped links, we have to deal with
2825
     the fallout of this, in that single inputs have 100% non-root types (so the
2826
     non-root bit isn't really meaningful) but some subset of them may be
2827
     genuinely clashing, conflicting, but already in child dicts (a thing that
2828
     is impossible in non-CU-mapped links, when child dicts correspond to single
2829
     CUs).
2830
2831
     So in phase 2, we hide conflicting types, if this type is conflicting and a
2832
     type with this name already exists in the target and is not a forward.
2833
2834
     Note that enums also get their enumerands checked, below.
2835
2836
     Otherwise, in "phase 0" (i.e. normal links), we can respect the non-root
2837
     flag the user passed in and simply propagate it directly to the output.
2838
     If the user provided a mix of root-visible and non-root-visible flags,
2839
     we treat it as non-root-visible: see ctf_dedup_hash_type_fini.  */
2840
2841
0
  switch (cu_mapping_phase)
2842
0
    {
2843
0
    case 0: /* Normal link.  Root-visibility explicitly tracked.  */
2844
0
      if (ctf_dynhash_lookup (d->cd_nonroot_consistency, hval))
2845
0
  isroot = 0;
2846
0
      break;
2847
0
    case 1: /* cu-mapped link.  Never root-visible.  */
2848
0
      isroot = 0;
2849
0
      break;
2850
0
    case 2: /* Final phase of cu-mapped link.  Non-root if already present.  */
2851
0
      if (is_conflicting && name
2852
0
    && ((maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0))
2853
0
  {
2854
0
    if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
2855
0
      {
2856
0
        ctf_dprintf ("%s, kind %i, hval %s: conflicting type marked as "
2857
0
         "non-root because of pre-existing type %s/%lx, "
2858
0
         "kind %i.\n", name, kind, hval, ctf_cuname (target),
2859
0
         maybe_dup, ctf_type_kind (target, maybe_dup));
2860
0
        isroot = 0;
2861
0
      }
2862
0
  }
2863
0
      break;
2864
0
    default:
2865
0
      if (!ctf_assert (output, cu_mapping_phase >= 0 && cu_mapping_phase <= 2))
2866
0
  return -1;       /* errno is set for us.  */
2867
0
    }
2868
2869
0
  ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
2870
0
         depth, hval, name ? name : "", input_num, (void *) target);
2871
2872
0
  switch (kind)
2873
0
    {
2874
0
    case CTF_K_UNKNOWN:
2875
      /* These are types that CTF cannot encode, marked as such by the
2876
   compiler.  */
2877
0
      errtype = _("unknown type");
2878
0
      if ((new_type = ctf_add_unknown (target, isroot, name)) == CTF_ERR)
2879
0
  goto err_target;
2880
0
      break;
2881
0
    case CTF_K_FORWARD:
2882
      /* This will do nothing if the type to which this forwards already exists,
2883
   and will be replaced with such a type if it appears later.  */
2884
2885
0
      errtype = _("forward");
2886
0
      if ((new_type = ctf_add_forward (target, isroot, name,
2887
0
               ctf_type_kind_forwarded (input, type)))
2888
0
    == CTF_ERR)
2889
0
  goto err_target;
2890
0
      break;
2891
2892
0
    case CTF_K_FLOAT:
2893
0
    case CTF_K_INTEGER:
2894
0
      errtype = _("float/int");
2895
0
      if (ctf_type_encoding (input, type, &ep) < 0)
2896
0
  goto err_input;       /* errno is set for us.  */
2897
0
      if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
2898
0
    == CTF_ERR)
2899
0
  goto err_target;
2900
0
      break;
2901
2902
0
    case CTF_K_ENUM:
2903
0
      {
2904
0
  int val;
2905
0
  errtype = _("enum");
2906
2907
  /* Check enumerands for duplication and nonrootify if clashing: this is
2908
     an extension of the isroot check above.  */
2909
2910
0
  if (isroot && cu_mapping_phase == 2)
2911
0
    {
2912
0
      const char *enumerand;
2913
0
      while ((enumerand = ctf_enum_next (input, type, &i, &val)) != NULL)
2914
0
        {
2915
0
    if (is_conflicting && name
2916
0
        && ctf_dynhash_lookup (target->ctf_names, enumerand) != NULL)
2917
0
      {
2918
0
        ctf_dprintf ("%s, kind %i, hval %s: conflicting type marked "
2919
0
