Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/libiberty/regex.c
Line
Count
Source (jump to first uncovered line)
1
/* Extended regular expression matching and search library,
2
   version 0.12.
3
   (Implements POSIX draft P1003.2/D11.2, except for some of the
4
   internationalization features.)
5
6
   Copyright (C) 1993-2025 Free Software Foundation, Inc.
7
   This file is part of the GNU C Library.
8
9
   The GNU C Library is free software; you can redistribute it and/or
10
   modify it under the terms of the GNU Lesser General Public
11
   License as published by the Free Software Foundation; either
12
   version 2.1 of the License, or (at your option) any later version.
13
14
   The GNU C Library is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
   Lesser General Public License for more details.
18
19
   You should have received a copy of the GNU Lesser General Public
20
   License along with the GNU C Library; if not, write to the Free
21
   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22
   02110-1301 USA.  */
23
24
/* This file has been modified for usage in libiberty.  It includes "xregex.h"
25
   instead of <regex.h>.  The "xregex.h" header file renames all external
26
   routines with an "x" prefix so they do not collide with the native regex
27
   routines or with other components regex routines. */
28
/* AIX requires this to be the first thing in the file. */
29
#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
30
  #pragma alloca
31
#endif
32
33
#if __GNUC__ >= 12
34
#  pragma GCC diagnostic ignored "-Wuse-after-free"
35
#endif
36
37
#undef  _GNU_SOURCE
38
#define _GNU_SOURCE
39
40
#ifndef INSIDE_RECURSION
41
# ifdef HAVE_CONFIG_H
42
#  include <config.h>
43
# endif
44
#endif
45
46
#include <ansidecl.h>
47
48
#ifndef INSIDE_RECURSION
49
50
# if defined STDC_HEADERS && !defined emacs
51
#  include <stddef.h>
52
72.4k
#  define PTR_INT_TYPE ptrdiff_t
53
# else
54
/* We need this for `regex.h', and perhaps for the Emacs include files.  */
55
#  include <sys/types.h>
56
#  define PTR_INT_TYPE long
57
# endif
58
59
# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
60
61
/* For platform which support the ISO C amendement 1 functionality we
62
   support user defined character classes.  */
63
# if defined _LIBC || WIDE_CHAR_SUPPORT
64
/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
65
#  include <wchar.h>
66
#  include <wctype.h>
67
# endif
68
69
# ifdef _LIBC
70
/* We have to keep the namespace clean.  */
71
#  define regfree(preg) __regfree (preg)
72
#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
73
#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
74
#  define regerror(errcode, preg, errbuf, errbuf_size) \
75
  __regerror(errcode, preg, errbuf, errbuf_size)
76
#  define re_set_registers(bu, re, nu, st, en) \
77
  __re_set_registers (bu, re, nu, st, en)
78
#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
79
  __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
80
#  define re_match(bufp, string, size, pos, regs) \
81
  __re_match (bufp, string, size, pos, regs)
82
#  define re_search(bufp, string, size, startpos, range, regs) \
83
  __re_search (bufp, string, size, startpos, range, regs)
84
#  define re_compile_pattern(pattern, length, bufp) \
85
  __re_compile_pattern (pattern, length, bufp)
86
#  define re_set_syntax(syntax) __re_set_syntax (syntax)
87
#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
88
  __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
89
#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
90
91
#  define btowc __btowc
92
93
/* We are also using some library internals.  */
94
#  include <locale/localeinfo.h>
95
#  include <locale/elem-hash.h>
96
#  include <langinfo.h>
97
#  include <locale/coll-lookup.h>
98
# endif
99
100
/* This is for other GNU distributions with internationalized messages.  */
101
# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
102
#  include <libintl.h>
103
#  ifdef _LIBC
104
#   undef gettext
105
#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
106
#  endif
107
# else
108
0
#  define gettext(msgid) (msgid)
109
# endif
110
111
# ifndef gettext_noop
112
/* This define is so xgettext can find the internationalizable
113
   strings.  */
114
#  define gettext_noop(String) String
115
# endif
116
117
/* The `emacs' switch turns on certain matching commands
118
   that make sense only in Emacs. */
119
# ifdef emacs
120
121
#  include "lisp.h"
122
#  include "buffer.h"
123
#  include "syntax.h"
124
125
# else  /* not emacs */
126
127
/* If we are not linking with Emacs proper,
128
   we can't use the relocating allocator
129
   even if config.h says that we can.  */
130
#  undef REL_ALLOC
131
132
#  if defined STDC_HEADERS || defined _LIBC
133
#   include <stdlib.h>
134
#  else
135
char *malloc ();
136
char *realloc ();
137
#  endif
138
139
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
140
   If nothing else has been done, use the method below.  */
141
#  ifdef INHIBIT_STRING_HEADER
142
#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
143
#    if !defined bzero && !defined bcopy
144
#     undef INHIBIT_STRING_HEADER
145
#    endif
146
#   endif
147
#  endif
148
149
/* This is the normal way of making sure we have a bcopy and a bzero.
150
   This is used in most programs--a few other programs avoid this
151
   by defining INHIBIT_STRING_HEADER.  */
152
#  ifndef INHIBIT_STRING_HEADER
153
#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
154
#    include <string.h>
155
#    ifndef bzero
156
#     ifndef _LIBC
157
405k
#      define bzero(s, n) ((void) memset (s, '\0', n))
158
#     else
159
#      define bzero(s, n) __bzero (s, n)
160
#     endif
161
#    endif
162
#   else
163
#    include <strings.h>
164
#    ifndef memcmp
165
#     define memcmp(s1, s2, n)  bcmp (s1, s2, n)
166
#    endif
167
#    ifndef memcpy
168
#     define memcpy(d, s, n)  (bcopy (s, d, n), (d))
169
#    endif
170
#   endif
171
#  endif
172
173
/* Define the syntax stuff for \<, \>, etc.  */
174
175
/* This must be nonzero for the wordchar and notwordchar pattern
176
   commands in re_match_2.  */
177
#  ifndef Sword
178
192
#   define Sword 1
179
#  endif
180
181
#  ifdef SWITCH_ENUM_BUG
182
#   define SWITCH_ENUM_CAST(x) ((int)(x))
183
#  else
184
53.8k
#   define SWITCH_ENUM_CAST(x) (x)
185
#  endif
186
187
# endif /* not emacs */
188
189
# if defined _LIBC || HAVE_LIMITS_H
190
#  include <limits.h>
191
# endif
192
193
# ifndef MB_LEN_MAX
194
#  define MB_LEN_MAX 1
195
# endif
196

197
/* Get the interface, including the syntax bits.  */
198
# include "xregex.h"  /* change for libiberty */
199
200
/* isalpha etc. are used for the character classes.  */
201
# include <ctype.h>
202
203
/* Jim Meyering writes:
204
205
   "... Some ctype macros are valid only for character codes that
206
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
207
   using /bin/cc or gcc but without giving an ansi option).  So, all
208
   ctype uses should be through macros like ISPRINT...  If
209
   STDC_HEADERS is defined, then autoconf has verified that the ctype
210
   macros don't need to be guarded with references to isascii. ...
211
   Defining isascii to 1 should let any compiler worth its salt
212
   eliminate the && through constant folding."
213
   Solaris defines some of these symbols so we must undefine them first.  */
214
215
# undef ISASCII
216
# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
217
1.53k
#  define ISASCII(c) 1
218
# else
219
#  define ISASCII(c) isascii(c)
220
# endif
221
222
# ifdef isblank
223
0
#  define ISBLANK(c) (ISASCII (c) && isblank (c))
224
# else
225
#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
226
# endif
227
# ifdef isgraph
228
0
#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
229
# else
230
#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
231
# endif
232
233
# undef ISPRINT
234
0
# define ISPRINT(c) (ISASCII (c) && isprint (c))
235
0
# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
236
768
# define ISALNUM(c) (ISASCII (c) && isalnum (c))
237
0
# define ISALPHA(c) (ISASCII (c) && isalpha (c))
238
0
# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
239
0
# define ISLOWER(c) (ISASCII (c) && islower (c))
240
0
# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
241
0
# define ISSPACE(c) (ISASCII (c) && isspace (c))
242
0
# define ISUPPER(c) (ISASCII (c) && isupper (c))
243
0
# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
244
245
# ifdef _tolower
246
0
#  define TOLOWER(c) _tolower(c)
247
# else
248
#  define TOLOWER(c) tolower(c)
249
# endif
250
251
# ifndef NULL
252
#  define NULL (void *)0
253
# endif
254
255
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
256
   since ours (we hope) works properly with all combinations of
257
   machines, compilers, `char' and `unsigned char' argument types.
258
   (Per Bothner suggested the basic approach.)  */
259
# undef SIGN_EXTEND_CHAR
260
# if __STDC__
261
0
#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
262
# else  /* not __STDC__ */
263
/* As in Harbison and Steele.  */
264
#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
265
# endif
266

267
# ifndef emacs
268
/* How many characters in the character set.  */
269
771
#  define CHAR_SET_SIZE 256
270
271
#  ifdef SYNTAX_TABLE
272
273
extern char *re_syntax_table;
274
275
#  else /* not SYNTAX_TABLE */
276
277
static char re_syntax_table[CHAR_SET_SIZE];
278
279
static void init_syntax_once (void);
280
281
static void
282
init_syntax_once (void)
283
53.8k
{
284
53.8k
   register int c;
285
53.8k
   static int done = 0;
286
287
53.8k
   if (done)
288
53.8k
     return;
289
3
   bzero (re_syntax_table, sizeof re_syntax_table);
290
291
771
   for (c = 0; c < CHAR_SET_SIZE; ++c)
292
768
     if (ISALNUM (c))
293
186
  re_syntax_table[c] = Sword;
294
295
3
   re_syntax_table['_'] = Sword;
296
297
3
   done = 1;
298
3
}
299
300
#  endif /* not SYNTAX_TABLE */
301
302
0
#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
303
304
# endif /* emacs */
305

306
/* Integer type for pointers.  */
307
# if !defined _LIBC && !defined HAVE_UINTPTR_T
308
typedef unsigned long int uintptr_t;
309
# endif
310
311
/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
312
   use `alloca' instead of `malloc'.  This is because using malloc in
313
   re_search* or re_match* could cause memory leaks when C-g is used in
314
   Emacs; also, malloc is slower and causes storage fragmentation.  On
315
   the other hand, malloc is more portable, and easier to debug.
316
317
   Because we sometimes use alloca, some routines have to be macros,
318
   not functions -- `alloca'-allocated space disappears at the end of the
319
   function it is called in.  */
320
321
# ifdef REGEX_MALLOC
322
323
#  define REGEX_ALLOCATE malloc
324
#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
325
#  define REGEX_FREE free
326
327
# else /* not REGEX_MALLOC  */
328
329
/* Emacs already defines alloca, sometimes.  */
330
#  ifndef alloca
331
332
/* Make alloca work the best possible way.  */
333
#   ifdef __GNUC__
334
#    define alloca __builtin_alloca
335
#   else /* not __GNUC__ */
336
#    if HAVE_ALLOCA_H
337
#     include <alloca.h>
338
#    endif /* HAVE_ALLOCA_H */
339
#   endif /* not __GNUC__ */
340
341
#  endif /* not alloca */
342
343
0
#  define REGEX_ALLOCATE alloca
344
345
/* Assumes a `char *destination' variable.  */
346
#  define REGEX_REALLOCATE(source, osize, nsize)      \
347
0
  (destination = (char *) alloca (nsize),       \
348
0
   memcpy (destination, source, osize))
349
350
/* No need to do anything to free, after alloca.  */
351
0
#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
352
353
# endif /* not REGEX_MALLOC */
354
355
/* Define how to allocate the failure stack.  */
356
357
# if defined REL_ALLOC && defined REGEX_MALLOC
358
359
#  define REGEX_ALLOCATE_STACK(size)        \
360
  r_alloc (&failure_stack_ptr, (size))
361
#  define REGEX_REALLOCATE_STACK(source, osize, nsize)    \
362
  r_re_alloc (&failure_stack_ptr, (nsize))
363
#  define REGEX_FREE_STACK(ptr)         \
364
  r_alloc_free (&failure_stack_ptr)
365
366
# else /* not using relocating allocator */
367
368
#  ifdef REGEX_MALLOC
369
370
#   define REGEX_ALLOCATE_STACK malloc
371
#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
372
#   define REGEX_FREE_STACK free
373
374
#  else /* not REGEX_MALLOC */
375
376
53.8k
#   define REGEX_ALLOCATE_STACK alloca
377
378
#   define REGEX_REALLOCATE_STACK(source, osize, nsize)     \
379
0
   REGEX_REALLOCATE (source, osize, nsize)
380
/* No need to explicitly free anything.  */
381
#   define REGEX_FREE_STACK(arg)
382
383
#  endif /* not REGEX_MALLOC */
384
# endif /* not using relocating allocator */
385
386
387
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
388
   `string1' or just past its end.  This works if PTR is NULL, which is
389
   a good thing.  */
390
# define FIRST_STRING_P(ptr)          \
391
0
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
392
393
/* (Re)Allocate N items of type T using malloc, or fail.  */
394
107k
# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
395
0
# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
396
# define RETALLOC_IF(addr, n, t) \
397
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
398
0
# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
399
400
13.4M
# define BYTEWIDTH 8 /* In bits.  */
401
402
0
# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
403
404
# undef MAX
405
# undef MIN
406
0
# define MAX(a, b) ((a) > (b) ? (a) : (b))
407
0
# define MIN(a, b) ((a) < (b) ? (a) : (b))
408
409
typedef char boolean;
410
1.37M
# define false 0
411
53.8k
# define true 1
412
413
static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
414
                                         reg_syntax_t syntax,
415
                                         struct re_pattern_buffer *bufp);
416
417
static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
418
                                     const char *string1, int size1,
419
                                     const char *string2, int size2,
420
                                     int pos,
421
                                     struct re_registers *regs,
422
                                     int stop);
423
static int byte_re_search_2 (struct re_pattern_buffer *bufp,
424
                             const char *string1, int size1,
425
                             const char *string2, int size2,
426
                             int startpos, int range,
427
                             struct re_registers *regs, int stop);
428
static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
429
430
#ifdef MBS_SUPPORT
431
static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
432
                                        reg_syntax_t syntax,
433
                                        struct re_pattern_buffer *bufp);
434
435
436
static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
437
                                    const char *cstring1, int csize1,
438
                                    const char *cstring2, int csize2,
439
                                    int pos,
440
                                    struct re_registers *regs,
441
                                    int stop,
442
                                    wchar_t *string1, int size1,
443
                                    wchar_t *string2, int size2,
444
                                    int *mbs_offset1, int *mbs_offset2);
445
static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
446
                            const char *string1, int size1,
447
                            const char *string2, int size2,
448
                            int startpos, int range,
449
                            struct re_registers *regs, int stop);
450
static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
451
#endif
452

453
/* These are the command codes that appear in compiled regular
454
   expressions.  Some opcodes are followed by argument bytes.  A
455
   command code can specify any interpretation whatsoever for its
456
   arguments.  Zero bytes may appear in the compiled regular expression.  */
457
458
typedef enum
459
{
460
  no_op = 0,
461
462
  /* Succeed right away--no more backtracking.  */
463
  succeed,
464
465
        /* Followed by one byte giving n, then by n literal bytes.  */
466
  exactn,
467
468
# ifdef MBS_SUPPORT
469
  /* Same as exactn, but contains binary data.  */
470
  exactn_bin,
471
# endif
472
473
        /* Matches any (more or less) character.  */
474
  anychar,
475
476
        /* Matches any one char belonging to specified set.  First
477
           following byte is number of bitmap bytes.  Then come bytes
478
           for a bitmap saying which chars are in.  Bits in each byte
479
           are ordered low-bit-first.  A character is in the set if its
480
           bit is 1.  A character too large to have a bit in the map is
481
           automatically not in the set.  */
482
        /* ifdef MBS_SUPPORT, following element is length of character
483
     classes, length of collating symbols, length of equivalence
484
     classes, length of character ranges, and length of characters.
