/src/binutils-gdb/libctf/ctf-hash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Interface to hashtable implementations. |
2 | | Copyright (C) 2006-2025 Free Software Foundation, Inc. |
3 | | |
4 | | This file is part of libctf. |
5 | | |
6 | | libctf is free software; you can redistribute it and/or modify it under |
7 | | the terms of the GNU General Public License as published by the Free |
8 | | Software Foundation; either version 3, or (at your option) any later |
9 | | version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, but |
12 | | WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
14 | | See the GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; see the file COPYING. If not see |
18 | | <http://www.gnu.org/licenses/>. */ |
19 | | |
20 | | #include <ctf-impl.h> |
21 | | #include <string.h> |
22 | | #include "libiberty.h" |
23 | | #include "hashtab.h" |
24 | | |
25 | | /* We have two hashtable implementations: |
26 | | |
27 | | - ctf_dynhash_* is an interface to a dynamically-expanding hash with |
28 | | unknown size that should support addition of large numbers of items, |
29 | | and removal as well, and is used only at type-insertion time and during |
30 | | linking. It can be constructed with an expected initial number of |
31 | | elements, but need not be. |
32 | | |
33 | | - ctf_dynset_* is an interface to a dynamically-expanding hash that contains |
34 | | only keys: no values. |
35 | | |
36 | | These can be implemented by the same underlying hashmap if you wish. */ |
37 | | |
38 | | /* The helem is used for general key/value mappings in the ctf_dynhash: the |
39 | | owner may not have space allocated for it, and will be garbage (not |
40 | | NULL!) in that case. */ |
41 | | |
42 | | typedef struct ctf_helem |
43 | | { |
44 | | void *key; /* Either a pointer, or a coerced ctf_id_t. */ |
45 | | void *value; /* The value (possibly a coerced int). */ |
46 | | ctf_dynhash_t *owner; /* The hash that owns us. */ |
47 | | } ctf_helem_t; |
48 | | |
49 | | /* Equally, the key_free and value_free may not exist. */ |
50 | | |
51 | | struct ctf_dynhash |
52 | | { |
53 | | struct htab *htab; |
54 | | ctf_hash_free_fun key_free; |
55 | | ctf_hash_free_fun value_free; |
56 | | }; |
57 | | |
58 | | /* Hash and eq functions for the dynhash and hash. */ |
59 | | |
60 | | unsigned int |
61 | | ctf_hash_integer (const void *ptr) |
62 | 0 | { |
63 | 0 | ctf_helem_t *hep = (ctf_helem_t *) ptr; |
64 | |
|
65 | 0 | return htab_hash_pointer (hep->key); |
66 | 0 | } |
67 | | |
68 | | int |
69 | | ctf_hash_eq_integer (const void *a, const void *b) |
70 | 0 | { |
71 | 0 | ctf_helem_t *hep_a = (ctf_helem_t *) a; |
72 | 0 | ctf_helem_t *hep_b = (ctf_helem_t *) b; |
73 | |
|
74 | 0 | return htab_eq_pointer (hep_a->key, hep_b->key); |
75 | 0 | } |
76 | | |
77 | | unsigned int |
78 | | ctf_hash_string (const void *ptr) |
79 | 0 | { |
80 | 0 | ctf_helem_t *hep = (ctf_helem_t *) ptr; |
81 | |
|
82 | 0 | return htab_hash_string (hep->key); |
83 | 0 | } |
84 | | |
85 | | int |
86 | | ctf_hash_eq_string (const void *a, const void *b) |
87 | 0 | { |
88 | 0 | ctf_helem_t *hep_a = (ctf_helem_t *) a; |
89 | 0 | ctf_helem_t *hep_b = (ctf_helem_t *) b; |
90 | |
|
91 | 0 | return !strcmp((const char *) hep_a->key, (const char *) hep_b->key); |
92 | 0 | } |
93 | | |
94 | | /* Hash a type_key. */ |
95 | | unsigned int |
96 | | ctf_hash_type_key (const void *ptr) |
97 | 0 | { |
98 | 0 | ctf_helem_t *hep = (ctf_helem_t *) ptr; |