         "as non-root because of pre-existing enumerand "
2920
0
         "%s.\n", name, kind, hval, enumerand);
2921
0
        isroot = 0;
2922
0
      }
2923
0
        }
2924
0
      if (ctf_errno (input) != ECTF_NEXT_END)
2925
0
        goto err_input;
2926
0
    }
2927
2928
0
  if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
2929
0
    goto err_input;       /* errno is set for us.  */
2930
2931
0
  while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
2932
0
    {
2933
0
      if (ctf_add_enumerator (target, new_type, name, val) < 0)
2934
0
        {
2935
0
    ctf_err_warn (target, 0, ctf_errno (target),
2936
0
            _("%s (%i): cannot add enumeration value %s "
2937
0
        "from input type %lx"),
2938
0
            ctf_link_input_name (input), input_num, name,
2939
0
            type);
2940
0
    ctf_next_destroy (i);
2941
0
    return ctf_set_errno (output, ctf_errno (target));
2942
0
        }
2943
0
    }
2944
0
  if (ctf_errno (input) != ECTF_NEXT_END)
2945
0
    goto err_input;
2946
0
  break;
2947
0
      }
2948
2949
0
    case CTF_K_TYPEDEF:
2950
0
      errtype = _("typedef");
2951
2952
0
      ref = ctf_type_reference (input, type);
2953
0
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2954
0
           parents, input, input_num,
2955
0
           ref)) == CTF_ERR)
2956
0
  goto err_input;       /* errno is set for us.  */
2957
2958
0
      if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
2959
0
  goto err_target;     /* errno is set for us.  */
2960
0
      break;
2961
2962
0
    case CTF_K_VOLATILE:
2963
0
    case CTF_K_CONST:
2964
0
    case CTF_K_RESTRICT:
2965
0
    case CTF_K_POINTER:
2966
0
      errtype = _("pointer or cvr-qual");
2967
2968
0
      ref = ctf_type_reference (input, type);
2969
0
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2970
0
           parents, input, input_num,
2971
0
           ref)) == CTF_ERR)
2972
0
  goto err_input;       /* errno is set for us.  */
2973
2974
0
      if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
2975
0
  goto err_target;     /* errno is set for us.  */
2976
0
      break;
2977
2978
0
    case CTF_K_SLICE:
2979
0
      errtype = _("slice");
2980
2981
0
      if (ctf_type_encoding (input, type, &ep) < 0)
2982
0
  goto err_input;       /* errno is set for us.  */
2983
2984
0
      ref = ctf_type_reference (input, type);
2985
0
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2986
0
           parents, input, input_num,
2987
0
           ref)) == CTF_ERR)
2988
0
  goto err_input;
2989
2990
0
      if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
2991
0
  goto err_target;
2992
0
      break;
2993
2994
0
    case CTF_K_ARRAY:
2995
0
      {
2996
0
  ctf_arinfo_t ar;
2997
2998
0
  errtype = _("array info");
2999
0
  if (ctf_array_info (input, type, &ar) < 0)
3000
0
    goto err_input;
3001
3002
0
  ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
3003
0
              ninputs, parents, input,
3004
0
              input_num, ar.ctr_contents);
3005
0
  ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
3006
0
                 parents, input, input_num,
3007
0
                 ar.ctr_index);
3008
3009
0
  if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
3010
0
    goto err_input;
3011
3012
0
  if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
3013
0
    goto err_target;
3014
3015
0
  break;
3016
0
      }
3017
3018
0
    case CTF_K_FUNCTION:
3019
0
      {
3020
0
  ctf_funcinfo_t fi;
3021
0
  ctf_id_t *args;
3022
0
  uint32_t j;
3023
3024
0
  errtype = _("function");
3025
0
  if (ctf_func_type_info (input, type, &fi) < 0)
3026
0
    goto err_input;
3027
3028
0
  fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
3029
0
            parents, input, input_num,
3030
0
            fi.ctc_return);
3031
0
  if (fi.ctc_return == CTF_ERR)
3032
0
    goto err_input;
3033
3034
0
  if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
3035
0
    {
3036
0
      ctf_set_errno (input, ENOMEM);
3037
0
      goto err_input;
3038
0
    }
3039
3040
0
  errtype = _("function args");
