/src/binutils-gdb/libctf/ctf-util.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Miscellaneous utilities. |
2 | | Copyright (C) 2019-2025 Free Software Foundation, Inc. |
3 | | |
4 | | This file is part of libctf. |
5 | | |
6 | | libctf is free software; you can redistribute it and/or modify it under |
7 | | the terms of the GNU General Public License as published by the Free |
8 | | Software Foundation; either version 3, or (at your option) any later |
9 | | version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, but |
12 | | WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
14 | | See the GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; see the file COPYING. If not see |
18 | | <http://www.gnu.org/licenses/>. */ |
19 | | |
20 | | #include <ctf-impl.h> |
21 | | #include <string.h> |
22 | | #include "ctf-endian.h" |
23 | | |
24 | | /* Simple doubly-linked list append routine. This implementation assumes that |
25 | | each list element contains an embedded ctf_list_t as the first member. |
26 | | An additional ctf_list_t is used to store the head (l_next) and tail |
27 | | (l_prev) pointers. The current head and tail list elements have their |
28 | | previous and next pointers set to NULL, respectively. */ |
29 | | |
30 | | void |
31 | | ctf_list_append (ctf_list_t *lp, void *newp) |
32 | 0 | { |
33 | 0 | ctf_list_t *p = lp->l_prev; /* p = tail list element. */ |
34 | 0 | ctf_list_t *q = newp; /* q = new list element. */ |
35 | |
|
36 | 0 | lp->l_prev = q; |
37 | 0 | q->l_prev = p; |
38 | 0 | q->l_next = NULL; |
39 | |
|
40 | 0 | if (p != NULL) |
41 | 0 | p->l_next = q; |
42 | 0 | else |
43 | 0 | lp->l_next = q; |
44 | 0 | } |
45 | | |
46 | | /* Prepend the specified existing element to the given ctf_list_t. The |
47 | | existing pointer should be pointing at a struct with embedded ctf_list_t. */ |
48 | | |
49 | | void |
50 | | ctf_list_prepend (ctf_list_t * lp, void *newp) |
51 | 0 | { |
52 | 0 | ctf_list_t *p = newp; /* p = new list element. */ |
53 | 0 | ctf_list_t *q = lp->l_next; /* q = head list element. */ |
54 | |
|
55 | 0 | lp->l_next = p; |
56 | 0 | p->l_prev = NULL; |
57 | 0 | p->l_next = q; |
58 | |
|
59 | 0 | if (q != NULL) |
60 | 0 | q->l_prev = p; |
61 | 0 | else |
62 | 0 | lp->l_prev = p; |
63 | 0 | } |
64 | | |
65 | | /* Delete the specified existing element from the given ctf_list_t. The |
66 | | existing pointer should be pointing at a struct with embedded ctf_list_t. */ |
67 | | |
68 | | void |
69 | | ctf_list_delete (ctf_list_t *lp, void *existing) |
70 | 0 | { |
71 | 0 | ctf_list_t *p = existing; |
72 | |
|
73 | 0 | if (p->l_prev != NULL) |
74 | 0 | p->l_prev->l_next = p->l_next; |
75 | 0 | else |
76 | 0 | lp->l_next = p->l_next; |
77 | |
|
78 | 0 | if (p->l_next != NULL) |
79 | 0 | p->l_next->l_prev = p->l_prev; |
80 | 0 | else |
81 | 0 | lp->l_prev = p->l_prev; |
82 | 0 | } |
83 | | |
84 | | /* Return 1 if the list is empty. */ |
85 | | |
86 | | int |
87 | | ctf_list_empty_p (ctf_list_t *lp) |
88 | 0 | { |
89 | 0 | return (lp->l_next == NULL && lp->l_prev == NULL); |
90 | 0 | } |
91 | | |
92 | | /* Splice one entire list onto the end of another one. The existing list is |
93 | | emptied. */ |
94 | | |
95 | | void |
96 | | ctf_list_splice (ctf_list_t *lp, ctf_list_t *append) |
97 | 0 | { |
98 | 0 | if (ctf_list_empty_p (append)) |