99 | 0 | ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key; |
100 | |
|
101 | 0 | return htab_hash_pointer (k->cltk_fp) + 59 |
102 | 0 | * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx); |
103 | 0 | } |
104 | | |
105 | | int |
106 | | ctf_hash_eq_type_key (const void *a, const void *b) |
107 | 0 | { |
108 | 0 | ctf_helem_t *hep_a = (ctf_helem_t *) a; |
109 | 0 | ctf_helem_t *hep_b = (ctf_helem_t *) b; |
110 | 0 | ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key; |
111 | 0 | ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key; |
112 | |
|
113 | 0 | return (key_a->cltk_fp == key_b->cltk_fp) |
114 | 0 | && (key_a->cltk_idx == key_b->cltk_idx); |
115 | 0 | } |
116 | | |
117 | | /* Hash a type_id_key. */ |
118 | | unsigned int |
119 | | ctf_hash_type_id_key (const void *ptr) |
120 | 0 | { |
121 | 0 | ctf_helem_t *hep = (ctf_helem_t *) ptr; |
122 | 0 | ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key; |
123 | |
|
124 | 0 | return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num) |
125 | 0 | + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type); |
126 | 0 | } |
127 | | |
128 | | int |
129 | | ctf_hash_eq_type_id_key (const void *a, const void *b) |
130 | 0 | { |
131 | 0 | ctf_helem_t *hep_a = (ctf_helem_t *) a; |
132 | 0 | ctf_helem_t *hep_b = (ctf_helem_t *) b; |
133 | 0 | ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key; |
134 | 0 | ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key; |
135 | |
|
136 | 0 | return (key_a->ctii_input_num == key_b->ctii_input_num) |
137 | 0 | && (key_a->ctii_type == key_b->ctii_type); |
138 | 0 | } |
139 | | |
140 | | /* The dynhash, used for hashes whose size is not known at creation time. */ |
141 | | |
142 | | /* Free a single ctf_helem with arbitrary key/value functions. */ |
143 | | |
144 | | static void |
145 | | ctf_dynhash_item_free (void *item) |
146 | 0 | { |
147 | 0 | ctf_helem_t *helem = item; |
148 | |
|
149 | 0 | if (helem->owner->key_free && helem->key) |
150 | 0 | helem->owner->key_free (helem->key); |
151 | 0 | if (helem->owner->value_free && helem->value) |
152 | 0 | helem->owner->value_free (helem->value); |
153 | 0 | free (helem); |
154 | 0 | } |
155 | | |
156 | | ctf_dynhash_t * |
157 | | ctf_dynhash_create_sized (unsigned long nelems, ctf_hash_fun hash_fun, |
158 | | ctf_hash_eq_fun eq_fun, ctf_hash_free_fun key_free, |
159 | | ctf_hash_free_fun value_free) |
160 | 0 | { |
161 | 0 | ctf_dynhash_t *dynhash; |
162 | 0 | htab_del del = ctf_dynhash_item_free; |
163 | |
|
164 | 0 | if (key_free || value_free) |
165 | 0 | dynhash = malloc (sizeof (ctf_dynhash_t)); |
166 | 0 | else |
167 | 0 | { |
168 | 0 | void *p = malloc (offsetof (ctf_dynhash_t, key_free)); |
169 | 0 | dynhash = p; |
170 | 0 | } |
171 | 0 | if (!dynhash) |
172 | 0 | return NULL; |
173 | | |
174 | 0 | if (key_free == NULL && value_free == NULL) |
175 | 0 | del = free; |
176 | |
|
177 | 0 | if ((dynhash->htab = htab_create_alloc (nelems, (htab_hash) hash_fun, eq_fun, |
178 | 0 | del, xcalloc, free)) == NULL) |
179 | 0 | { |
180 | 0 | free (dynhash); |
181 | 0 | return NULL; |
182 | 0 | } |
183 | | |
184 | 0 | if (key_free || value_free) |
185 | 0 | { |
186 | 0 | dynhash->key_free = key_free; |
187 | 0 | dynhash->value_free = value_free; |
188 | 0 | } |
189 | |
|
190 | 0 | return dynhash; |
191 | 0 | } |
192 | | |
193 | | ctf_dynhash_t * |
194 | | ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun, |
195 | | ctf_hash_free_fun key_free, ctf_hash_free_fun value_free) |