485
     Next, character class element, collating symbols elements,
486
     equivalence class elements, range elements, and character
487
     elements follow.
488
     See regex_compile function.  */
489
  charset,
490
491
        /* Same parameters as charset, but match any character that is
492
           not one of those specified.  */
493
  charset_not,
494
495
        /* Start remembering the text that is matched, for storing in a
496
           register.  Followed by one byte with the register number, in
497
           the range 0 to one less than the pattern buffer's re_nsub
498
           field.  Then followed by one byte with the number of groups
499
           inner to this one.  (This last has to be part of the
500
           start_memory only because we need it in the on_failure_jump
501
           of re_match_2.)  */
502
  start_memory,
503
504
        /* Stop remembering the text that is matched and store it in a
505
           memory register.  Followed by one byte with the register
506
           number, in the range 0 to one less than `re_nsub' in the
507
           pattern buffer, and one byte with the number of inner groups,
508
           just like `start_memory'.  (We need the number of inner
509
           groups here because we don't have any easy way of finding the
510
           corresponding start_memory when we're at a stop_memory.)  */
511
  stop_memory,
512
513
        /* Match a duplicate of something remembered. Followed by one
514
           byte containing the register number.  */
515
  duplicate,
516
517
        /* Fail unless at beginning of line.  */
518
  begline,
519
520
        /* Fail unless at end of line.  */
521
  endline,
522
523
        /* Succeeds if at beginning of buffer (if emacs) or at beginning
524
           of string to be matched (if not).  */
525
  begbuf,
526
527
        /* Analogously, for end of buffer/string.  */
528
  endbuf,
529
530
        /* Followed by two byte relative address to which to jump.  */
531
  jump,
532
533
  /* Same as jump, but marks the end of an alternative.  */
534
  jump_past_alt,
535
536
        /* Followed by two-byte relative address of place to resume at
537
           in case of failure.  */
538
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
539
  on_failure_jump,
540
541
        /* Like on_failure_jump, but pushes a placeholder instead of the
542
           current string position when executed.  */
543
  on_failure_keep_string_jump,
544
545
        /* Throw away latest failure point and then jump to following
546
           two-byte relative address.  */
547
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
548
  pop_failure_jump,
549
550
        /* Change to pop_failure_jump if know won't have to backtrack to
551
           match; otherwise change to jump.  This is used to jump
552
           back to the beginning of a repeat.  If what follows this jump
553
           clearly won't match what the repeat does, such that we can be
554
           sure that there is no use backtracking out of repetitions
555
           already matched, then we change it to a pop_failure_jump.
556
           Followed by two-byte address.  */
557
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
558
  maybe_pop_jump,
559
560
        /* Jump to following two-byte address, and push a dummy failure
561
           point. This failure point will be thrown away if an attempt
562
           is made to use it for a failure.  A `+' construct makes this
563
           before the first repeat.  Also used as an intermediary kind
564
           of jump when compiling an alternative.  */
565
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
566
  dummy_failure_jump,
567
568
  /* Push a dummy failure point and continue.  Used at the end of
569
     alternatives.  */
570
  push_dummy_failure,
571
572
        /* Followed by two-byte relative address and two-byte number n.
573
           After matching N times, jump to the address upon failure.  */
574
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
575
  succeed_n,
576
577
        /* Followed by two-byte relative address, and two-byte number n.
578
           Jump to the address N times, then fail.  */
579
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
580
  jump_n,
581
582
        /* Set the following two-byte relative address to the
583
           subsequent two-byte number.  The address *includes* the two
584
           bytes of number.  */
585
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
586
  set_number_at,
587
588
  wordchar, /* Matches any word-constituent character.  */
589
  notwordchar,  /* Matches any char that is not a word-constituent.  */
590
591
  wordbeg,  /* Succeeds if at word beginning.  */
592
  wordend,  /* Succeeds if at word end.  */
593
594
  wordbound,  /* Succeeds if at a word boundary.  */
595
  notwordbound  /* Succeeds if not at a word boundary.  */
596
597
# ifdef emacs
598
  ,before_dot,  /* Succeeds if before point.  */
599
  at_dot, /* Succeeds if at point.  */
600
  after_dot,  /* Succeeds if after point.  */
601
602
  /* Matches any character whose syntax is specified.  Followed by
603
           a byte which contains a syntax code, e.g., Sword.  */
604
  syntaxspec,
605
606
  /* Matches any character whose syntax is not that specified.  */
607
  notsyntaxspec
608
# endif /* emacs */
609
} re_opcode_t;
610
#endif /* not INSIDE_RECURSION */
611

612
613
#ifdef BYTE
614
# define CHAR_T char
615
473k
# define UCHAR_T unsigned char
616
685k
# define COMPILED_BUFFER_VAR bufp->buffer
617
1.06M
# define OFFSET_ADDRESS_SIZE 2
618
691k
# define PREFIX(name) byte_##name
619
# define ARG_PREFIX(name) name
620
# define PUT_CHAR(c) putchar (c)
621
#else
622
# ifdef WCHAR
623
#  define CHAR_T wchar_t
624
#  define UCHAR_T wchar_t
625
#  define COMPILED_BUFFER_VAR wc_buffer
626
#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
627
#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
628
#  define PREFIX(name) wcs_##name
629
#  define ARG_PREFIX(name) c##name
630
/* Should we use wide stream??  */
631
#  define PUT_CHAR(c) printf ("%C", c);
632
#  define TRUE 1
633
#  define FALSE 0
634
# else
635
#  ifdef MBS_SUPPORT
636
#   define WCHAR
637
#   define INSIDE_RECURSION
638
#   include "regex.c"
639
#   undef INSIDE_RECURSION
640
#  endif
641
#  define BYTE
642
#  define INSIDE_RECURSION
643
#  include "regex.c"
644
#  undef INSIDE_RECURSION
645
# endif
646
#endif
647
648
#ifdef INSIDE_RECURSION
649
/* Common operations on the compiled pattern.  */
650
651
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
652
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
653
654
# ifdef WCHAR
655
#  define STORE_NUMBER(destination, number)       \
656
  do {                  \
657
    *(destination) = (UCHAR_T)(number);       \
658
  } while (0)
659
# else /* BYTE */
660
#  define STORE_NUMBER(destination, number)       \
661
425k
  do {                 \
662
425k
    (destination)[0] = (number) & 0377;         \
663
425k
    (destination)[1] = (number) >> 8;         \
664
425k
  } while (0)
665
# endif /* WCHAR */
666
667
/* Same as STORE_NUMBER, except increment DESTINATION to
668
   the byte after where the number is stored.  Therefore, DESTINATION
669
   must be an lvalue.  */
670
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
671
672
# define STORE_NUMBER_AND_INCR(destination, number)     \
673
0
  do {                 \
674
0
    STORE_NUMBER (destination, number);         \
675
0
    (destination) += OFFSET_ADDRESS_SIZE;       \
676
0
  } while (0)
677
678
/* Put into DESTINATION a number stored in two contiguous bytes starting
679
   at SOURCE.  */
680
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
681
682
# ifdef WCHAR
683
#  define EXTRACT_NUMBER(destination, source)       \
684
  do {                  \
685
    (destination) = *(source);            \
686
  } while (0)
687
# else /* BYTE */
688
#  define EXTRACT_NUMBER(destination, source)       \
689
0
  do {                 \
690
0
    (destination) = *(source) & 0377;         \
691
0
    (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
692
0
  } while (0)
693
# endif
694
695
# ifdef DEBUG
696
static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
697
static void
698
PREFIX(extract_number) (int *dest, UCHAR_T *source)
699
{
700
#  ifdef WCHAR
701
  *dest = *source;
702
#  else /* BYTE */
703
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
704
  *dest = *source & 0377;
705
  *dest += temp << 8;
706
#  endif
707
}
708
709
#  ifndef EXTRACT_MACROS /* To debug the macros.  */
710
#   undef EXTRACT_NUMBER
711
#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
712
#  endif /* not EXTRACT_MACROS */
713
714
# endif /* DEBUG */
715
716
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
717
   SOURCE must be an lvalue.  */
718
719
# define EXTRACT_NUMBER_AND_INCR(destination, source)     \
720
0
  do {                 \
721
0
    EXTRACT_NUMBER (destination, source);       \
722
0
    (source) += OFFSET_ADDRESS_SIZE;           \
723
0
  } while (0)
724
725
# ifdef DEBUG
726
static void PREFIX(extract_number_and_incr) (int *destination,
727
                                             UCHAR_T **source);
728
static void
729
PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
730
{
731
  PREFIX(extract_number) (destination, *source);
732
  *source += OFFSET_ADDRESS_SIZE;
733
}
734
735
#  ifndef EXTRACT_MACROS
736
#   undef EXTRACT_NUMBER_AND_INCR
737
#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
738
  PREFIX(extract_number_and_incr) (&dest, &src)
739
#  endif /* not EXTRACT_MACROS */
740
741
# endif /* DEBUG */
742
743

744
745
/* If DEBUG is defined, Regex prints many voluminous messages about what
746
   it is doing (if the variable `debug' is nonzero).  If linked with the
747
   main program in `iregex.c', you can enter patterns and strings
748
   interactively.  And if linked with the main program in `main.c' and
749
   the other test files, you can run the already-written tests.  */
750
751
# ifdef DEBUG
752
753
#  ifndef DEFINED_ONCE
754
755
/* We use standard I/O for debugging.  */
756
#   include <stdio.h>
757
758
/* It is useful to test things that ``must'' be true when debugging.  */
759
#   include <assert.h>
760
761
static int debug;
762
763
#   define DEBUG_STATEMENT(e) e
764
#   define DEBUG_PRINT1(x) if (debug) printf (x)
765
#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
766
#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
767
#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
768
#  endif /* not DEFINED_ONCE */
769
770
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)       \
771
  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
772
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)    \
773
  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
774
775
776
/* Print the fastmap in human-readable form.  */
777
778
#  ifndef DEFINED_ONCE
779
void
780
print_fastmap (char *fastmap)
781
{
782
  unsigned was_a_range = 0;
783
  unsigned i = 0;
784
785
  while (i < (1 << BYTEWIDTH))
786
    {
787
      if (fastmap[i++])
788
  {
789
    was_a_range = 0;
790
          putchar (i - 1);
791
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
792
            {
793
              was_a_range = 1;
794
              i++;
795
            }
796
    if (was_a_range)
797
            {
798
              printf ("-");
799
              putchar (i - 1);
800
            }
801
        }
802
    }
803
  putchar ('\n');
804
}
805
#  endif /* not DEFINED_ONCE */
806
807
808
/* Print a compiled pattern string in human-readable form, starting at
809
   the START pointer into it and ending just before the pointer END.  */
810
811
void
812
PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
813
{
814
  int mcnt, mcnt2;
815
  UCHAR_T *p1;
816
  UCHAR_T *p = start;
817
  UCHAR_T *pend = end;
818
819
  if (start == NULL)
820
    {
821
      printf ("(null)\n");
822
      return;
823
    }
824
825
  /* Loop over pattern commands.  */
826
  while (p < pend)
827
    {
828
#  ifdef _LIBC
829
      printf ("%td:\t", p - start);
830
#  else
831
      printf ("%ld:\t", (long int) (p - start));
832
#  endif
833
834
      switch ((re_opcode_t) *p++)
835
  {
836
        case no_op:
837
          printf ("/no_op");
838
          break;
839
840
  case exactn:
841
    mcnt = *p++;
842
          printf ("/exactn/%d", mcnt);
843
          do
844
      {
845
              putchar ('/');
846
        PUT_CHAR (*p++);
847
            }
848
          while (--mcnt);
849
          break;
850
851
#  ifdef MBS_SUPPORT
852
  case exactn_bin:
853
    mcnt = *p++;
854
    printf ("/exactn_bin/%d", mcnt);
855
          do
856
      {
857
        printf("/%lx", (long int) *p++);
858
            }
859
          while (--mcnt);
860
          break;
861
#  endif /* MBS_SUPPORT */
862
863
  case start_memory:
864
          mcnt = *p++;
865
          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
866
          break;
867
868
  case stop_memory:
869
          mcnt = *p++;
870
    printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