99 | 0 | return; |
100 | | |
101 | 0 | if (lp->l_prev != NULL) |
102 | 0 | lp->l_prev->l_next = append->l_next; |
103 | 0 | else |
104 | 0 | lp->l_next = append->l_next; |
105 | |
|
106 | 0 | append->l_next->l_prev = lp->l_prev; |
107 | 0 | lp->l_prev = append->l_prev; |
108 | 0 | append->l_next = NULL; |
109 | 0 | append->l_prev = NULL; |
110 | 0 | } |
111 | | |
112 | | /* Convert a 32-bit ELF symbol to a ctf_link_sym_t. */ |
113 | | |
114 | | ctf_link_sym_t * |
115 | | ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src, |
116 | | uint32_t symidx) |
117 | 0 | { |
118 | 0 | Elf32_Sym tmp; |
119 | 0 | int needs_flipping = 0; |
120 | |
|
121 | | #ifdef WORDS_BIGENDIAN |
122 | | if (fp->ctf_symsect_little_endian) |
123 | | needs_flipping = 1; |
124 | | #else |
125 | 0 | if (!fp->ctf_symsect_little_endian) |
126 | 0 | needs_flipping = 1; |
127 | 0 | #endif |
128 | |
|
129 | 0 | memcpy (&tmp, src, sizeof (Elf32_Sym)); |
130 | 0 | if (needs_flipping) |
131 | 0 | { |
132 | 0 | swap_thing (tmp.st_name); |
133 | 0 | swap_thing (tmp.st_size); |
134 | 0 | swap_thing (tmp.st_shndx); |
135 | 0 | swap_thing (tmp.st_value); |
136 | 0 | } |
137 | | /* The name must be in the external string table. */ |
138 | 0 | if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) |
139 | 0 | dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; |
140 | 0 | else |
141 | 0 | dst->st_name = _CTF_NULLSTR; |
142 | 0 | dst->st_nameidx_set = 0; |
143 | 0 | dst->st_symidx = symidx; |
144 | 0 | dst->st_shndx = tmp.st_shndx; |
145 | 0 | dst->st_type = ELF32_ST_TYPE (tmp.st_info); |
146 | 0 | dst->st_value = tmp.st_value; |
147 | |
|
148 | 0 | return dst; |
149 | 0 | } |
150 | | |
151 | | /* Convert a 64-bit ELF symbol to a ctf_link_sym_t. */ |
152 | | |
153 | | ctf_link_sym_t * |
154 | | ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src, |
155 | | uint32_t symidx) |
156 | 0 | { |
157 | 0 | Elf64_Sym tmp; |
158 | 0 | int needs_flipping = 0; |
159 | |
|
160 | | #ifdef WORDS_BIGENDIAN |
161 | | if (fp->ctf_symsect_little_endian) |
162 | | needs_flipping = 1; |
163 | | #else |
164 | 0 | if (!fp->ctf_symsect_little_endian) |
165 | 0 | needs_flipping = 1; |
166 | 0 | #endif |
167 | |
|
168 | 0 | memcpy (&tmp, src, sizeof (Elf64_Sym)); |
169 | 0 | if (needs_flipping) |
170 | 0 | { |
171 | 0 | swap_thing (tmp.st_name); |
172 | 0 | swap_thing (tmp.st_size); |
173 | 0 | swap_thing (tmp.st_shndx); |
174 | 0 | swap_thing (tmp.st_value); |
175 | 0 | } |
176 | | |
177 | | /* The name must be in the external string table. */ |
178 | 0 | if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) |
179 | 0 | dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; |
180 | 0 | else |
181 | 0 | dst->st_name = _CTF_NULLSTR; |
182 | 0 | dst->st_nameidx_set = 0; |
183 | 0 | dst->st_symidx = symidx; |
184 | 0 | dst->st_shndx = tmp.st_shndx; |
185 | 0 | dst->st_type = ELF32_ST_TYPE (tmp.st_info); |
186 | | |
187 | | /* We only care if the value is zero, so avoid nonzeroes turning into |
188 | | zeroes. */ |
189 | 0 | if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0))) |
190 | 0 | dst->st_value = 1; |
191 | 0 | else |
192 | 0 | dst->st_value = (uint32_t) tmp.st_value; |
193 | |
|
194 | 0 | return dst; |
195 | 0 | } |
196 | | |
197 | | /* A string appender working on dynamic strings. Returns NULL on OOM. */ |
198 | | |
199 | | char * |