196 | 0 | { |
197 | | /* 7 is arbitrary and not benchmarked yet. */ |
198 | |
|
199 | 0 | return ctf_dynhash_create_sized (7, hash_fun, eq_fun, key_free, value_free); |
200 | 0 | } |
201 | | |
202 | | static ctf_helem_t ** |
203 | | ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert) |
204 | 0 | { |
205 | 0 | ctf_helem_t tmp = { .key = (void *) key }; |
206 | 0 | return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert); |
207 | 0 | } |
208 | | |
209 | | static ctf_helem_t * |
210 | | ctf_hashtab_insert (struct htab *htab, void *key, void *value, |
211 | | ctf_hash_free_fun key_free, |
212 | | ctf_hash_free_fun value_free) |
213 | 0 | { |
214 | 0 | ctf_helem_t **slot; |
215 | |
|
216 | 0 | slot = ctf_hashtab_lookup (htab, key, INSERT); |
217 | |
|
218 | 0 | if (!slot) |
219 | 0 | { |
220 | 0 | errno = ENOMEM; |
221 | 0 | return NULL; |
222 | 0 | } |
223 | | |
224 | 0 | if (!*slot) |
225 | 0 | { |
226 | | /* Only spend space on the owner if we're going to use it: if there is a |
227 | | key or value freeing function. */ |
228 | 0 | if (key_free || value_free) |
229 | 0 | *slot = malloc (sizeof (ctf_helem_t)); |
230 | 0 | else |
231 | 0 | { |
232 | 0 | void *p = malloc (offsetof (ctf_helem_t, owner)); |
233 | 0 | *slot = p; |
234 | 0 | } |
235 | 0 | if (!*slot) |
236 | 0 | return NULL; |
237 | 0 | (*slot)->key = key; |
238 | 0 | } |
239 | 0 | else |
240 | 0 | { |
241 | 0 | if (key_free) |
242 | 0 | key_free (key); |
243 | 0 | if (value_free) |
244 | 0 | value_free ((*slot)->value); |
245 | 0 | } |
246 | 0 | (*slot)->value = value; |
247 | 0 | return *slot; |
248 | 0 | } |
249 | | |
250 | | int |
251 | | ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value) |
252 | 0 | { |
253 | 0 | ctf_helem_t *slot; |
254 | 0 | ctf_hash_free_fun key_free = NULL, value_free = NULL; |
255 | |
|
256 | 0 | if (hp->htab->del_f == ctf_dynhash_item_free) |
257 | 0 | { |
258 | 0 | key_free = hp->key_free; |
259 | 0 | value_free = hp->value_free; |
260 | 0 | } |
261 | 0 | slot = ctf_hashtab_insert (hp->htab, key, value, |
262 | 0 | key_free, value_free); |
263 | |
|
264 | 0 | if (!slot) |
265 | 0 | return -errno; |
266 | | |
267 | | /* Keep track of the owner, so that the del function can get at the key_free |
268 | | and value_free functions. Only do this if one of those functions is set: |
269 | | if not, the owner is not even present in the helem. */ |
270 | | |
271 | 0 | if (key_free || value_free) |
272 | 0 | slot->owner = hp; |
273 | |
|
274 | 0 | return 0; |
275 | 0 | } |
276 | | |
277 | | void |
278 | | ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key) |
279 | 0 | { |
280 | 0 | ctf_helem_t hep = { (void *) key, NULL, NULL }; |
281 | 0 | htab_remove_elt (hp->htab, &hep); |
282 | 0 | } |
283 | | |
284 | | void |
285 | | ctf_dynhash_empty (ctf_dynhash_t *hp) |
286 | 0 | { |
287 | 0 | htab_empty (hp->htab); |
288 | 0 | } |
289 | | |
290 | | size_t |
291 | | ctf_dynhash_elements (ctf_dynhash_t *hp) |
292 | 0 | { |
293 | 0 | return htab_elements (hp->htab); |
294 | 0 | } |
295 | | |
296 | | void * |
297 | | ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key) |
298 | 0 | { |
299 | 0 | ctf_helem_t **slot; |
300 | |
|
301 | 0 | slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT); |
302 | |
|
303 | 0 | if (slot) |
304 | 0 | return (*slot)->value; |
305 | | |
306 | 0 | return NULL; |
307 | 0 | } |
308 | | |
309 | | /* TRUE/FALSE return. */ |
310 | | int |
311 | | ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key, |