871
          break;
872
873
  case duplicate:
874
    printf ("/duplicate/%ld", (long int) *p++);
875
    break;
876
877
  case anychar:
878
    printf ("/anychar");
879
    break;
880
881
  case charset:
882
        case charset_not:
883
          {
884
#  ifdef WCHAR
885
      int i, length;
886
      wchar_t *workp = p;
887
      printf ("/charset [%s",
888
              (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
889
      p += 5;
890
      length = *workp++; /* the length of char_classes */
891
      for (i=0 ; i<length ; i++)
892
        printf("[:%lx:]", (long int) *p++);
893
      length = *workp++; /* the length of collating_symbol */
894
      for (i=0 ; i<length ;)
895
        {
896
    printf("[.");
897
    while(*p != 0)
898
      PUT_CHAR((i++,*p++));
899
    i++,p++;
900
    printf(".]");
901
        }
902
      length = *workp++; /* the length of equivalence_class */
903
      for (i=0 ; i<length ;)
904
        {
905
    printf("[=");
906
    while(*p != 0)
907
      PUT_CHAR((i++,*p++));
908
    i++,p++;
909
    printf("=]");
910
        }
911
      length = *workp++; /* the length of char_range */
912
      for (i=0 ; i<length ; i++)
913
        {
914
    wchar_t range_start = *p++;
915
    wchar_t range_end = *p++;
916
    printf("%C-%C", range_start, range_end);
917
        }
918
      length = *workp++; /* the length of char */
919
      for (i=0 ; i<length ; i++)
920
        printf("%C", *p++);
921
      putchar (']');
922
#  else
923
            register int c, last = -100;
924
      register int in_range = 0;
925
926
      printf ("/charset [%s",
927
              (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
928
929
            assert (p + *p < pend);
930
931
            for (c = 0; c < 256; c++)
932
        if (c / 8 < *p
933
      && (p[1 + (c/8)] & (1 << (c % 8))))
934
    {
935
      /* Are we starting a range?  */
936
      if (last + 1 == c && ! in_range)
937
        {
938
          putchar ('-');
939
          in_range = 1;
940
        }
941
      /* Have we broken a range?  */
942
      else if (last + 1 != c && in_range)
943
              {
944
          putchar (last);
945
          in_range = 0;
946
        }
947
948
      if (! in_range)
949
        putchar (c);
950
951
      last = c;
952
              }
953
954
      if (in_range)
955
        putchar (last);
956
957
      putchar (']');
958
959
      p += 1 + *p;
960
#  endif /* WCHAR */
961
    }
962
    break;
963
964
  case begline:
965
    printf ("/begline");
966
          break;
967
968
  case endline:
969
          printf ("/endline");
970
          break;
971
972
  case on_failure_jump:
973
          PREFIX(extract_number_and_incr) (&mcnt, &p);
974
#  ifdef _LIBC
975
      printf ("/on_failure_jump to %td", p + mcnt - start);
976
#  else
977
      printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
978
#  endif
979
          break;
980
981
  case on_failure_keep_string_jump:
982
          PREFIX(extract_number_and_incr) (&mcnt, &p);
983
#  ifdef _LIBC
984
      printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
985
#  else
986
      printf ("/on_failure_keep_string_jump to %ld",
987
      (long int) (p + mcnt - start));
988
#  endif
989
          break;
990
991
  case dummy_failure_jump:
992
          PREFIX(extract_number_and_incr) (&mcnt, &p);
993
#  ifdef _LIBC
994
      printf ("/dummy_failure_jump to %td", p + mcnt - start);
995
#  else
996
      printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
997
#  endif
998
          break;
999
1000
  case push_dummy_failure:
1001
          printf ("/push_dummy_failure");
1002
          break;
1003
1004
        case maybe_pop_jump:
1005
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1006
#  ifdef _LIBC
1007
      printf ("/maybe_pop_jump to %td", p + mcnt - start);
1008
#  else
1009
      printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1010
#  endif
1011
    break;
1012
1013
        case pop_failure_jump:
1014
    PREFIX(extract_number_and_incr) (&mcnt, &p);
1015
#  ifdef _LIBC
1016
      printf ("/pop_failure_jump to %td", p + mcnt - start);
1017
#  else
1018
      printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1019
#  endif
1020
    break;
1021
1022
        case jump_past_alt:
1023
    PREFIX(extract_number_and_incr) (&mcnt, &p);
1024
#  ifdef _LIBC
1025
      printf ("/jump_past_alt to %td", p + mcnt - start);
1026
#  else
1027
      printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1028
#  endif
1029
    break;
1030
1031
        case jump:
1032
    PREFIX(extract_number_and_incr) (&mcnt, &p);
1033
#  ifdef _LIBC
1034
      printf ("/jump to %td", p + mcnt - start);
1035
#  else
1036
      printf ("/jump to %ld", (long int) (p + mcnt - start));
1037
#  endif
1038
    break;
1039
1040
        case succeed_n:
1041
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1042
    p1 = p + mcnt;
1043
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1044
#  ifdef _LIBC
1045
    printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1046
#  else
1047
    printf ("/succeed_n to %ld, %d times",
1048
      (long int) (p1 - start), mcnt2);
1049
#  endif
1050
          break;
1051
1052
        case jump_n:
1053
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1054
    p1 = p + mcnt;
1055
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1056
    printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1057
          break;
1058
1059
        case set_number_at:
1060
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1061
    p1 = p + mcnt;
1062
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1063
#  ifdef _LIBC
1064
    printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1065
#  else
1066
    printf ("/set_number_at location %ld to %d",
1067
      (long int) (p1 - start), mcnt2);
1068
#  endif
1069
          break;
1070
1071
        case wordbound:
1072
    printf ("/wordbound");
1073
    break;
1074
1075
  case notwordbound:
1076
    printf ("/notwordbound");
1077
          break;
1078
1079
  case wordbeg:
1080
    printf ("/wordbeg");
1081
    break;
1082
1083
  case wordend:
1084
    printf ("/wordend");
1085
    break;
1086
1087
#  ifdef emacs
1088
  case before_dot:
1089
    printf ("/before_dot");
1090
          break;
1091
1092
  case at_dot:
1093
    printf ("/at_dot");
1094
          break;
1095
1096
  case after_dot:
1097
    printf ("/after_dot");
1098
          break;
1099
1100
  case syntaxspec:
1101
          printf ("/syntaxspec");
1102
    mcnt = *p++;
1103
    printf ("/%d", mcnt);
1104
          break;
1105
1106
  case notsyntaxspec:
1107
          printf ("/notsyntaxspec");
1108
    mcnt = *p++;
1109
    printf ("/%d", mcnt);
1110
    break;
1111
#  endif /* emacs */
1112
1113
  case wordchar:
1114
    printf ("/wordchar");
1115
          break;
1116
1117
  case notwordchar:
1118
    printf ("/notwordchar");
1119
          break;
1120
1121
  case begbuf:
1122
    printf ("/begbuf");
1123
          break;
1124
1125
  case endbuf:
1126
    printf ("/endbuf");
1127
          break;
1128
1129
        default:
1130
          printf ("?%ld", (long int) *(p-1));
1131
  }
1132
1133
      putchar ('\n');
1134
    }
1135
1136
#  ifdef _LIBC
1137
  printf ("%td:\tend of pattern.\n", p - start);
1138
#  else
1139
  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1140
#  endif
1141
}
1142
1143
1144
void
1145
PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1146
{
1147
  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1148
1149
  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1150
          + bufp->used / sizeof(UCHAR_T));
1151
  printf ("%ld bytes used/%ld bytes allocated.\n",
1152
    bufp->used, bufp->allocated);
1153
1154
  if (bufp->fastmap_accurate && bufp->fastmap)
1155
    {
1156
      printf ("fastmap: ");
1157
      print_fastmap (bufp->fastmap);
1158
    }
1159
1160
#  ifdef _LIBC
1161
  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1162
#  else
1163
  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1164
#  endif
1165
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1166
  printf ("can_be_null: %d\t", bufp->can_be_null);
1167
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1168
  printf ("no_sub: %d\t", bufp->no_sub);
1169
  printf ("not_bol: %d\t", bufp->not_bol);
1170
  printf ("not_eol: %d\t", bufp->not_eol);
1171
  printf ("syntax: %lx\n", bufp->syntax);
1172
  /* Perhaps we should print the translate table?  */
1173
}
1174
1175
1176
void
1177
PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1178
                             int size1, const CHAR_T *string2, int size2)
1179
{
1180
  int this_char;
1181
1182
  if (where == NULL)
1183
    printf ("(null)");
1184
  else
1185
    {
1186
      int cnt;
1187
1188
      if (FIRST_STRING_P (where))
1189
        {
1190
          for (this_char = where - string1; this_char < size1; this_char++)
1191
      PUT_CHAR (string1[this_char]);
1192
1193
          where = string2;
1194
        }
1195
1196
      cnt = 0;
1197
      for (this_char = where - string2; this_char < size2; this_char++)
1198
  {
1199
    PUT_CHAR (string2[this_char]);
1200
    if (++cnt > 100)
1201
      {
1202
        fputs ("...", stdout);
1203
        break;
1204
      }
1205
  }
1206
    }
1207
}
1208
1209
#  ifndef DEFINED_ONCE
1210
void
1211
printchar (int c)
1212
{
1213
  putc (c, stderr);
1214
}
1215
#  endif
1216
1217
# else /* not DEBUG */
1218
1219
#  ifndef DEFINED_ONCE
1220
#   undef assert
1221
#   define assert(e)
1222
1223
#   define DEBUG_STATEMENT(e)
1224
#   define DEBUG_PRINT1(x)
1225
#   define DEBUG_PRINT2(x1, x2)
1226
#   define DEBUG_PRINT3(x1, x2, x3)
1227
#   define DEBUG_PRINT4(x1, x2, x3, x4)
1228
#  endif /* not DEFINED_ONCE */
1229
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1230
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1231
1232
# endif /* not DEBUG */
1233
1234

1235
1236
# ifdef WCHAR
1237
/* This  convert a multibyte string to a wide character string.
1238
   And write their correspondances to offset_buffer(see below)
1239
   and write whether each wchar_t is binary data to is_binary.
1240
   This assume invalid multibyte sequences as binary data.
1241
   We assume offset_buffer and is_binary is already allocated
1242
   enough space.  */
1243
1244
static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1245
          size_t len, int *offset_buffer,
1246
          char *is_binary);
1247
static size_t
1248
convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1249
                    int *offset_buffer, char *is_binary)
1250
     /* It hold correspondances between src(char string) and
1251
  dest(wchar_t string) for optimization.
1252
  e.g. src  = "xxxyzz"
1253
             dest = {'X', 'Y', 'Z'}
1254
        (each "xxx", "y" and "zz" represent one multibyte character
1255
         corresponding to 'X', 'Y' and 'Z'.)
1256
    offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1257
              = {0, 3, 4, 6}
1258
     */
1259
{
1260
  wchar_t *pdest = dest;
1261
  const unsigned char *psrc = src;
1262
  size_t wc_count = 0;
1263
1264
  mbstate_t mbs;
1265
  int i, consumed;
1266
  size_t mb_remain = len;
1267
  size_t mb_count = 0;
1268
1269
  /* Initialize the conversion state.  */
1270
  memset (&mbs, 0, sizeof (mbstate_t));
1271
1272
  offset_buffer[0] = 0;
1273
  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1274
   psrc += consumed)
1275
    {
1276
#ifdef _LIBC
1277
      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1278
#else
1279
      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1280
#endif
1281
1282
      if (consumed <= 0)
1283
  /* failed to convert. maybe src contains binary data.
1284
     So we consume 1 byte manualy.  */
1285
  {
1286
    *pdest = *psrc;
1287
    consumed = 1;
1288
    is_binary[wc_count] = TRUE;
1289
  }
1290
      else
1291
  is_binary[wc_count] = FALSE;
1292
      /* In sjis encoding, we use yen sign as escape character in
1293
   place of reverse solidus. So we convert 0x5c(yen sign in
1294
   sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1295
   solidus in UCS2).  */
1296
      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1297
  *pdest = (wchar_t) *psrc;
1298
1299
      offset_buffer[wc_count + 1] = mb_count += consumed;
1300
    }
1301
1302
  /* Fill remain of the buffer with sentinel.  */
1303
  for (i = wc_count + 1 ; i <= len ; i++)
1304
    offset_buffer[i] = mb_count + 1;
1305
1306
  return wc_count;
1307
}
1308
1309
# endif /* WCHAR */
1310
1311
#else /* not INSIDE_RECURSION */
1312
1313
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1314
   also be assigned to arbitrarily: each pattern buffer stores its own
1315
   syntax, so it can be changed between regex compilations.  */
1316
/* This has no initializer because initialized variables in Emacs
1317
   become read-only after dumping.  */
1318
reg_syntax_t re_syntax_options;
1319
1320
1321
/* Specify the precise syntax of regexps for compilation.  This provides
1322
   for compatibility for various utilities which historically have
1323
   different, incompatible syntaxes.