200 | | ctf_str_append (char *s, const char *append) |
201 | 0 | { |
202 | 0 | size_t s_len = 0; |
203 | |
|
204 | 0 | if (append == NULL) |
205 | 0 | return s; |
206 | | |
207 | 0 | if (s != NULL) |
208 | 0 | s_len = strlen (s); |
209 | |
|
210 | 0 | size_t append_len = strlen (append); |
211 | |
|
212 | 0 | if ((s = realloc (s, s_len + append_len + 1)) == NULL) |
213 | 0 | return NULL; |
214 | | |
215 | 0 | memcpy (s + s_len, append, append_len); |
216 | 0 | s[s_len + append_len] = '\0'; |
217 | |
|
218 | 0 | return s; |
219 | 0 | } |
220 | | |
221 | | /* A version of ctf_str_append that returns the old string on OOM. */ |
222 | | |
223 | | char * |
224 | | ctf_str_append_noerr (char *s, const char *append) |
225 | 0 | { |
226 | 0 | char *new_s; |
227 | |
|
228 | 0 | new_s = ctf_str_append (s, append); |
229 | 0 | if (!new_s) |
230 | 0 | return s; |
231 | 0 | return new_s; |
232 | 0 | } |
233 | | |
234 | | /* Store the specified error code into errp if it is non-NULL, and then |
235 | | return NULL for the benefit of the caller. */ |
236 | | |
237 | | void * |
238 | | ctf_set_open_errno (int *errp, int error) |
239 | 0 | { |
240 | 0 | if (errp != NULL) |
241 | 0 | *errp = error; |
242 | 0 | return NULL; |
243 | 0 | } |
244 | | |
245 | | /* Create a ctf_next_t. */ |
246 | | |
247 | | ctf_next_t * |
248 | | ctf_next_create (void) |
249 | 0 | { |
250 | 0 | return calloc (1, sizeof (struct ctf_next)); |
251 | 0 | } |
252 | | |
253 | | /* Destroy a ctf_next_t, for early exit from iterators. */ |
254 | | |
255 | | void |
256 | | ctf_next_destroy (ctf_next_t *i) |
257 | 0 | { |
258 | 0 | if (i == NULL) |
259 | 0 | return; |
260 | | |
261 | 0 | if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) |
262 | 0 | free (i->u.ctn_sorted_hkv); |
263 | 0 | if (i->ctn_next) |
264 | 0 | ctf_next_destroy (i->ctn_next); |
265 | 0 | if (i->ctn_next_inner) |
266 | 0 | ctf_next_destroy (i->ctn_next_inner); |
267 | 0 | free (i); |
268 | 0 | } |
269 | | |
270 | | /* Copy a ctf_next_t. */ |
271 | | |
272 | | ctf_next_t * |
273 | | ctf_next_copy (ctf_next_t *i) |
274 | 0 | { |
275 | 0 | ctf_next_t *i2; |
276 | |
|
277 | 0 | if ((i2 = ctf_next_create()) == NULL) |
278 | 0 | return NULL; |
279 | 0 | memcpy (i2, i, sizeof (struct ctf_next)); |
280 | |
|
281 | 0 | if (i2->ctn_next) |
282 | 0 | { |
283 | 0 | i2->ctn_next = ctf_next_copy (i2->ctn_next); |
284 | 0 | if (i2->ctn_next == NULL) |
285 | 0 | goto err_next; |
286 | 0 | } |
287 | | |
288 | 0 | if (i2->ctn_next_inner) |
289 | 0 | { |
290 | 0 | i2->ctn_next_inner = ctf_next_copy (i2->ctn_next_inner); |
291 | 0 | if (i2->ctn_next_inner == NULL) |
292 | 0 | goto err_next_inner; |
293 | 0 | } |
294 | | |
295 | 0 | if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) |
296 | 0 | { |
297 | 0 | size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h); |
298 | 0 | if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) |
299 | 0 | goto err_sorted_hkv; |
300 | 0 | memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv, |
301 | 0 | els * sizeof (ctf_next_hkv_t)); |
302 | 0 | } |
303 | 0 | return i2; |
304 | | |
305 | 0 | err_sorted_hkv: |
306 | 0 | ctf_next_destroy (i2->ctn_next_inner); |
307 | 0 | err_next_inner: |
308 | 0 | ctf_next_destroy (i2->ctn_next); |
309 | 0 | err_next: |
310 | 0 | ctf_next_destroy (i2); |
311 | 0 | return NULL; |
312 | 0 | } |