3041
0
  if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
3042
0
    {
3043
0
      free (args);
3044
0
      goto err_input;
3045
0
    }
3046
3047
0
  for (j = 0; j < fi.ctc_argc; j++)
3048
0
    {
3049
0
      args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
3050
0
                parents, input, input_num,
3051
0
                args[j]);
3052
0
      if (args[j] == CTF_ERR)
3053
0
        goto err_input;
3054
0
    }
3055
3056
0
  if ((new_type = ctf_add_function (target, isroot,
3057
0
            &fi, args)) == CTF_ERR)
3058
0
    {
3059
0
      free (args);
3060
0
      goto err_target;
3061
0
    }
3062
0
  free (args);
3063
0
  break;
3064
0
      }
3065
3066
0
    case CTF_K_STRUCT:
3067
0
    case CTF_K_UNION:
3068
0
      {
3069
0
  size_t size = ctf_type_size (input, type);
3070
0
  void *out_id;
3071
  /* Insert the structure itself, so other types can refer to it.  */
3072
3073
0
  errtype = _("structure/union");
3074
0
  if (kind == CTF_K_STRUCT)
3075
0
    new_type = ctf_add_struct_sized (target, isroot, name, size);
3076
0
  else
3077
0
    new_type = ctf_add_union_sized (target, isroot, name, size);
3078
3079
0
  if (new_type == CTF_ERR)
3080
0
    goto err_target;
3081
3082
0
  out_id = CTF_DEDUP_GID (output, output_num, new_type);
3083
0
  ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
3084
0
         id, out_id);
3085
  /* Record the need to emit the members of this structure later.  */
3086
0
  if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
3087
0
    {
3088
0
      ctf_set_errno (target, errno);
3089
0
      goto err_target;
3090
0
    }
3091
0
  break;
3092
0
      }
3093
0
    default:
3094
0
      ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
3095
0
                 "input type %lx"),
3096
0
        ctf_link_input_name (input), type);
3097
0
      return ctf_set_errno (output, ECTF_CORRUPT);
3098
0
    }
3099
3100
0
  if (!emission_hashed
3101
0
      && new_type != 0
3102
0
      && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
3103
0
            hval, (void *) (uintptr_t) new_type) < 0)
3104
0
    {
3105
0
      ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
3106
0
           "global type IDs"));
3107
0
  return ctf_set_errno (output, ENOMEM);
3108
0
    }
3109
3110
0
  if (!emission_hashed && new_type != 0)
3111
0
    ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
3112
0
     "target %p (%s)\n", depth, hval, input_num, type, new_type,
3113
0
     (void *) target, ctf_link_input_name (target));
3114
3115
0
  return 0;
3116
3117
0
 oom_hash:
3118
0
  ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
3119
0
             "hashes"));
3120
0
  return ctf_set_errno (output, ENOMEM);
3121
3122
0
 err_input:
3123
0
  ctf_err_warn (output, 0, ctf_errno (input),
3124
0
    _("%s (%i): while emitting deduplicated %s, error getting "
3125
0
      "input type %lx"), ctf_link_input_name (input),
3126
0
    input_num, errtype, type);
3127
0
  return ctf_set_errno (output, ctf_errno (input));
3128
0
 err_target:
3129
0
  ctf_err_warn (output, 0, ctf_errno (target),
3130
0
    _("%s (%i): while emitting deduplicated %s, error emitting "
3131
0
      "target type from input type %lx"),
3132
0
    ctf_link_input_name (input), input_num,
3133
0
    errtype, type);
3134
0
  return ctf_set_errno (output, ctf_errno (target));
3135
0
}
3136
3137
/* Traverse the cd_emission_struct_members and emit the members of all
3138
   structures and unions.  All other types are emitted and complete by this
3139
   point.  */
3140
3141
static int
3142
ctf_dedup_emit_struct_members (ctf_dict_t *output, ctf_dict_t **inputs,
3143
             uint32_t ninputs, uint32_t *parents)
3144
0
{
3145
0
  ctf_dedup_t *d = &output->ctf_dedup;
3146
0
  ctf_next_t *i = NULL;
3147
0
  void *input_id, *target_id;
3148
0
  int err;
3149
0
  ctf_dict_t *err_fp, *input_fp;
3150
0
  int input_num;
3151
0
  ctf_id_t err_type;
3152
3153
0
  while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
3154
0
          &input_id, &target_id)) == 0)
3155