1324
1325
   The argument SYNTAX is a bit mask comprised of the various bits
1326
   defined in regex.h.  We return the old syntax.  */
1327
1328
reg_syntax_t
1329
re_set_syntax (reg_syntax_t syntax)
1330
0
{
1331
0
  reg_syntax_t ret = re_syntax_options;
1332
1333
0
  re_syntax_options = syntax;
1334
# ifdef DEBUG
1335
  if (syntax & RE_DEBUG)
1336
    debug = 1;
1337
  else if (debug) /* was on but now is not */
1338
    debug = 0;
1339
# endif /* DEBUG */
1340
0
  return ret;
1341
0
}
1342
# ifdef _LIBC
1343
weak_alias (__re_set_syntax, re_set_syntax)
1344
# endif
1345

1346
/* This table gives an error message for each of the error codes listed
1347
   in regex.h.  Obviously the order here has to be same as there.
1348
   POSIX doesn't require that we do anything for REG_NOERROR,
1349
   but why not be nice?  */
1350
1351
static const char *re_error_msgid[] =
1352
  {
1353
    gettext_noop ("Success"), /* REG_NOERROR */
1354
    gettext_noop ("No match"),  /* REG_NOMATCH */
1355
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1356
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1357
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1358
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1359
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1360
    gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1361
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1362
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1363
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1364
    gettext_noop ("Invalid range end"), /* REG_ERANGE */
1365
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1366
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1367
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1368
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1369
    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1370
  };
1371

1372
#endif /* INSIDE_RECURSION */
1373
1374
#ifndef DEFINED_ONCE
1375
/* Avoiding alloca during matching, to placate r_alloc.  */
1376
1377
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1378
   searching and matching functions should not call alloca.  On some
1379
   systems, alloca is implemented in terms of malloc, and if we're
1380
   using the relocating allocator routines, then malloc could cause a
1381
   relocation, which might (if the strings being searched are in the
1382
   ralloc heap) shift the data out from underneath the regexp
1383
   routines.
1384
1385
   Here's another reason to avoid allocation: Emacs
1386
   processes input from X in a signal handler; processing X input may
1387
   call malloc; if input arrives while a matching routine is calling
1388
   malloc, then we're scrod.  But Emacs can't just block input while
1389
   calling matching routines; then we don't notice interrupts when
1390
   they come in.  So, Emacs blocks input around all regexp calls
1391
   except the matching calls, which it leaves unprotected, in the
1392
   faith that they will not malloc.  */
1393
1394
/* Normally, this is fine.  */
1395
# define MATCH_MAY_ALLOCATE
1396
1397
/* When using GNU C, we are not REALLY using the C alloca, no matter
1398
   what config.h may say.  So don't take precautions for it.  */
1399
# ifdef __GNUC__
1400
#  undef C_ALLOCA
1401
# endif
1402
1403
/* The match routines may not allocate if (1) they would do it with malloc
1404
   and (2) it's not safe for them to use malloc.
1405
   Note that if REL_ALLOC is defined, matching would not use malloc for the
1406
   failure stack, but we would still use it for the register vectors;
1407
   so REL_ALLOC should not affect this.  */
1408
# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1409
#  undef MATCH_MAY_ALLOCATE
1410
# endif
1411
#endif /* not DEFINED_ONCE */
1412

1413
#ifdef INSIDE_RECURSION
1414
/* Failure stack declarations and macros; both re_compile_fastmap and
1415
   re_match_2 use a failure stack.  These have to be macros because of
1416
   REGEX_ALLOCATE_STACK.  */
1417
1418
1419
/* Number of failure points for which to initially allocate space
1420
   when matching.  If this number is exceeded, we allocate more
1421
   space, so it is not a hard limit.  */
1422
# ifndef INIT_FAILURE_ALLOC
1423
53.8k
#  define INIT_FAILURE_ALLOC 5
1424
# endif
1425
1426
/* Roughly the maximum number of failure points on the stack.  Would be
1427
   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1428
   This is a variable only so users of regex can assign to it; we never
1429
   change it ourselves.  */
1430
1431
# ifdef INT_IS_16BIT
1432
1433
#  ifndef DEFINED_ONCE
1434
#   if defined MATCH_MAY_ALLOCATE
1435
/* 4400 was enough to cause a crash on Alpha OSF/1,
1436
   whose default stack limit is 2mb.  */
1437
long int re_max_failures = 4000;
1438
#   else
1439
long int re_max_failures = 2000;
1440
#   endif
1441
#  endif
1442
1443
union PREFIX(fail_stack_elt)
1444
{
1445
  UCHAR_T *pointer;
1446
  long int integer;
1447
};
1448
1449
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1450
1451
typedef struct
1452
{
1453
  PREFIX(fail_stack_elt_t) *stack;
1454
  unsigned long int size;
1455
  unsigned long int avail;    /* Offset of next open position.  */
1456
} PREFIX(fail_stack_type);
1457
1458
# else /* not INT_IS_16BIT */
1459
1460
#  ifndef DEFINED_ONCE
1461
#   if defined MATCH_MAY_ALLOCATE
1462
/* 4400 was enough to cause a crash on Alpha OSF/1,
1463
   whose default stack limit is 2mb.  */
1464
int re_max_failures = 4000;
1465
#   else
1466
int re_max_failures = 2000;
1467
#   endif
1468
#  endif
1469
1470
union PREFIX(fail_stack_elt)
1471
{
1472
  UCHAR_T *pointer;
1473
  int integer;
1474
};
1475
1476
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1477
1478
typedef struct
1479
{
1480
  PREFIX(fail_stack_elt_t) *stack;
1481
  unsigned size;
1482
  unsigned avail;     /* Offset of next open position.  */
1483
} PREFIX(fail_stack_type);
1484
1485
# endif /* INT_IS_16BIT */
1486
1487
# ifndef DEFINED_ONCE
1488
53.8k
#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1489
#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1490
0
#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1491
# endif
1492
1493
1494
/* Define macros to initialize and free the failure stack.
1495
   Do `return -2' if the alloc fails.  */
1496
1497
# ifdef MATCH_MAY_ALLOCATE
1498
#  define INIT_FAIL_STACK()           \
1499
53.8k
  do {                 \
1500
53.8k
    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)   \
1501
53.8k
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1502
53.8k
                  \
1503
53.8k
    if (fail_stack.stack == NULL)       \
1504
53.8k
      return -2;             \
1505
53.8k
                  \
1506
53.8k
    fail_stack.size = INIT_FAILURE_ALLOC;     \
1507
53.8k
    fail_stack.avail = 0;         \
1508
53.8k
  } while (0)
1509
1510
#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1511
# else
1512
#  define INIT_FAIL_STACK()           \
1513
  do {                  \
1514
    fail_stack.avail = 0;         \
1515
  } while (0)
1516
1517
#  define RESET_FAIL_STACK()
1518
# endif
1519
1520
1521
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1522
1523
   Return 1 if succeeds, and 0 if either ran out of memory
1524
   allocating space for it or it was already too large.
1525
1526
   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1527
1528
# define DOUBLE_FAIL_STACK(fail_stack)          \
1529
0
  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1530
0
   ? 0                  \
1531
0
   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)      \
1532
0
        REGEX_REALLOCATE_STACK ((fail_stack).stack,       \
1533
0
          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),  \
1534
0
          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1535
0
                  \
1536
0
      (fail_stack).stack == NULL          \
1537
0
      ? 0                \
1538
0
      : ((fail_stack).size <<= 1,           \
1539
0
         1)))
1540
1541
1542
/* Push pointer POINTER on FAIL_STACK.
1543
   Return 1 if was able to do so and 0 if ran out of memory allocating
1544
   space to do so.  */
1545
# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)       \
1546
0
  ((FAIL_STACK_FULL ()             \
1547
0
    && !DOUBLE_FAIL_STACK (FAIL_STACK))          \
1548
0
   ? 0                  \
1549
0
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,  \
1550
0
      1))
1551
1552
/* Push a pointer value onto the failure stack.
1553
   Assumes the variable `fail_stack'.  Probably should only
1554
   be called from within `PUSH_FAILURE_POINT'.  */
1555
# define PUSH_FAILURE_POINTER(item)         \
1556
0
  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1557
1558
/* This pushes an integer-valued item onto the failure stack.
1559
   Assumes the variable `fail_stack'.  Probably should only
1560
   be called from within `PUSH_FAILURE_POINT'.  */
1561
# define PUSH_FAILURE_INT(item)         \
1562
0
  fail_stack.stack[fail_stack.avail++].integer = (item)
1563
1564
/* Push a fail_stack_elt_t value onto the failure stack.
1565
   Assumes the variable `fail_stack'.  Probably should only
1566
   be called from within `PUSH_FAILURE_POINT'.  */
1567
# define PUSH_FAILURE_ELT(item)         \
1568
0
  fail_stack.stack[fail_stack.avail++] =  (item)
1569
1570
/* These three POP... operations complement the three PUSH... operations.
1571
   All assume that `fail_stack' is nonempty.  */
1572
0
# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1573
0
# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1574
0
# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1575
1576
/* Used to omit pushing failure point id's when we're not debugging.  */
1577
# ifdef DEBUG
1578
#  define DEBUG_PUSH PUSH_FAILURE_INT
1579
#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1580
# else
1581
#  define DEBUG_PUSH(item)
1582
#  define DEBUG_POP(item_addr)
1583
# endif
1584
1585
1586
/* Push the information about the state we will need
1587
   if we ever fail back to it.
1588
1589
   Requires variables fail_stack, regstart, regend, reg_info, and
1590
   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1591
   be declared.
1592
1593
   Does `return FAILURE_CODE' if runs out of memory.  */
1594
1595
# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)  \
1596
0
  do {                 \
1597
0
    char *destination;              \
1598
0
    /* Must be int, so when we don't save any registers, the arithmetic \
1599
0
       of 0 + -1 isn't done as unsigned.  */        \
1600
0
    /* Can't be int, since there is not a shred of a guarantee that int \
1601
0
       is wide enough to hold a value of something to which pointer can \
1602
0
       be assigned */             \
1603
0
    active_reg_t this_reg;            \
1604
0
                      \
1605
0
    DEBUG_STATEMENT (failure_id++);         \
1606
0
    DEBUG_STATEMENT (nfailure_points_pushed++);       \
1607
0
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);   \
1608
0
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1609
0
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1610
0
                  \
1611
0
    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);    \
1612
0
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS); \
1613
0
                  \
1614
0
    /* Ensure we have enough space allocated for what we will push.  */ \
1615
0
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)     \
1616
0
      {                 \
1617
0
        if (!DOUBLE_FAIL_STACK (fail_stack))        \
1618
0
          return failure_code;           \
1619
0
                  \
1620
0
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",    \
1621
0
           (fail_stack).size);       \
1622
0
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1623
0
      }                  \
1624
0
                  \
1625
0
    /* Push the info, starting with the registers.  */      \
1626
0
    DEBUG_PRINT1 ("\n");           \
1627
0
                  \
1628
0
    if (1)               \
1629
0
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1630
0
     this_reg++)             \
1631
0
  {               \
1632
0
    DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);    \
1633
0
    DEBUG_STATEMENT (num_regs_pushed++);        \
1634
0
                  \
1635
0
    DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);   \
1636
0
    PUSH_FAILURE_POINTER (regstart[this_reg]);      \
1637
0
                  \
1638
0
    DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);   \
1639
0
    PUSH_FAILURE_POINTER (regend[this_reg]);      \
1640
0
                  \
1641
0
    DEBUG_PRINT2 ("    info: %p\n      ",       \
1642
0
      reg_info[this_reg].word.pointer);   \
1643
0
    DEBUG_PRINT2 (" match_null=%d",       \
1644
0
      REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
1645
0
    DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
1646
0
    DEBUG_PRINT2 (" matched_something=%d",      \
1647
0
      MATCHED_SOMETHING (reg_info[this_reg]));  \
1648
0
    DEBUG_PRINT2 (" ever_matched=%d",       \
1649
0
      EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1650
0
    DEBUG_PRINT1 ("\n");            \
1651
0
    PUSH_FAILURE_ELT (reg_info[this_reg].word);     \
1652
0
  }               \
1653
0
                  \
1654
0
    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1655
0
    PUSH_FAILURE_INT (lowest_active_reg);       \
1656
0
                  \
1657
0
    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1658
0
    PUSH_FAILURE_INT (highest_active_reg);        \
1659
0
                  \
1660
0
    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);    \
1661
0
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);   \
1662
0
    PUSH_FAILURE_POINTER (pattern_place);       \
1663
0
                  \
1664
0
    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);    \
1665
0
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1666
0
         size2);        \
1667
0
    DEBUG_PRINT1 ("'\n");           \
1668
0
    PUSH_FAILURE_POINTER (string_place);        \
1669
0
                  \
1670
0
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);    \
1671
0
    DEBUG_PUSH (failure_id);            \
1672
0
  } while (0)
1673
1674
# ifndef DEFINED_ONCE
1675
/* This is the number of items that are pushed and popped on the stack
1676
   for each register.  */
1677
0
#  define NUM_REG_ITEMS  3
1678
1679
/* Individual items aside from the registers.  */
1680
#  ifdef DEBUG
1681
#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1682
#  else
1683
0
#   define NUM_NONREG_ITEMS 4
1684
#  endif
1685
1686
/* We push at most this many items on the stack.  */
1687
/* We used to use (num_regs - 1), which is the number of registers
1688
   this regexp will save; but that was changed to 5
1689
   to avoid stack overflow for a regexp with lots of parens.  */
1690
0
#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1691
1692
/* We actually push this many items.  */
1693
#  define NUM_FAILURE_ITEMS       \
1694
0
  (((0              \
1695
0
     ? 0 : highest_active_reg - lowest_active_reg + 1) \
1696
0
    * NUM_REG_ITEMS)         \
1697
0
   + NUM_NONREG_ITEMS)
1698
1699
/* How many items can still be added to the stack without overflowing it.  */
1700
0
#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1701
# endif /* not DEFINED_ONCE */
1702
1703
1704
/* Pops what PUSH_FAIL_STACK pushes.