312 | | const void **orig_key, void **value) |
313 | 0 | { |
314 | 0 | ctf_helem_t **slot; |
315 | |
|
316 | 0 | slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT); |
317 | |
|
318 | 0 | if (slot) |
319 | 0 | { |
320 | 0 | if (orig_key) |
321 | 0 | *orig_key = (*slot)->key; |
322 | 0 | if (value) |
323 | 0 | *value = (*slot)->value; |
324 | 0 | return 1; |
325 | 0 | } |
326 | 0 | return 0; |
327 | 0 | } |
328 | | |
329 | | typedef struct ctf_traverse_cb_arg |
330 | | { |
331 | | ctf_hash_iter_f fun; |
332 | | void *arg; |
333 | | } ctf_traverse_cb_arg_t; |
334 | | |
335 | | static int |
336 | | ctf_hashtab_traverse (void **slot, void *arg_) |
337 | 0 | { |
338 | 0 | ctf_helem_t *helem = *((ctf_helem_t **) slot); |
339 | 0 | ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_; |
340 | |
|
341 | 0 | arg->fun (helem->key, helem->value, arg->arg); |
342 | 0 | return 1; |
343 | 0 | } |
344 | | |
345 | | void |
346 | | ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_) |
347 | 0 | { |
348 | 0 | ctf_traverse_cb_arg_t arg = { fun, arg_ }; |
349 | 0 | htab_traverse (hp->htab, ctf_hashtab_traverse, &arg); |
350 | 0 | } |
351 | | |
352 | | typedef struct ctf_traverse_find_cb_arg |
353 | | { |
354 | | ctf_hash_iter_find_f fun; |
355 | | void *arg; |
356 | | void *found_key; |
357 | | } ctf_traverse_find_cb_arg_t; |
358 | | |
359 | | static int |
360 | | ctf_hashtab_traverse_find (void **slot, void *arg_) |
361 | 0 | { |
362 | 0 | ctf_helem_t *helem = *((ctf_helem_t **) slot); |
363 | 0 | ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_; |
364 | |
|
365 | 0 | if (arg->fun (helem->key, helem->value, arg->arg)) |
366 | 0 | { |
367 | 0 | arg->found_key = helem->key; |
368 | 0 | return 0; |
369 | 0 | } |
370 | 0 | return 1; |
371 | 0 | } |
372 | | |
373 | | void * |
374 | | ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_) |
375 | 0 | { |
376 | 0 | ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL }; |
377 | 0 | htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg); |
378 | 0 | return arg.found_key; |
379 | 0 | } |
380 | | |
381 | | typedef struct ctf_traverse_remove_cb_arg |
382 | | { |
383 | | struct htab *htab; |
384 | | ctf_hash_iter_remove_f fun; |
385 | | void *arg; |
386 | | } ctf_traverse_remove_cb_arg_t; |
387 | | |
388 | | static int |
389 | | ctf_hashtab_traverse_remove (void **slot, void *arg_) |
390 | 0 | { |
391 | 0 | ctf_helem_t *helem = *((ctf_helem_t **) slot); |
392 | 0 | ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_; |
393 | |
|
394 | 0 | if (arg->fun (helem->key, helem->value, arg->arg)) |
395 | 0 | htab_clear_slot (arg->htab, slot); |
396 | 0 | return 1; |
397 | 0 | } |
398 | | |
399 | | void |
400 | | ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun, |
401 | | void *arg_) |
402 | 0 | { |
403 | 0 | ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ }; |
404 | 0 | htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg); |
405 | 0 | } |
406 | | |
407 | | /* Traverse a dynhash in arbitrary order, in _next iterator form. |
408 | | |
409 | | Adding entries to the dynhash while iterating is not supported (just as it |
410 | | isn't for htab_traverse). Deleting is fine (see ctf_dynhash_next_remove, |
411 | | below). |
412 | | |
413 | | Note: unusually, this returns zero on success and a *positive* value on |
414 | | error, because it does not take an fp, taking an error pointer would be |
415 | | incredibly clunky, and nearly all error-handling ends up stuffing the result |