0
    {
3156
0
      ctf_next_t *j = NULL;
3157
0
      ctf_dict_t *target;
3158
0
      uint32_t target_num;
3159
0
      ctf_id_t input_type, target_type;
3160
0
      ssize_t offset;
3161
0
      ctf_id_t membtype;
3162
0
      const char *name;
3163
3164
0
      input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
3165
0
      input_fp = inputs[input_num];
3166
0
      input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
3167
3168
      /* The output is either -1 (for the shared, parent output dict) or the
3169
   number of the corresponding input.  */
3170
0
      target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
3171
0
      if (target_num == (uint32_t) -1)
3172
0
  target = output;
3173
0
      else
3174
0
  {
3175
0
    target = inputs[target_num]->ctf_dedup.cd_output;
3176
0
    if (!ctf_assert (output, target))
3177
0
      {
3178
0
        err_fp = output;
3179
0
        err_type = input_type;
3180
0
        goto err_target;
3181
0
      }
3182
0
  }
3183
0
      target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
3184
3185
0
      while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
3186
0
          &membtype, 0)) >= 0)
3187
0
  {
3188
0
    err_fp = target;
3189
0
    err_type = target_type;
3190
0
    if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
3191
0
              ninputs, parents, input_fp,
3192
0
              input_num,
3193
0
              membtype)) == CTF_ERR)
3194
0
      {
3195
0
        ctf_next_destroy (j);
3196
0
        goto err_target;
3197
0
      }
3198
3199
0
    if (name == NULL)
3200
0
      name = "";
3201
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
3202
    ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
3203
#endif
3204
0
    if (ctf_add_member_offset (target, target_type, name,
3205
0
             membtype, offset) < 0)
3206
0
      {
3207
0
        ctf_next_destroy (j);
3208
0
        goto err_target;
3209
0
      }
3210
0
  }
3211
0
      if (ctf_errno (input_fp) != ECTF_NEXT_END)
3212
0
  {
3213
0
    err = ctf_errno (input_fp);
3214
0
    ctf_next_destroy (i);
3215
0
    goto iterr;
3216
0
  }
3217
0
    }
3218
0
  if (err != ECTF_NEXT_END)
3219
0
    goto iterr;
3220
3221
0
  return 0;
3222
0
 err_target:
3223
0
  ctf_next_destroy (i);
3224
0
  ctf_err_warn (output, 0, ctf_errno (err_fp),
3225
0
    _("%s (%i): error emitting members for structure type %lx"),
3226
0
    ctf_link_input_name (input_fp), input_num, err_type);
3227
0
  return ctf_set_errno (output, ctf_errno (err_fp));
3228
0
 iterr:
3229
0
  ctf_err_warn (output, 0, err, _("iteration failure emitting "
3230
0
          "structure members"));
3231
0
  return ctf_set_errno (output, err);
3232
0
}
3233
3234
/* Emit deduplicated types into the outputs.  The shared type repository is
3235
   OUTPUT, on which the ctf_dedup function must have already been called.  The
3236
   PARENTS array contains the INPUTS index of the parent dict for every child
3237
   dict at the corresponding index in the INPUTS (for non-child dicts, the value
3238
   is undefined and can just be left at zero).
3239
3240
   Return an array of fps with content emitted into them (starting with OUTPUT,
3241
   which is the parent of all others, then all the newly-generated outputs).
3242
3243
   If CU_MAPPING_PHASE is set to 1, this is a first pass for a link with a
3244
   non-empty CU mapping: only one output will result.  */
3245
3246
ctf_dict_t **
3247
ctf_dedup_emit (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
3248
    uint32_t *parents, uint32_t *noutputs, int cu_mapping_phase)
3249
0
{
3250
0
  size_t num_outputs = 1;   /* Always at least one output: us.  */
3251
0
  ctf_dict_t **outputs;
3252
0
  ctf_dict_t **walk;
3253
0
  size_t i;
3254
3255
0
  ctf_dprintf ("Triggering emission.\n");
3256
0
  if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
3257
0
             ctf_dedup_emit_type, &cu_mapping_phase) < 0)
3258
0
    return NULL;       /* errno is set for us.  */
3259
3260
0
  ctf_dprintf ("Populating struct members.\n");
3261
0