1705
1706
   We restore into the parameters, all of which should be lvalues:
1707
     STR -- the saved data position.
1708
     PAT -- the saved pattern position.
1709
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1710
     REGSTART, REGEND -- arrays of string positions.
1711
     REG_INFO -- array of information about each subexpression.
1712
1713
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1714
   `pend', `string1', `size1', `string2', and `size2'.  */
1715
0
# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1716
0
{                 \
1717
0
  DEBUG_STATEMENT (unsigned failure_id;)        \
1718
0
  active_reg_t this_reg;            \
1719
0
  const UCHAR_T *string_temp;           \
1720
0
                  \
1721
0
  assert (!FAIL_STACK_EMPTY ());          \
1722
0
                  \
1723
0
  /* Remove failure points and point to how many regs pushed.  */ \
1724
0
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");        \
1725
0
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);  \
1726
0
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size); \
1727
0
                  \
1728
0
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);      \
1729
0
                  \
1730
0
  DEBUG_POP (&failure_id);            \
1731
0
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);    \
1732
0
                  \
1733
0
  /* If the saved string location is NULL, it came from an    \
1734
0
     on_failure_keep_string_jump opcode, and we want to throw away the  \
1735
0
     saved NULL, thus retaining our current position in the string.  */ \
1736
0
  string_temp = POP_FAILURE_POINTER ();          \
1737
0
  if (string_temp != NULL)           \
1738
0
    str = (const CHAR_T *) string_temp;         \
1739
0
                  \
1740
0
  DEBUG_PRINT2 ("  Popping string %p: `", str);       \
1741
0
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);  \
1742
0
  DEBUG_PRINT1 ("'\n");             \
1743
0
                  \
1744
0
  pat = (UCHAR_T *) POP_FAILURE_POINTER ();        \
1745
0
  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);      \
1746
0
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);     \
1747
0
                  \
1748
0
  /* Restore register info.  */           \
1749
0
  high_reg = (active_reg_t) POP_FAILURE_INT ();        \
1750
0
  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);    \
1751
0
                  \
1752
0
  low_reg = (active_reg_t) POP_FAILURE_INT ();        \
1753
0
  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);   \
1754
0
                  \
1755
0
  if (1)               \
1756
0
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)   \
1757
0
      {                 \
1758
0
  DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);    \
1759
0
                  \
1760
0
  reg_info[this_reg].word = POP_FAILURE_ELT ();      \
1761
0
  DEBUG_PRINT2 ("      info: %p\n",       \
1762
0
          reg_info[this_reg].word.pointer);     \
1763
0
                  \
1764
0
  regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();  \
1765
0
  DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);   \
1766
0
                  \
1767
0
  regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();  \
1768
0
  DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);   \
1769
0
      }                 \
1770
0
  else                  \
1771
0
    {                 \
1772
0
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1773
0
  {               \
1774
0
    reg_info[this_reg].word.integer = 0;        \
1775
0
    regend[this_reg] = 0;           \
1776
0
    regstart[this_reg] = 0;         \
1777
0
  }                \
1778
0
      highest_active_reg = high_reg;          \
1779
0
    }                 \
1780
0
                  \
1781
0
  set_regs_matched_done = 0;            \
1782
0
  DEBUG_STATEMENT (nfailure_points_popped++);       \
1783
0
} /* POP_FAILURE_POINT */
1784

1785
/* Structure for per-register (a.k.a. per-group) information.
1786
   Other register information, such as the
1787
   starting and ending positions (which are addresses), and the list of
1788
   inner groups (which is a bits list) are maintained in separate
1789
   variables.
1790
1791
   We are making a (strictly speaking) nonportable assumption here: that
1792
   the compiler will pack our bit fields into something that fits into
1793
   the type of `word', i.e., is something that fits into one item on the
1794
   failure stack.  */
1795
1796
1797
/* Declarations and macros for re_match_2.  */
1798
1799
typedef union
1800
{
1801
  PREFIX(fail_stack_elt_t) word;
1802
  struct
1803
  {
1804
      /* This field is one if this group can match the empty string,
1805
         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1806
0
# define MATCH_NULL_UNSET_VALUE 3
1807
    unsigned match_null_string_p : 2;
1808
    unsigned is_active : 1;
1809
    unsigned matched_something : 1;
1810
    unsigned ever_matched_something : 1;
1811
  } bits;
1812
} PREFIX(register_info_type);
1813
1814
# ifndef DEFINED_ONCE
1815
0
#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1816
0
#  define IS_ACTIVE(R)  ((R).bits.is_active)
1817
0
#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1818
0
#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1819
1820
1821
/* Call this when have matched a real character; it sets `matched' flags
1822
   for the subexpressions which we are currently inside.  Also records
1823
   that those subexprs have matched.  */
1824
#  define SET_REGS_MATCHED()            \
1825
0
  do                  \
1826
0
    {                 \
1827
0
      if (!set_regs_matched_done)         \
1828
0
  {               \
1829
0
    active_reg_t r;           \
1830
0
    set_regs_matched_done = 1;          \
1831
0
    for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1832
0
      {               \
1833
0
        MATCHED_SOMETHING (reg_info[r])        \
1834
0
    = EVER_MATCHED_SOMETHING (reg_info[r])      \
1835
0
    = 1;              \
1836
0
      }               \
1837
0
  }               \
1838
0
    }                 \
1839
0
  while (0)
1840
# endif /* not DEFINED_ONCE */
1841
1842
/* Registers are set to a sentinel when they haven't yet matched.  */
1843
static CHAR_T PREFIX(reg_unset_dummy);
1844
0
# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1845
0
# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1846
1847
/* Subroutine declarations and macros for regex_compile.  */
1848
static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1849
static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1850
                               int arg1, int arg2);
1851
static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1852
                                int arg, UCHAR_T *end);
1853
static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1854
                                int arg1, int arg2, UCHAR_T *end);
1855
static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1856
                                         const CHAR_T *p,
1857
                                         reg_syntax_t syntax);
1858
static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1859
                                         const CHAR_T *pend,
1860
                                         reg_syntax_t syntax);
1861
# ifdef WCHAR
1862
static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1863
                                        const CHAR_T **p_ptr,
1864
                                        const CHAR_T *pend,
1865
                                        char *translate,
1866
                                        reg_syntax_t syntax,
1867
                                        UCHAR_T *b,
1868
                                        CHAR_T *char_set);
1869
static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1870
# else /* BYTE */
1871
static reg_errcode_t byte_compile_range (unsigned int range_start,
1872
                                         const char **p_ptr,
1873
                                         const char *pend,
1874
                                         char *translate,
1875
                                         reg_syntax_t syntax,
1876
                                         unsigned char *b);
1877
# endif /* WCHAR */
1878
1879
/* Fetch the next character in the uncompiled pattern---translating it
1880
   if necessary.  Also cast from a signed character in the constant
1881
   string passed to us by the user to an unsigned char that we can use
1882
   as an array index (in, e.g., `translate').  */
1883
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1884
   because it is impossible to allocate 4GB array for some encodings
1885
   which have 4 byte character_set like UCS4.  */
1886
# ifndef PATFETCH
1887
#  ifdef WCHAR
1888
#   define PATFETCH(c)              \
1889
  do {if (p == pend) return REG_EEND;         \
1890
    c = (UCHAR_T) *p++;             \
1891
    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];   \
1892
  } while (0)
1893
#  else /* BYTE */
1894
#   define PATFETCH(c)              \
1895
2.33M
  do {if (p == pend) return REG_EEND;         \
1896
2.33M
    c = (unsigned char) *p++;           \
1897
2.33M
    if (translate) c = (unsigned char) translate[c];     \
1898
2.33M
  } while (0)
1899
#  endif /* WCHAR */
1900
# endif
1901
1902
/* Fetch the next character in the uncompiled pattern, with no
1903
   translation.  */
1904
# define PATFETCH_RAW(c)            \
1905
41.1k
  do {if (p == pend) return REG_EEND;         \
1906
41.1k
    c = (UCHAR_T) *p++;                   \
1907
41.1k
  } while (0)
1908
1909
/* Go backwards one character in the pattern.  */
1910
247k
# define PATUNFETCH p--
1911
1912
1913
/* If `translate' is non-null, return translate[D], else just D.  We
1914
   cast the subscript to translate because some data is declared as
1915
   `char *', to avoid warnings when a string constant is passed.  But
1916
   when we use a character as a subscript we must make it unsigned.  */
1917
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1918
   because it is impossible to allocate 4GB array for some encodings
1919
   which have 4 byte character_set like UCS4.  */
1920
1921
# ifndef TRANSLATE
1922
#  ifdef WCHAR
1923
#   define TRANSLATE(d) \
1924
  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1925
   ? (char) translate[(unsigned char) (d)] : (d))
1926
# else /* BYTE */
1927
#   define TRANSLATE(d) \
1928
1.20M
  (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1929
#  endif /* WCHAR */
1930
# endif
1931
1932
1933
/* Macros for outputting the compiled pattern into `buffer'.  */
1934
1935
/* If the buffer isn't allocated when it comes in, use this.  */
1936
53.8k
# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1937
1938
/* Make sure we have at least N more bytes of space in buffer.  */
1939
# ifdef WCHAR
1940
#  define GET_BUFFER_SPACE(n)           \
1941
    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1942
            + (n)*sizeof(CHAR_T)) > bufp->allocated)      \
1943
      EXTEND_BUFFER ()
1944
# else /* BYTE */
1945
#  define GET_BUFFER_SPACE(n)           \
1946
2.27M
    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1947
2.12M
      EXTEND_BUFFER ()
1948
# endif /* WCHAR */
1949
1950
/* Make sure we have one more byte of buffer space and then add C to it.  */
1951
# define BUF_PUSH(c)              \
1952
1.16M
  do {                 \
1953
1.16M
    GET_BUFFER_SPACE (1);           \
1954
1.16M
    *b++ = (UCHAR_T) (c);            \
1955
1.16M
  } while (0)
1956
1957
1958
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1959
# define BUF_PUSH_2(c1, c2)           \
1960
177k
  do {                 \
1961
177k
    GET_BUFFER_SPACE (2);           \
1962
177k
    *b++ = (UCHAR_T) (c1);            \
1963
177k
    *b++ = (UCHAR_T) (c2);            \
1964
177k
  } while (0)
1965
1966
1967
/* As with BUF_PUSH_2, except for three bytes.  */
1968
# define BUF_PUSH_3(c1, c2, c3)           \
1969
0
  do {                 \
1970
0
    GET_BUFFER_SPACE (3);           \
1971
0
    *b++ = (UCHAR_T) (c1);            \
1972
0
    *b++ = (UCHAR_T) (c2);            \
1973
0
    *b++ = (UCHAR_T) (c3);            \
1974
0
  } while (0)
1975
1976
/* Store a jump with opcode OP at LOC to location TO.  We store a
1977
   relative address offset by the three bytes the jump itself occupies.  */
1978
# define STORE_JUMP(op, loc, to) \
1979
212k
 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1980
1981
/* Likewise, for a two-argument jump.  */
1982
# define STORE_JUMP2(op, loc, to, arg) \
1983
0
  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1984
1985
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1986
# define INSERT_JUMP(op, loc, to) \
1987
425k
  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1988
1989
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1990
# define INSERT_JUMP2(op, loc, to, arg) \
1991
0
  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1992
0
        arg, b)
1993
1994
/* This is not an arbitrary limit: the arguments which represent offsets
1995
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1996
   be too small, many things would have to change.  */
1997
/* Any other compiler which, like MSC, has allocation limit below 2^16
1998
   bytes will have to use approach similar to what was done below for
1999
   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
2000
   reallocating to 0 bytes.  Such thing is not going to work too well.