416 | | of this into some sort of errno or ctf_errno, which is invariably |
417 | | positive. So doing this simplifies essentially all callers. */ |
418 | | int |
419 | | ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value) |
420 | 0 | { |
421 | 0 | ctf_next_t *i = *it; |
422 | 0 | ctf_helem_t *slot; |
423 | |
|
424 | 0 | if (!i) |
425 | 0 | { |
426 | 0 | size_t size = htab_size (h->htab); |
427 | | |
428 | | /* If the table has too many entries to fit in an ssize_t, just give up. |
429 | | This might be spurious, but if any type-related hashtable has ever been |
430 | | nearly as large as that then something very odd is going on. */ |
431 | 0 | if (((ssize_t) size) < 0) |
432 | 0 | return EDOM; |
433 | | |
434 | 0 | if ((i = ctf_next_create ()) == NULL) |
435 | 0 | return ENOMEM; |
436 | | |
437 | 0 | i->u.ctn_hash_slot = h->htab->entries; |
438 | 0 | i->cu.ctn_h = h; |
439 | 0 | i->ctn_n = 0; |
440 | 0 | i->ctn_size = (ssize_t) size; |
441 | 0 | i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next; |
442 | 0 | *it = i; |
443 | 0 | } |
444 | | |
445 | 0 | if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun) |
446 | 0 | return ECTF_NEXT_WRONGFUN; |
447 | | |
448 | 0 | if (h != i->cu.ctn_h) |
449 | 0 | return ECTF_NEXT_WRONGFP; |
450 | | |
451 | 0 | if ((ssize_t) i->ctn_n == i->ctn_size) |
452 | 0 | goto hash_end; |
453 | | |
454 | 0 | while ((ssize_t) i->ctn_n < i->ctn_size |
455 | 0 | && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY |
456 | 0 | || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY)) |
457 | 0 | { |
458 | 0 | i->u.ctn_hash_slot++; |
459 | 0 | i->ctn_n++; |
460 | 0 | } |
461 | |
|
462 | 0 | if ((ssize_t) i->ctn_n == i->ctn_size) |
463 | 0 | goto hash_end; |
464 | | |
465 | 0 | slot = *i->u.ctn_hash_slot; |
466 | |
|
467 | 0 | if (key) |
468 | 0 | *key = slot->key; |
469 | 0 | if (value) |
470 | 0 | *value = slot->value; |
471 | |
|
472 | 0 | i->u.ctn_hash_slot++; |
473 | 0 | i->ctn_n++; |
474 | |
|
475 | 0 | return 0; |
476 | | |
477 | 0 | hash_end: |
478 | 0 | ctf_next_destroy (i); |
479 | 0 | *it = NULL; |
480 | 0 | return ECTF_NEXT_END; |
481 | 0 | } |
482 | | |
483 | | /* Remove the entry most recently returned by ctf_dynhash_next. |
484 | | |
485 | | Returns ECTF_NEXT_END if this is impossible (already removed, iterator not |
486 | | initialized, iterator off the end). */ |
487 | | |
488 | | int |
489 | | ctf_dynhash_next_remove (ctf_next_t * const *it) |
490 | 0 | { |
491 | 0 | ctf_next_t *i = *it; |
492 | |
|
493 | 0 | if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun) |
494 | 0 | return ECTF_NEXT_WRONGFUN; |
495 | | |
496 | 0 | if (!i) |
497 | 0 | return ECTF_NEXT_END; |
498 | | |
499 | 0 | if (i->ctn_n == 0) |
500 | 0 | return ECTF_NEXT_END; |
501 | | |
502 | 0 | htab_clear_slot (i->cu.ctn_h->htab, i->u.ctn_hash_slot - 1); |
503 | |
|
504 | 0 | return 0; |
505 | 0 | } |
506 | | |
507 | | int |
508 | | ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two, |
509 | | void *unused _libctf_unused_) |
510 | 0 | { |
511 | 0 | return strcmp ((char *) one->hkv_key, (char *) two->hkv_key); |
512 | 0 | } |
513 | | |
514 | | /* Traverse a sorted dynhash, in _next iterator form. |
515 | | |
516 | | See ctf_dynhash_next for notes on error returns, etc. |
517 | | |
518 | | Sort keys before iterating over them using the SORT_FUN and SORT_ARG. |
519 | | |
520 | | If SORT_FUN is null, thunks to ctf_dynhash_next. */ |
521 | | int |
522 | | ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key, |