  if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
3262
0
    return NULL;       /* errno is set for us.  */
3263
3264
0
  for (i = 0; i < ninputs; i++)
3265
0
    {
3266
0
      if (inputs[i]->ctf_dedup.cd_output)
3267
0
  num_outputs++;
3268
0
    }
3269
3270
0
  if (!ctf_assert (output, (cu_mapping_phase != 1
3271
0
          || (cu_mapping_phase == 1 && num_outputs == 1))))
3272
0
    return NULL;
3273
3274
0
  if ((outputs = calloc (num_outputs, sizeof (ctf_dict_t *))) == NULL)
3275
0
    {
3276
0
      ctf_set_errno (output, ENOMEM);
3277
0
      ctf_err_warn (output, 0, 0,
3278
0
        _("out of memory allocating link outputs array"));
3279
0
      return NULL;
3280
0
    }
3281
0
  *noutputs = num_outputs;
3282
3283
0
  walk = outputs;
3284
0
  *walk = output;
3285
0
  output->ctf_refcnt++;
3286
0
  walk++;
3287
3288
0
  for (i = 0; i < ninputs; i++)
3289
0
    {
3290
0
      if (inputs[i]->ctf_dedup.cd_output)
3291
0
  {
3292
0
    *walk = inputs[i]->ctf_dedup.cd_output;
3293
0
    inputs[i]->ctf_dedup.cd_output = NULL;
3294
0
    walk++;
3295
0
  }
3296
0
    }
3297
3298
0
  return outputs;
3299
0
}
3300
3301
/* Determine what type SRC_FP / SRC_TYPE was emitted as in the FP, which
3302
   must be the shared dict or have it as a parent: return 0 if none.  The SRC_FP
3303
   must be a past input to ctf_dedup.  */
3304
3305
ctf_id_t
3306
ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp, ctf_id_t src_type)
3307
0
{
3308
0
  ctf_dict_t *output = NULL;
3309
0
  ctf_dedup_t *d;
3310
0
  int input_num;
3311
0
  void *num_ptr;
3312
0
  void *type_ptr;
3313
0
  int found;
3314
0
  const char *hval;
3315
3316
  /* It is an error (an internal error in the caller, in ctf-link.c) to call
3317
     this with an FP that is not a per-CU output or shared output dict, or with
3318
     a SRC_FP that was not passed to ctf_dedup as an input; it is an internal
3319
     error in ctf-dedup for the type passed not to have been hashed, though if
3320
     the src_fp is a child dict and the type is not a child type, it will have
3321
     been hashed under the GID corresponding to the parent.  */
3322
3323
0
  if (fp->ctf_dedup.cd_type_hashes != NULL)
3324
0
    output = fp;
3325
0
  else if (fp->ctf_parent && fp->ctf_parent->ctf_dedup.cd_type_hashes != NULL)
3326
0
    output = fp->ctf_parent;
3327
0
  else
3328
0
    {
3329
0
      ctf_set_errno (fp, ECTF_INTERNAL);
3330
0
      ctf_err_warn (fp, 0, 0,
3331
0
        _("dict %p passed to ctf_dedup_type_mapping is not a "
3332
0
          "deduplicated output"), (void *) fp);
3333
0
      return CTF_ERR;
3334
0
    }
3335
3336
0
  if (src_fp->ctf_parent && ctf_type_isparent (src_fp, src_type))
3337
0
    src_fp = src_fp->ctf_parent;
3338
3339
0
  d = &output->ctf_dedup;
3340
3341
0
  found = ctf_dynhash_lookup_kv (d->cd_input_nums, src_fp, NULL, &num_ptr);
3342
0
  if (!ctf_assert (output, found != 0))
3343
0
    return CTF_ERR;       /* errno is set for us.  */
3344
0
  input_num = (uintptr_t) num_ptr;
3345
3346
0
  hval = ctf_dynhash_lookup (d->cd_type_hashes,
3347
0
           CTF_DEDUP_GID (output, input_num, src_type));
3348
3349
0
  if (!ctf_assert (output, hval != NULL))
3350
0
    return CTF_ERR;       /* errno is set for us.  */
3351
3352
  /* The emission hashes may be unset if this dict was created after
3353
     deduplication to house variables or other things that would conflict if
3354
     stored in the shared dict.  */
3355
0
  if (fp->ctf_dedup.cd_output_emission_hashes)
3356
0
    if (ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_output_emission_hashes, hval,
3357
0
             NULL, &type_ptr))
3358
0
      return (ctf_id_t) (uintptr_t) type_ptr;
3359
3360
0
  if (fp->ctf_parent)
3361
0
    {
3362
0
      ctf_dict_t *pfp = fp->ctf_parent;
3363
0
      if (pfp->ctf_dedup.cd_output_emission_hashes)
3364
0
  if (ctf_dynhash_lookup_kv (pfp->ctf_dedup.cd_output_emission_hashes,
3365
0
           hval, NULL, &type_ptr))
3366
0
    return (ctf_id_t) (uintptr_t) type_ptr;
3367
0
    }
3368
3369
0
  return 0;
3370
0
}