2001
   You have been warned!!  */
2002
# ifndef DEFINED_ONCE
2003
#  if defined _MSC_VER  && !defined WIN32
2004
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2005
   The REALLOC define eliminates a flurry of conversion warnings,
2006
   but is not required. */
2007
#   define MAX_BUF_SIZE  65500L
2008
#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2009
#  else
2010
301k
#   define MAX_BUF_SIZE (1L << 16)
2011
150k
#   define REALLOC(p,s) realloc ((p), (s))
2012
#  endif
2013
2014
/* Extend the buffer by twice its current size via realloc and
2015
   reset the pointers that pointed into the old block to point to the
2016
   correct places in the new one.  If extending the buffer results in it
2017
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2018
#  if __BOUNDED_POINTERS__
2019
#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2020
#   define MOVE_BUFFER_POINTER(P) \
2021
  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2022
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND  \
2023
  else            \
2024
    {           \
2025
      SET_HIGH_BOUND (b);     \
2026
      SET_HIGH_BOUND (begalt);      \
2027
      if (fixup_alt_jump)     \
2028
  SET_HIGH_BOUND (fixup_alt_jump);  \
2029
      if (laststart)        \
2030
  SET_HIGH_BOUND (laststart);   \
2031
      if (pending_exact)      \
2032
  SET_HIGH_BOUND (pending_exact);   \
2033
    }
2034
#  else
2035
165k
#   define MOVE_BUFFER_POINTER(P) (P) += incr
2036
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2037
#  endif
2038
# endif /* not DEFINED_ONCE */
2039
2040
# ifdef WCHAR
2041
#  define EXTEND_BUFFER()           \
2042
  do {                  \
2043
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;        \
2044
    int wchar_count;              \
2045
    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)   \
2046
      return REG_ESIZE;             \
2047
    bufp->allocated <<= 1;            \
2048
    if (bufp->allocated > MAX_BUF_SIZE)         \
2049
      bufp->allocated = MAX_BUF_SIZE;         \
2050
    /* How many characters the new buffer can have?  */     \
2051
    wchar_count = bufp->allocated / sizeof(UCHAR_T);      \
2052
    if (wchar_count == 0) wchar_count = 1;        \
2053
    /* Truncate the buffer to CHAR_T align.  */       \
2054
    bufp->allocated = wchar_count * sizeof(UCHAR_T);      \
2055
    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);   \
2056
    bufp->buffer = (char*)COMPILED_BUFFER_VAR;        \
2057
    if (COMPILED_BUFFER_VAR == NULL)          \
2058
      return REG_ESPACE;            \
2059
    /* If the buffer moved, move all the pointers into it.  */    \
2060
    if (old_buffer != COMPILED_BUFFER_VAR)        \
2061
      {                 \
2062
  PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;   \
2063
  MOVE_BUFFER_POINTER (b);          \
2064
  MOVE_BUFFER_POINTER (begalt);         \
2065
  if (fixup_alt_jump)           \
2066
    MOVE_BUFFER_POINTER (fixup_alt_jump);       \
2067
  if (laststart)              \
2068
    MOVE_BUFFER_POINTER (laststart);        \
2069
  if (pending_exact)            \
2070
    MOVE_BUFFER_POINTER (pending_exact);        \
2071
      }                 \
2072
    ELSE_EXTEND_BUFFER_HIGH_BOUND         \
2073
  } while (0)
2074
# else /* BYTE */
2075
#  define EXTEND_BUFFER()           \
2076
715k
  do {                 \
2077
150k
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;       \
2078
150k
    if (bufp->allocated == MAX_BUF_SIZE)       \
2079
150k
      return REG_ESIZE;             \
2080
150k
    bufp->allocated <<= 1;            \
2081
150k
    if (bufp->allocated > MAX_BUF_SIZE)         \
2082
150k
      bufp->allocated = MAX_BUF_SIZE;         \
2083
150k
    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,    \
2084
150k
            bufp->allocated); \
2085
150k
    if (COMPILED_BUFFER_VAR == NULL)         \
2086
150k
      return REG_ESPACE;           \
2087
150k
    /* If the buffer moved, move all the pointers into it.  */    \
2088
150k
    if (old_buffer != COMPILED_BUFFER_VAR)       \
2089
150k
      {                 \
2090
72.4k
  PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;    \
2091
72.4k
  MOVE_BUFFER_POINTER (b);         \
2092
72.4k
  MOVE_BUFFER_POINTER (begalt);          \
2093
72.4k
  if (fixup_alt_jump)           \
2094
72.4k
    MOVE_BUFFER_POINTER (fixup_alt_jump);        \
2095
72.4k
  if (laststart)             \
2096
72.4k
    MOVE_BUFFER_POINTER (laststart);       \
2097
72.4k
  if (pending_exact)           \
2098
72.4k
    MOVE_BUFFER_POINTER (pending_exact);       \
2099
72.4k
      }                  \
2100
150k
    ELSE_EXTEND_BUFFER_HIGH_BOUND         \
2101
150k
  } while (0)
2102
# endif /* WCHAR */
2103
2104
# ifndef DEFINED_ONCE
2105
/* Since we have one byte reserved for the register number argument to
2106
   {start,stop}_memory, the maximum number of groups we can report
2107
   things about is what fits in that byte.  */
2108
0
#  define MAX_REGNUM 255
2109
2110
/* But patterns can have more than `MAX_REGNUM' registers.  We just
2111
   ignore the excess.  */
2112
typedef unsigned regnum_t;
2113
2114
2115
/* Macros for the compile stack.  */
2116
2117
/* Since offsets can go either forwards or backwards, this type needs to
2118
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2119
/* int may be not enough when sizeof(int) == 2.  */
2120
typedef long pattern_offset_t;
2121
2122
typedef struct
2123
{
2124
  pattern_offset_t begalt_offset;
2125
  pattern_offset_t fixup_alt_jump;
2126
  pattern_offset_t inner_group_offset;
2127
  pattern_offset_t laststart_offset;
2128
  regnum_t regnum;
2129
} compile_stack_elt_t;
2130
2131
2132
typedef struct
2133
{
2134
  compile_stack_elt_t *stack;
2135
  unsigned size;
2136
  unsigned avail;     /* Offset of next open position.  */
2137
} compile_stack_type;
2138
2139
2140
53.8k
#  define INIT_COMPILE_STACK_SIZE 32
2141
2142
53.8k
#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2143
0
#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2144
2145
/* The next available element.  */
2146
0
#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2147
2148
# endif /* not DEFINED_ONCE */
2149
2150
/* Set the bit for character C in a list.  */
2151
# ifndef DEFINED_ONCE
2152
#  define SET_LIST_BIT(c)                               \
2153
704k
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2154
704k
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2155
# endif /* DEFINED_ONCE */
2156
2157
/* Get the next unsigned number in the uncompiled pattern.  */
2158
# define GET_UNSIGNED_NUMBER(num) \
2159
0
  {                 \
2160
0
    while (p != pend)             \
2161
0
      {                 \
2162
0
  PATFETCH (c);             \
2163
0
  if (c < '0' || c > '9')           \
2164
0
    break;             \
2165
0
  if (num <= RE_DUP_MAX)           \
2166
0
    {               \
2167
0
      if (num < 0)           \
2168
0
        num = 0;             \
2169
0
      num = num * 10 + c - '0';         \
2170
0
    }               \
2171
0
      }                 \
2172
0
  }
2173
2174
# ifndef DEFINED_ONCE
2175
#  if defined _LIBC || WIDE_CHAR_SUPPORT
2176
/* The GNU C library provides support for user-defined character classes
2177
   and the functions from ISO C amendement 1.  */
2178
#   ifdef CHARCLASS_NAME_MAX
2179
#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2180
#   else
2181
/* This shouldn't happen but some implementation might still have this
2182
   problem.  Use a reasonable default value.  */
2183
#    define CHAR_CLASS_MAX_LENGTH 256
2184
#   endif
2185
2186
#   ifdef _LIBC
2187
#    define IS_CHAR_CLASS(string) __wctype (string)
2188
#   else
2189
#    define IS_CHAR_CLASS(string) wctype (string)
2190
#   endif
2191
#  else
2192
0
#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2193
2194
#   define IS_CHAR_CLASS(string)          \
2195
0
   (STREQ (string, "alpha") || STREQ (string, "upper")      \
2196
0
    || STREQ (string, "lower") || STREQ (string, "digit")    \
2197
0
    || STREQ (string, "alnum") || STREQ (string, "xdigit")   \
2198
0
    || STREQ (string, "space") || STREQ (string, "print")    \
2199
0
    || STREQ (string, "punct") || STREQ (string, "graph")    \
2200
0
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2201
#  endif
2202
# endif /* DEFINED_ONCE */
2203

2204
# ifndef MATCH_MAY_ALLOCATE
2205
2206
/* If we cannot allocate large objects within re_match_2_internal,
2207
   we make the fail stack and register vectors global.
2208
   The fail stack, we grow to the maximum size when a regexp
2209
   is compiled.
2210
   The register vectors, we adjust in size each time we
2211
   compile a regexp, according to the number of registers it needs.  */
2212
2213
static PREFIX(fail_stack_type) fail_stack;
2214
2215
/* Size with which the following vectors are currently allocated.
2216
   That is so we can make them bigger as needed,
2217
   but never make them smaller.  */
2218
#  ifdef DEFINED_ONCE
2219
static int regs_allocated_size;
2220
2221
static const char **     regstart, **     regend;
2222
static const char ** old_regstart, ** old_regend;
2223
static const char **best_regstart, **best_regend;
2224
static const char **reg_dummy;
2225
#  endif /* DEFINED_ONCE */
2226
2227
static PREFIX(register_info_type) *PREFIX(reg_info);
2228
static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2229
2230
/* Make the register vectors big enough for NUM_REGS registers,
2231
   but don't make them smaller.  */
2232
2233
static void
2234
PREFIX(regex_grow_registers) (int num_regs)
2235
{
2236
  if (num_regs > regs_allocated_size)
2237
    {
2238
      RETALLOC_IF (regstart,   num_regs, const char *);
2239
      RETALLOC_IF (regend,   num_regs, const char *);
2240
      RETALLOC_IF (old_regstart, num_regs, const char *);
2241
      RETALLOC_IF (old_regend,   num_regs, const char *);
2242
      RETALLOC_IF (best_regstart, num_regs, const char *);
2243
      RETALLOC_IF (best_regend,  num_regs, const char *);
2244
      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2245
      RETALLOC_IF (reg_dummy,  num_regs, const char *);
2246
      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2247
2248
      regs_allocated_size = num_regs;
2249
    }
2250
}
2251
2252
# endif /* not MATCH_MAY_ALLOCATE */
2253

2254
# ifndef DEFINED_ONCE
2255
static boolean group_in_compile_stack (compile_stack_type compile_stack,
2256
                                       regnum_t regnum);
2257
# endif /* not DEFINED_ONCE */
2258
2259
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2260
   Returns one of error codes defined in `regex.h', or zero for success.
2261
2262
   Assumes the `allocated' (and perhaps `buffer') and `translate'
2263
   fields are set in BUFP on entry.
2264
2265
   If it succeeds, results are put in BUFP (if it returns an error, the
2266
   contents of BUFP are undefined):
2267
     `buffer' is the compiled pattern;
2268
     `syntax' is set to SYNTAX;
2269
     `used' is set to the length of the compiled pattern;
2270
     `fastmap_accurate' is zero;
2271
     `re_nsub' is the number of subexpressions in PATTERN;
2272
     `not_bol' and `not_eol' are zero;
2273
2274
   The `fastmap' and `newline_anchor' fields are neither
2275
   examined nor set.  */
2276
2277
/* Return, freeing storage we allocated.  */
2278
# ifdef WCHAR
2279
#  define FREE_STACK_RETURN(value)    \
2280
  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2281
# else
2282
#  define FREE_STACK_RETURN(value)    \
2283
0
  return (free (compile_stack.stack), value)
2284
# endif /* WCHAR */
2285
2286
static reg_errcode_t
2287
PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2288
                       size_t ARG_PREFIX(size), reg_syntax_t syntax,
2289
                       struct re_pattern_buffer *bufp)
2290
53.8k
{
2291
  /* We fetch characters from PATTERN here.  Even though PATTERN is
2292
     `char *' (i.e., signed), we declare these variables as unsigned, so
2293
     they can be reliably used as array indices.  */
2294
53.8k
  register UCHAR_T c, c1;
2295
2296
#ifdef WCHAR
2297
  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2298
  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2299
  size_t size;
2300
  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2301
  int *mbs_offset = NULL;
2302
  /* It hold whether each wchar_t is binary data or not.  */
2303
  char *is_binary = NULL;
2304
  /* A flag whether exactn is handling binary data or not.  */
2305
  char is_exactn_bin = FALSE;
2306
#endif /* WCHAR */
2307
2308
  /* A random temporary spot in PATTERN.  */
2309
53.8k
  const CHAR_T *p1;
2310
2311
  /* Points to the end of the buffer, where we should append.  */
2312
53.8k
  register UCHAR_T *b;
2313
2314
  /* Keeps track of unclosed groups.  */
2315
53.8k
  compile_stack_type compile_stack;
2316
2317
  /* Points to the current (ending) position in the pattern.  */
2318
#ifdef WCHAR
2319
  const CHAR_T *p;
2320
  const CHAR_T *pend;
2321
#else /* BYTE */
2322
53.8k
  const CHAR_T *p = pattern;
2323
53.8k
  const CHAR_T *pend = pattern + size;
2324
53.8k
#endif /* WCHAR */
2325
2326
  /* How to translate the characters in the pattern.  */
2327
53.8k
  RE_TRANSLATE_TYPE translate = bufp->translate;
2328
2329
  /* Address of the count-byte of the most recently inserted `exactn'
2330
     command.  This makes it possible to tell if a new exact-match
2331
     character can be added to that command or if the character requires
2332
     a new `exactn' command.  */
2333
53.8k
  UCHAR_T *pending_exact = 0;
2334
2335
  /* Address of start of the most recently finished expression.