523 | | void **value, ctf_hash_sort_f sort_fun, void *sort_arg) |
524 | 0 | { |
525 | 0 | ctf_next_t *i = *it; |
526 | |
|
527 | 0 | if (sort_fun == NULL) |
528 | 0 | return ctf_dynhash_next (h, it, key, value); |
529 | | |
530 | 0 | if (!i) |
531 | 0 | { |
532 | 0 | size_t els = ctf_dynhash_elements (h); |
533 | 0 | ctf_next_t *accum_i = NULL; |
534 | 0 | void *key, *value; |
535 | 0 | int err; |
536 | 0 | ctf_next_hkv_t *walk; |
537 | |
|
538 | 0 | if (((ssize_t) els) < 0) |
539 | 0 | return EDOM; |
540 | | |
541 | 0 | if ((i = ctf_next_create ()) == NULL) |
542 | 0 | return ENOMEM; |
543 | | |
544 | 0 | if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) |
545 | 0 | { |
546 | 0 | ctf_next_destroy (i); |
547 | 0 | return ENOMEM; |
548 | 0 | } |
549 | 0 | walk = i->u.ctn_sorted_hkv; |
550 | |
|
551 | 0 | i->cu.ctn_h = h; |
552 | |
|
553 | 0 | while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0) |
554 | 0 | { |
555 | 0 | walk->hkv_key = key; |
556 | 0 | walk->hkv_value = value; |
557 | 0 | walk++; |
558 | 0 | } |
559 | 0 | if (err != ECTF_NEXT_END) |
560 | 0 | { |
561 | 0 | ctf_next_destroy (i); |
562 | 0 | return err; |
563 | 0 | } |
564 | | |
565 | 0 | if (sort_fun) |
566 | 0 | ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t), |
567 | 0 | (int (*) (const void *, const void *, void *)) sort_fun, |
568 | 0 | sort_arg); |
569 | 0 | i->ctn_n = 0; |
570 | 0 | i->ctn_size = (ssize_t) els; |
571 | 0 | i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted; |
572 | 0 | *it = i; |
573 | 0 | } |
574 | | |
575 | 0 | if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun) |
576 | 0 | return ECTF_NEXT_WRONGFUN; |
577 | | |
578 | 0 | if (h != i->cu.ctn_h) |
579 | 0 | return ECTF_NEXT_WRONGFP; |
580 | | |
581 | 0 | if ((ssize_t) i->ctn_n == i->ctn_size) |
582 | 0 | { |
583 | 0 | ctf_next_destroy (i); |
584 | 0 | *it = NULL; |
585 | 0 | return ECTF_NEXT_END; |
586 | 0 | } |
587 | | |
588 | 0 | if (key) |
589 | 0 | *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key; |
590 | 0 | if (value) |
591 | 0 | *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value; |
592 | 0 | i->ctn_n++; |
593 | 0 | return 0; |
594 | 0 | } |
595 | | |
596 | | void |
597 | | ctf_dynhash_destroy (ctf_dynhash_t *hp) |
598 | 0 | { |
599 | 0 | if (hp != NULL) |
600 | 0 | htab_delete (hp->htab); |
601 | 0 | free (hp); |
602 | 0 | } |
603 | | |
604 | | /* The dynset, used for sets of keys with no value. The implementation of this |
605 | | can be much simpler, because without a value the slot can simply be the |
606 | | stored key, which means we don't need to store the freeing functions and the |
607 | | dynset itself is just a htab. */ |
608 | | |
609 | | ctf_dynset_t * |
610 | | ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun, |
611 | | ctf_hash_free_fun key_free) |
612 | 0 | { |
613 | | /* 7 is arbitrary and untested for now. */ |
614 | 0 | return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun, |
615 | 0 | key_free, xcalloc, free); |
616 | 0 | } |
617 | | |
618 | | /* The dynset has one complexity: the underlying implementation reserves two |
619 | | values for internal hash table implementation details (empty versus deleted |
620 | | entries). These values are otherwise very useful for pointers cast to ints, |
621 | | so transform the ctf_dynset_inserted value to allow for it. (This |
622 | | introduces an ambiguity in that one can no longer store these two values in |
623 | | the dynset, but if we pick high enough values this is very unlikely to be a |