2336
     This tells, e.g., postfix * where to find the start of its
2337
     operand.  Reset at the beginning of groups and alternatives.  */
2338
53.8k
  UCHAR_T *laststart = 0;
2339
2340
  /* Address of beginning of regexp, or inside of last group.  */
2341
53.8k
  UCHAR_T *begalt;
2342
2343
  /* Address of the place where a forward jump should go to the end of
2344
     the containing expression.  Each alternative of an `or' -- except the
2345
     last -- ends with a forward jump of this sort.  */
2346
53.8k
  UCHAR_T *fixup_alt_jump = 0;
2347
2348
  /* Counts open-groups as they are encountered.  Remembered for the
2349
     matching close-group on the compile stack, so the same register
2350
     number is put in the stop_memory as the start_memory.  */
2351
53.8k
  regnum_t regnum = 0;
2352
2353
#ifdef WCHAR
2354
  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2355
  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2356
  mbs_offset = TALLOC(csize + 1, int);
2357
  is_binary = TALLOC(csize + 1, char);
2358
  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2359
    {
2360
      free(pattern);
2361
      free(mbs_offset);
2362
      free(is_binary);
2363
      return REG_ESPACE;
2364
    }
2365
  pattern[csize] = L'\0'; /* sentinel */
2366
  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2367
  pend = p + size;
2368
  if (size < 0)
2369
    {
2370
      free(pattern);
2371
      free(mbs_offset);
2372
      free(is_binary);
2373
      return REG_BADPAT;
2374
    }
2375
#endif
2376
2377
#ifdef DEBUG
2378
  DEBUG_PRINT1 ("\nCompiling pattern: ");
2379
  if (debug)
2380
    {
2381
      unsigned debug_count;
2382
2383
      for (debug_count = 0; debug_count < size; debug_count++)
2384
        PUT_CHAR (pattern[debug_count]);
2385
      putchar ('\n');
2386
    }
2387
#endif /* DEBUG */
2388
2389
  /* Initialize the compile stack.  */
2390
53.8k
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2391
53.8k
  if (compile_stack.stack == NULL)
2392
0
    {
2393
#ifdef WCHAR
2394
      free(pattern);
2395
      free(mbs_offset);
2396
      free(is_binary);
2397
#endif
2398
0
      return REG_ESPACE;
2399
0
    }
2400
2401
53.8k
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2402
53.8k
  compile_stack.avail = 0;
2403
2404
  /* Initialize the pattern buffer.  */
2405
53.8k
  bufp->syntax = syntax;
2406
53.8k
  bufp->fastmap_accurate = 0;
2407
53.8k
  bufp->not_bol = bufp->not_eol = 0;
2408
2409
  /* Set `used' to zero, so that if we return an error, the pattern
2410
     printer (for debugging) will think there's no pattern.  We reset it
2411
     at the end.  */
2412
53.8k
  bufp->used = 0;
2413
2414
  /* Always count groups, whether or not bufp->no_sub is set.  */
2415
53.8k
  bufp->re_nsub = 0;
2416
2417
53.8k
#if !defined emacs && !defined SYNTAX_TABLE
2418
  /* Initialize the syntax table.  */
2419
53.8k
   init_syntax_once ();
2420
53.8k
#endif
2421
2422
53.8k
  if (bufp->allocated == 0)
2423
53.8k
    {
2424
53.8k
      if (bufp->buffer)
2425
0
  { /* If zero allocated, but buffer is non-null, try to realloc
2426
             enough space.  This loses if buffer's address is bogus, but
2427
             that is the user's responsibility.  */
2428
#ifdef WCHAR
2429
    /* Free bufp->buffer and allocate an array for wchar_t pattern
2430
       buffer.  */
2431
          free(bufp->buffer);
2432
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2433
          UCHAR_T);
2434
#else
2435
0
          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2436
0
#endif /* WCHAR */
2437
0
        }
2438
53.8k
      else
2439
53.8k
        { /* Caller did not allocate a buffer.  Do it for them.  */
2440
53.8k
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2441
53.8k
          UCHAR_T);
2442
53.8k
        }
2443
2444
53.8k
      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2445
#ifdef WCHAR
2446
      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2447
#endif /* WCHAR */
2448
53.8k
      bufp->allocated = INIT_BUF_SIZE;
2449
53.8k
    }
2450
#ifdef WCHAR
2451
  else
2452
    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2453
#endif
2454
2455
53.8k
  begalt = b = COMPILED_BUFFER_VAR;
2456
2457
  /* Loop through the uncompiled pattern until we're at the end.  */
2458
1.08M
  while (p != pend)
2459
1.03M
    {
2460
1.03M
      PATFETCH (c);
2461
2462
1.03M
      switch (c)
2463
1.03M
        {
2464
0
        case '^':
2465
0
          {
2466
0
            if (   /* If at start of pattern, it's an operator.  */
2467
0
                   p == pattern + 1
2468
                   /* If context independent, it's an operator.  */
2469
0
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2470
                   /* Otherwise, depends on what's come before.  */
2471
0
                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2472
0
              BUF_PUSH (begline);
2473
0
            else
2474
0
              goto normal_char;
2475
0
          }
2476
0
          break;
2477
2478
2479
53.8k
        case '$':
2480
53.8k
          {
2481
53.8k
            if (   /* If at end of pattern, it's an operator.  */
2482
53.8k
                   p == pend
2483
                   /* If context independent, it's an operator.  */
2484
53.8k
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2485
                   /* Otherwise, depends on what's next.  */
2486
53.8k
                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2487
53.8k
               BUF_PUSH (endline);
2488
0
             else
2489
0
               goto normal_char;
2490
53.8k
           }
2491
53.8k
           break;
2492
2493
2494
53.8k
  case '+':
2495
377
        case '?':
2496
377
          if ((syntax & RE_BK_PLUS_QM)
2497
377
              || (syntax & RE_LIMITED_OPS))
2498
377
            goto normal_char;
2499
    /* Fall through.  */
2500
0
        handle_plus:
2501
212k
        case '*':
2502
          /* If there is no previous pattern... */
2503
212k
          if (!laststart)
2504
0
            {
2505
0
              if (syntax & RE_CONTEXT_INVALID_OPS)
2506
0
                FREE_STACK_RETURN (REG_BADRPT);
2507
0
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2508
0
                goto normal_char;
2509
0
            }
2510
2511
212k
          {
2512
            /* Are we optimizing this jump?  */
2513
212k
            boolean keep_string_p = false;
2514
2515
            /* 1 means zero (many) matches is allowed.  */
2516
212k
            char zero_times_ok = 0, many_times_ok = 0;
2517
2518
            /* If there is a sequence of repetition chars, collapse it
2519
               down to just one (the right one).  We can't combine
2520
               interval operators with these because of, e.g., `a{2}*',
2521
               which should only match an even number of `a's.  */
2522
2523
212k
            for (;;)
2524
212k
              {
2525
212k
                zero_times_ok |= c != '+';
2526
212k
                many_times_ok |= c != '?';
2527
2528
212k
                if (p == pend)
2529
0
                  break;
2530
2531
212k
                PATFETCH (c);
2532
2533
212k
                if (c == '*'
2534
212k
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2535
0
                  ;
2536
2537
212k
                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2538
35.1k
                  {
2539
35.1k
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2540
2541
35.1k
                    PATFETCH (c1);
2542
35.1k
                    if (!(c1 == '+' || c1 == '?'))
2543
35.1k
                      {
2544
35.1k
                        PATUNFETCH;
2545
35.1k
                        PATUNFETCH;
2546
35.1k
                        break;
2547
35.1k
                      }
2548
2549
0
                    c = c1;
2550
0
                  }
2551
177k
                else
2552
177k
                  {
2553
177k
                    PATUNFETCH;
2554
177k
                    break;
2555
177k
                  }
2556
2557
                /* If we get here, we found another repeat character.  */
2558
212k
               }
2559
2560
            /* Star, etc. applied to an empty pattern is equivalent
2561
               to an empty pattern.  */
2562
212k
            if (!laststart)
2563
0
              break;
2564
2565
            /* Now we know whether or not zero matches is allowed
2566
               and also whether or not two or more matches is allowed.  */
2567
212k
            if (many_times_ok)
2568
212k
              { /* More than one repetition is allowed, so put in at the
2569
                   end a backward relative jump from `b' to before the next
2570
                   jump we're going to put in below (which jumps from
2571
                   laststart to after this jump).
2572
2573
                   But if we are at the `*' in the exact sequence `.*\n',
2574
                   insert an unconditional jump backwards to the .,
2575
                   instead of the beginning of the loop.  This way we only
2576
                   push a failure point once, instead of every time
2577
                   through the loop.  */
2578
212k
                assert (p - 1 > pattern);
2579
2580
                /* Allocate the space for the jump.  */
2581
212k
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2582
2583
                /* We know we are not at the first character of the pattern,
2584
                   because laststart was nonzero.  And we've already
2585
                   incremented `p', by the way, to be the character after
2586
                   the `*'.  Do we have to do something analogous here
2587
                   for null bytes, because of RE_DOT_NOT_NULL?  */
2588
212k
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2589
212k
        && zero_times_ok
2590
212k
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2591
212k
                    && !(syntax & RE_DOT_NEWLINE))
2592
0
                  { /* We have .*\n.  */
2593
0
                    STORE_JUMP (jump, b, laststart);
2594
0
                    keep_string_p = true;
2595
0
                  }
2596
212k
                else
2597
                  /* Anything else.  */
2598
212k
                  STORE_JUMP (maybe_pop_jump, b, laststart -
2599
212k
            (1 + OFFSET_ADDRESS_SIZE));
2600
2601
                /* We've added more stuff to the buffer.  */
2602
212k
                b += 1 + OFFSET_ADDRESS_SIZE;
2603
212k
              }
2604
2605
            /* On failure, jump from laststart to b + 3, which will be the
2606
               end of the buffer after this jump is inserted.  */
2607
      /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2608
         'b + 3'.  */
2609
212k
            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2610
212k
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2611
212k
                                       : on_failure_jump,
2612
212k
                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2613
212k
            pending_exact = 0;
2614
212k
            b += 1 + OFFSET_ADDRESS_SIZE;
2615
2616
212k
            if (!zero_times_ok)
2617
0
              {
2618
                /* At least one repetition is required, so insert a
2619
                   `dummy_failure_jump' before the initial
2620
                   `on_failure_jump' instruction of the loop. This
2621
                   effects a skip over that instruction the first time
2622
                   we hit that loop.  */
2623
0
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2624
0
                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2625
0
           2 + 2 * OFFSET_ADDRESS_SIZE);
2626
0
                b += 1 + OFFSET_ADDRESS_SIZE;
2627
0
              }
2628
212k
            }
2629
212k
    break;
2630
2631
2632
212k
  case '.':
2633
196k
          laststart = b;
2634
196k
          BUF_PUSH (anychar);
2635
196k
          break;
2636
2637
2638
352k
        case '[':
2639
352k
          {
2640
352k
            boolean had_char_class = false;
2641
#ifdef WCHAR
2642
      CHAR_T range_start = 0xffffffff;
2643
#else
2644
352k
      unsigned int range_start = 0xffffffff;
2645
352k
#endif
2646
352k
            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2647
2648
#ifdef WCHAR
2649
      /* We assume a charset(_not) structure as a wchar_t array.
2650
         charset[0] = (re_opcode_t) charset(_not)
2651
               charset[1] = l (= length of char_classes)
2652
               charset[2] = m (= length of collating_symbols)
2653
               charset[3] = n (= length of equivalence_classes)
2654
         charset[4] = o (= length of char_ranges)
2655
         charset[5] = p (= length of chars)
2656
2657
               charset[6] = char_class (wctype_t)
2658
               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2659
                         ...
2660
               charset[l+5]  = char_class (wctype_t)
2661
2662
               charset[l+6]  = collating_symbol (wchar_t)
2663
                            ...
2664
               charset[l+m+5]  = collating_symbol (wchar_t)
2665
          ifdef _LIBC we use the index if
2666
          _NL_COLLATE_SYMB_EXTRAMB instead of
2667
          wchar_t string.
2668
2669
               charset[l+m+6]  = equivalence_classes (wchar_t)
2670
                              ...
2671
               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2672
          ifdef _LIBC we use the index in
2673
          _NL_COLLATE_WEIGHT instead of
2674
          wchar_t string.
2675
2676
         charset[l+m+n+6] = range_start
2677
         charset[l+m+n+7] = range_end
2678
                         ...
2679
         charset[l+m+n+2o+4] = range_start
2680
         charset[l+m+n+2o+5] = range_end
2681
          ifdef _LIBC we use the value looked up
2682
          in _NL_COLLATE_COLLSEQ instead of
2683
          wchar_t character.
2684
2685
         charset[l+m+n+2o+6] = char
2686
                            ...
2687
         charset[l+m+n+2o+p+5] = char
2688
2689
       */
2690
2691
      /* We need at least 6 spaces: the opcode, the length of
2692
               char_classes, the length of collating_symbols, the length of
2693
               equivalence_classes, the length of char_ranges, the length of
2694
               chars.  */
2695
      GET_BUFFER_SPACE (6);
2696
2697
      /* Save b as laststart. And We use laststart as the pointer
2698
         to the first element of the charset here.