624 | | problem.) |
625 | | |
626 | | We leak this implementation detail to the freeing functions on the grounds |
627 | | that any use of these functions is overwhelmingly likely to be in sets using |
628 | | real pointers, which will be unaffected. */ |
629 | | |
630 | 0 | #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64) |
631 | 0 | #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63) |
632 | | |
633 | | static void * |
634 | | key_to_internal (const void *key) |
635 | 0 | { |
636 | 0 | if (key == HTAB_EMPTY_ENTRY) |
637 | 0 | return DYNSET_EMPTY_ENTRY_REPLACEMENT; |
638 | 0 | else if (key == HTAB_DELETED_ENTRY) |
639 | 0 | return DYNSET_DELETED_ENTRY_REPLACEMENT; |
640 | | |
641 | 0 | return (void *) key; |
642 | 0 | } |
643 | | |
644 | | static void * |
645 | | internal_to_key (const void *internal) |
646 | 0 | { |
647 | 0 | if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT) |
648 | 0 | return HTAB_EMPTY_ENTRY; |
649 | 0 | else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT) |
650 | 0 | return HTAB_DELETED_ENTRY; |
651 | 0 | return (void *) internal; |
652 | 0 | } |
653 | | |
654 | | int |
655 | | ctf_dynset_insert (ctf_dynset_t *hp, void *key) |
656 | 0 | { |
657 | 0 | struct htab *htab = (struct htab *) hp; |
658 | 0 | void **slot; |
659 | |
|
660 | 0 | slot = htab_find_slot (htab, key_to_internal (key), INSERT); |
661 | |
|
662 | 0 | if (!slot) |
663 | 0 | { |
664 | 0 | errno = ENOMEM; |
665 | 0 | return -errno; |
666 | 0 | } |
667 | | |
668 | 0 | if (*slot) |
669 | 0 | { |
670 | 0 | if (htab->del_f) |
671 | 0 | (*htab->del_f) (*slot); |
672 | 0 | } |
673 | |
|
674 | 0 | *slot = key_to_internal (key); |
675 | |
|
676 | 0 | return 0; |
677 | 0 | } |
678 | | |
679 | | void |
680 | | ctf_dynset_remove (ctf_dynset_t *hp, const void *key) |
681 | 0 | { |
682 | 0 | htab_remove_elt ((struct htab *) hp, key_to_internal (key)); |
683 | 0 | } |
684 | | |
685 | | size_t |
686 | | ctf_dynset_elements (ctf_dynset_t *hp) |
687 | 0 | { |
688 | 0 | return htab_elements ((struct htab *) hp); |
689 | 0 | } |
690 | | |
691 | | void |
692 | | ctf_dynset_destroy (ctf_dynset_t *hp) |
693 | 0 | { |
694 | 0 | if (hp != NULL) |
695 | 0 | htab_delete ((struct htab *) hp); |
696 | 0 | } |
697 | | |
698 | | void * |
699 | | ctf_dynset_lookup (ctf_dynset_t *hp, const void *key) |
700 | 0 | { |
701 | 0 | void **slot = htab_find_slot ((struct htab *) hp, |
702 | 0 | key_to_internal (key), NO_INSERT); |
703 | |
|
704 | 0 | if (slot) |
705 | 0 | return internal_to_key (*slot); |
706 | 0 | return NULL; |
707 | 0 | } |
708 | | |
709 | | /* TRUE/FALSE return. */ |
710 | | int |
711 | | ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key) |
712 | 0 | { |
713 | 0 | void **slot = htab_find_slot ((struct htab *) hp, |
714 | 0 | key_to_internal (key), NO_INSERT); |
715 | |
|
716 | 0 | if (orig_key && slot) |
717 | 0 | *orig_key = internal_to_key (*slot); |
718 | 0 | return (slot != NULL); |
719 | 0 | } |
720 | | |
721 | | /* Look up a completely random value from the set, if any exist. |
722 | | Keys with value zero cannot be distinguished from a nonexistent key. */ |
723 | | void * |
724 | | ctf_dynset_lookup_any (ctf_dynset_t *hp) |
725 | 0 | { |
726 | 0 | struct htab *htab = (struct htab *) hp; |
727 | 0 | void **slot = htab->entries; |
728 | 0 | void **limit = slot + htab_size (htab); |
729 | |
|
730 | 0 | while (slot < limit |
731 | 0 | && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)) |
732 | 0 | slot++; |
733 | |
|
734 | 0 | if (slot < limit) |
735 | 0 | return internal_to_key (*slot); |
736 | 0 | return NULL; |
737 | 0 | } |
738 | | |
739 | | /* Traverse a dynset in arbitrary order, in _next iterator form. |
740 | | |
741 | | Otherwise, just like ctf_dynhash_next. */ |
742 | | int |
743 | | ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key) |
744 | 0 | { |
745 | 0 | struct htab *htab = (struct htab *) hp; |
746 | 0 | ctf_next_t *i = *it; |
747 | 0 | void *slot; |
748 | |
|
749 | 0 | if (!i) |
750 | 0 | { |
751 | 0 | size_t size = htab_size (htab); |
752 | | |
753 | | /* If the table has too many entries to fit in an ssize_t, just give up. |
754 | | This might be spurious, but if any type-related hashtable has ever been |
755 | | nearly as large as that then somthing very odd is going on. */ |
756 | |
|
757 | 0 | if (((ssize_t) size) < 0) |
758 | 0 | return EDOM; |
759 | | |
760 | 0 | if ((i = ctf_next_create ()) == NULL) |
761 | 0 | return ENOMEM; |
762 | | |
763 | 0 | i->u.ctn_hash_slot = htab->entries; |
764 | 0 | i->cu.ctn_s = hp; |
765 | 0 | i->ctn_n = 0; |
766 | 0 | i->ctn_size = (ssize_t) size; |
767 | 0 | i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next; |
768 | 0 | *it = i; |
769 | 0 | } |
770 | | |
771 | 0 | if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun) |
772 | 0 | return ECTF_NEXT_WRONGFUN; |
773 | | |
774 | 0 | if (hp != i->cu.ctn_s) |
775 | 0 | return ECTF_NEXT_WRONGFP; |
776 | | |
777 | 0 | if ((ssize_t) i->ctn_n == i->ctn_size) |
778 | 0 | goto set_end; |
779 | | |
780 | 0 | while ((ssize_t) i->ctn_n < i->ctn_size |
781 | 0 | && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY |
782 | 0 | || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY)) |
783 | 0 | { |
784 | 0 | i->u.ctn_hash_slot++; |
785 | 0 | i->ctn_n++; |
786 | 0 | } |
787 | |
|
788 | 0 | if ((ssize_t) i->ctn_n == i->ctn_size) |
789 | 0 | goto set_end; |
790 | | |
791 | 0 | slot = *i->u.ctn_hash_slot; |
792 | |
|
793 | 0 | if (key) |
794 | 0 | *key = internal_to_key (slot); |
795 | |
|
796 | 0 | i->u.ctn_hash_slot++; |
797 | 0 | i->ctn_n++; |
798 | |
|
799 | 0 | return 0; |
800 | | |
801 | 0 | set_end: |
802 | 0 | ctf_next_destroy (i); |
803 | 0 | *it = NULL; |
804 | 0 | return ECTF_NEXT_END; |
805 | 0 | } |
806 | | |
807 | | /* Helper functions for insertion/removal of types. */ |
808 | | |
809 | | int |
810 | | ctf_dynhash_insert_type (ctf_dict_t *fp, ctf_dynhash_t *hp, uint32_t type, |
811 | | uint32_t name) |
812 | 0 | { |
813 | 0 | const char *str; |
814 | 0 | int err; |
815 | |
|
816 | 0 | if (type == 0) |
817 | 0 | return EINVAL; |
818 | | |
819 | 0 | if ((str = ctf_strptr_validate (fp, name)) == NULL) |
820 | 0 | return ctf_errno (fp) * -1; |
821 | | |
822 | 0 | if (str[0] == '\0') |
823 | 0 | return 0; /* Just ignore empty strings on behalf of caller. */ |
824 | | |
825 | 0 | if ((err = ctf_dynhash_insert (hp, (char *) str, |
826 | 0 | (void *) (ptrdiff_t) type)) == 0) |
827 | 0 | return 0; |
828 | | |
829 | | /* ctf_dynhash_insert returns a negative error value: negate it for |
830 | | ctf_set_errno. */ |
831 | 0 | ctf_set_errno (fp, err * -1); |
832 | 0 | return err; |
833 | 0 | } |
834 | | |
835 | | ctf_id_t |
836 | | ctf_dynhash_lookup_type (ctf_dynhash_t *hp, const char *key) |
837 | 0 | { |
838 | 0 | void *value; |
839 | |
|
840 | 0 | if (ctf_dynhash_lookup_kv (hp, key, NULL, &value)) |
841 | 0 | return (ctf_id_t) (uintptr_t) value; |
842 | | |
843 | 0 | return 0; |
844 | 0 | } |