2699
         In other words, laststart[i] indicates charset[i].  */
2700
            laststart = b;
2701
2702
            /* We test `*p == '^' twice, instead of using an if
2703
               statement, so we only need one BUF_PUSH.  */
2704
            BUF_PUSH (*p == '^' ? charset_not : charset);
2705
            if (*p == '^')
2706
              p++;
2707
2708
            /* Push the length of char_classes, the length of
2709
               collating_symbols, the length of equivalence_classes, the
2710
               length of char_ranges and the length of chars.  */
2711
            BUF_PUSH_3 (0, 0, 0);
2712
            BUF_PUSH_2 (0, 0);
2713
2714
            /* Remember the first position in the bracket expression.  */
2715
            p1 = p;
2716
2717
            /* charset_not matches newline according to a syntax bit.  */
2718
            if ((re_opcode_t) b[-6] == charset_not
2719
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2720
        {
2721
    BUF_PUSH('\n');
2722
    laststart[5]++; /* Update the length of characters  */
2723
        }
2724
2725
            /* Read in characters and ranges, setting map bits.  */
2726
            for (;;)
2727
              {
2728
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2729
2730
                PATFETCH (c);
2731
2732
                /* \ might escape characters inside [...] and [^...].  */
2733
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2734
                  {
2735
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2736
2737
                    PATFETCH (c1);
2738
        BUF_PUSH(c1);
2739
        laststart[5]++; /* Update the length of chars  */
2740
        range_start = c1;
2741
                    continue;
2742
                  }
2743
2744
                /* Could be the end of the bracket expression.  If it's
2745
                   not (i.e., when the bracket expression is `[]' so
2746
                   far), the ']' character bit gets set way below.  */
2747
                if (c == ']' && p != p1 + 1)
2748
                  break;
2749
2750
                /* Look ahead to see if it's a range when the last thing
2751
                   was a character class.  */
2752
                if (had_char_class && c == '-' && *p != ']')
2753
                  FREE_STACK_RETURN (REG_ERANGE);
2754
2755
                /* Look ahead to see if it's a range when the last thing
2756
                   was a character: if this is a hyphen not at the
2757
                   beginning or the end of a list, then it's the range
2758
                   operator.  */
2759
                if (c == '-'
2760
                    && !(p - 2 >= pattern && p[-2] == '[')
2761
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2762
                    && *p != ']')
2763
                  {
2764
                    reg_errcode_t ret;
2765
        /* Allocate the space for range_start and range_end.  */
2766
        GET_BUFFER_SPACE (2);
2767
        /* Update the pointer to indicate end of buffer.  */
2768
                    b += 2;
2769
                    ret = wcs_compile_range (range_start, &p, pend, translate,
2770
                                         syntax, b, laststart);
2771
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2772
                    range_start = 0xffffffff;
2773
                  }
2774
                else if (p[0] == '-' && p[1] != ']')
2775
                  { /* This handles ranges made up of characters only.  */
2776
                    reg_errcode_t ret;
2777
2778
        /* Move past the `-'.  */
2779
                    PATFETCH (c1);
2780
        /* Allocate the space for range_start and range_end.  */
2781
        GET_BUFFER_SPACE (2);
2782
        /* Update the pointer to indicate end of buffer.  */
2783
                    b += 2;
2784
                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2785
                                         laststart);
2786
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2787
        range_start = 0xffffffff;
2788
                  }
2789
2790
                /* See if we're at the beginning of a possible character
2791
                   class.  */
2792
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2793
                  { /* Leave room for the null.  */
2794
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2795
2796
                    PATFETCH (c);
2797
                    c1 = 0;
2798
2799
                    /* If pattern is `[[:'.  */
2800
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2801
2802
                    for (;;)
2803
                      {
2804
                        PATFETCH (c);
2805
                        if ((c == ':' && *p == ']') || p == pend)
2806
                          break;
2807
      if (c1 < CHAR_CLASS_MAX_LENGTH)
2808
        str[c1++] = c;
2809
      else
2810
        /* This is in any case an invalid class name.  */
2811
        str[0] = '\0';
2812
                      }
2813
                    str[c1] = '\0';
2814
2815
                    /* If isn't a word bracketed by `[:' and `:]':
2816
                       undo the ending character, the letters, and leave
2817
                       the leading `:' and `[' (but store them as character).  */
2818
                    if (c == ':' && *p == ']')
2819
                      {
2820
      wctype_t wt;
2821
      uintptr_t alignedp;
2822
2823
      /* Query the character class as wctype_t.  */
2824
      wt = IS_CHAR_CLASS (str);
2825
      if (wt == 0)
2826
        FREE_STACK_RETURN (REG_ECTYPE);
2827
2828
                        /* Throw away the ] at the end of the character
2829
                           class.  */
2830
                        PATFETCH (c);
2831
2832
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2833
2834
      /* Allocate the space for character class.  */
2835
                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2836
      /* Update the pointer to indicate end of buffer.  */
2837
                        b += CHAR_CLASS_SIZE;
2838
      /* Move data which follow character classes
2839
          not to violate the data.  */
2840
                        insert_space(CHAR_CLASS_SIZE,
2841
             laststart + 6 + laststart[1],
2842
             b - 1);
2843
      alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2844
            + __alignof__(wctype_t) - 1)
2845
              & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2846
      /* Store the character class.  */
2847
                        *((wctype_t*)alignedp) = wt;
2848
                        /* Update length of char_classes */
2849
                        laststart[1] += CHAR_CLASS_SIZE;
2850
2851
                        had_char_class = true;
2852
                      }
2853
                    else
2854
                      {
2855
                        c1++;
2856
                        while (c1--)
2857
                          PATUNFETCH;
2858
                        BUF_PUSH ('[');
2859
                        BUF_PUSH (':');
2860
                        laststart[5] += 2; /* Update the length of characters  */
2861
      range_start = ':';
2862
                        had_char_class = false;
2863
                      }
2864
                  }
2865
                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2866
                || *p == '.'))
2867
      {
2868
        CHAR_T str[128];  /* Should be large enough.  */
2869
        CHAR_T delim = *p; /* '=' or '.'  */
2870
# ifdef _LIBC
2871
        uint32_t nrules =
2872
          _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2873
# endif
2874
        PATFETCH (c);
2875
        c1 = 0;
2876
2877
        /* If pattern is `[[=' or '[[.'.  */
2878
        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2879
2880
        for (;;)
2881
          {
2882
      PATFETCH (c);
2883
      if ((c == delim && *p == ']') || p == pend)
2884
        break;
2885
      if (c1 < sizeof (str) - 1)
2886
        str[c1++] = c;
2887
      else
2888
        /* This is in any case an invalid class name.  */
2889
        str[0] = '\0';
2890
                      }
2891
        str[c1] = '\0';
2892
2893
        if (c == delim && *p == ']' && str[0] != '\0')
2894
          {
2895
                        unsigned int i, offset;
2896
      /* If we have no collation data we use the default
2897
         collation in which each character is in a class
2898
         by itself.  It also means that ASCII is the
2899
         character set and therefore we cannot have character
2900
         with more than one byte in the multibyte
2901
         representation.  */
2902
2903
                        /* If not defined _LIBC, we push the name and
2904
         `\0' for the sake of matching performance.  */
2905
      int datasize = c1 + 1;
2906
2907
# ifdef _LIBC
2908
      int32_t idx = 0;
2909
      if (nrules == 0)
2910
# endif
2911
        {
2912
          if (c1 != 1)
2913
            FREE_STACK_RETURN (REG_ECOLLATE);
2914
        }
2915
# ifdef _LIBC
2916
      else
2917
        {
2918
          const int32_t *table;
2919
          const int32_t *weights;
2920
          const int32_t *extra;
2921
          const int32_t *indirect;
2922
          wint_t *cp;
2923
2924
          /* This #include defines a local function!  */
2925
#  include <locale/weightwc.h>
2926
2927
          if(delim == '=')
2928
            {
2929
        /* We push the index for equivalence class.  */
2930
        cp = (wint_t*)str;
2931
2932
        table = (const int32_t *)
2933
          _NL_CURRENT (LC_COLLATE,
2934
                 _NL_COLLATE_TABLEWC);
2935
        weights = (const int32_t *)
2936
          _NL_CURRENT (LC_COLLATE,
2937
                 _NL_COLLATE_WEIGHTWC);
2938
        extra = (const int32_t *)
2939
          _NL_CURRENT (LC_COLLATE,
2940
                 _NL_COLLATE_EXTRAWC);
2941
        indirect = (const int32_t *)
2942
          _NL_CURRENT (LC_COLLATE,
2943
                 _NL_COLLATE_INDIRECTWC);
2944
2945
        idx = findidx ((const wint_t**)&cp);
2946
        if (idx == 0 || cp < (wint_t*) str + c1)
2947
          /* This is no valid character.  */
2948
          FREE_STACK_RETURN (REG_ECOLLATE);
2949
2950
        str[0] = (wchar_t)idx;
2951
            }
2952
          else /* delim == '.' */
2953
            {
2954
        /* We push collation sequence value
2955
           for collating symbol.  */
2956
        int32_t table_size;
2957
        const int32_t *symb_table;
2958
        const unsigned char *extra;
2959
        int32_t idx;
2960
        int32_t elem;
2961
        int32_t second;
2962
        int32_t hash;
2963
        char char_str[c1];
2964
2965
        /* We have to convert the name to a single-byte
2966
           string.  This is possible since the names
2967
           consist of ASCII characters and the internal
2968
           representation is UCS4.  */
2969
        for (i = 0; i < c1; ++i)
2970
          char_str[i] = str[i];
2971
2972
        table_size =
2973
          _NL_CURRENT_WORD (LC_COLLATE,
2974
                _NL_COLLATE_SYMB_HASH_SIZEMB);
2975
        symb_table = (const int32_t *)
2976
          _NL_CURRENT (LC_COLLATE,
2977
                 _NL_COLLATE_SYMB_TABLEMB);
2978
        extra = (const unsigned char *)
2979
          _NL_CURRENT (LC_COLLATE,
2980
                 _NL_COLLATE_SYMB_EXTRAMB);
2981
2982
        /* Locate the character in the hashing table.  */
2983
        hash = elem_hash (char_str, c1);
2984
2985
        idx = 0;
2986
        elem = hash % table_size;
2987
        second = hash % (table_size - 2);
2988
        while (symb_table[2 * elem] != 0)
2989
          {
2990
            /* First compare the hashing value.  */
2991
            if (symb_table[2 * elem] == hash
2992
          && c1 == extra[symb_table[2 * elem + 1]]
2993
          && memcmp (char_str,
2994
               &extra[symb_table[2 * elem + 1]
2995
               + 1], c1) == 0)
2996
              {
2997
          /* Yep, this is the entry.  */
2998
          idx = symb_table[2 * elem + 1];
2999
          idx += 1 + extra[idx];
3000
          break;
3001
              }
3002
3003
            /* Next entry.  */
3004
            elem += second;
3005
          }
3006
3007
        if (symb_table[2 * elem] != 0)
3008
          {
3009
            /* Compute the index of the byte sequence
3010
               in the table.  */
3011
            idx += 1 + extra[idx];
3012
            /* Adjust for the alignment.  */
3013
            idx = (idx + 3) & ~3;
3014
3015
            str[0] = (wchar_t) idx + 4;
3016
          }
3017
        else if (symb_table[2 * elem] == 0 && c1 == 1)
3018
          {
3019
            /* No valid character.  Match it as a
3020
               single byte character.  */
3021
            had_char_class = false;
3022
            BUF_PUSH(str[0]);
3023
            /* Update the length of characters  */
3024
            laststart[5]++;
3025
            range_start = str[0];
3026
3027
            /* Throw away the ] at the end of the
3028
               collating symbol.  */
3029
            PATFETCH (c);
3030
            /* exit from the switch block.  */
3031
            continue;
3032
          }
3033
        else
3034
          FREE_STACK_RETURN (REG_ECOLLATE);
3035
            }
3036
          datasize = 1;
3037
        }
3038
# endif
3039
                        /* Throw away the ] at the end of the equivalence
3040
                           class (or collating symbol).  */
3041
                        PATFETCH (c);
3042
3043
      /* Allocate the space for the equivalence class
3044
         (or collating symbol) (and '\0' if needed).  */
3045
                        GET_BUFFER_SPACE(datasize);
3046
      /* Update the pointer to indicate end of buffer.  */
3047
                        b += datasize;
3048
3049
      if (delim == '=')
3050
        { /* equivalence class  */
3051
          /* Calculate the offset of char_ranges,
3052
             which is next to equivalence_classes.  */
3053
          offset = laststart[1] + laststart[2]
3054
            + laststart[3] +6;
3055
          /* Insert space.  */
3056
          insert_space(datasize, laststart + offset, b - 1);
3057
3058
          /* Write the equivalence_class and \0.  */
3059
          for (i = 0 ; i < datasize ; i++)
3060
            laststart[offset + i] = str[i];
3061
3062
          /* Update the length of equivalence_classes.  */
3063
          laststart[3] += datasize;
3064
          had_char_class = true;
3065
        }
3066
      else /* delim == '.' */
3067
        { /* collating symbol  */
3068
          /* Calculate the offset of the equivalence_classes,
3069
             which is next to collating_symbols.  */
3070
          offset = laststart[1] + laststart[2] + 6;
3071
          /* Insert space and write the collationg_symbol
3072
             and \0.  */
3073
          insert_space(datasize, laststart + offset, b-1);
3074
          for (i = 0 ; i < datasize ; i++)
3075
            laststart[offset + i] = str[i];
3076
3077
          /* In re_match_2_internal if range_start < -1, we
3078
             assume -range_start is the offset of the
3079
             collating symbol which is specified as
3080
             the character of the range start.  So we assign
3081
             -(laststart[1] + laststart[2] + 6) to
3082
             range_start.  */
3083
          range_start = -(laststart[1] + laststart[2] + 6);
3084
          /* Update the length of collating_symbol.  */
3085
          laststart[2] += datasize;
3086
          had_char_class = false;
3087
        }
3088
          }
3089
                    else
3090
                      {
3091
                        c1++;
3092
                        while (c1--)
3093
                          PATUNFETCH;
3094
                        BUF_PUSH ('[');
3095
                        BUF_PUSH (delim);
3096
                        laststart[5] += 2; /* Update the length of characters  */
3097
      range_start = delim;
3098
                        had_char_class = false;
3099
                      }
3100
      }
3101
                else
3102
                  {
3103
                    had_char_class = false;
3104
        BUF_PUSH(c);
3105
        laststart[5]++;  /* Update the length of characters  */
3106
        range_start = c;
3107
                  }
3108
        }
3109
3110
#else /* BYTE */
3111
            /* Ensure that we have enough space to push a charset: the
3112
               opcode, the length count, and the bitset; 34 bytes in all.  */
3113
352k
      GET_BUFFER_SPACE (34);
3114
3115
352k
            laststart = b;
3116
3117
            /* We test `*p == '^' twice, instead of using an if
3118
               statement, so we only need one BUF_PUSH.  */
3119
352k
            BUF_PUSH (*p == '^' ? charset_not : charset);
3120
352k
            if (*p == '^')
3121
0
              p++;
3122
3123
            /* Remember the first position in the bracket expression.  */
3124
352k
            p1 = p;
3125
3126
            /* Push the number of bytes in the bitmap.  */
3127
352k
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3128
3129
            /* Clear the whole map.  */
3130
352k
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3131
3132
            /* charset_not matches newline according to a syntax bit.  */
3133
352k
            if ((re_opcode_t) b[-2] == charset_not
3134
352k
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3135
0
              SET_LIST_BIT ('\n');
3136
3137
            /* Read in characters and ranges, setting map bits.  */
3138
352k
            for (;;)
3139
1.05M
              {
3140
1.05M
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3141
3142
1.05M
                PATFETCH (c);
3143
3144
                /* \ might escape characters inside [...] and [^...].  */
3145
1.05M
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3146
0
                  {
3147
0
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3148
3149
0
                    PATFETCH (c1);
3150
0
                    SET_LIST_BIT (c1);
3151
0
        range_start = c1;
3152
0
                    continue;
3153
0
                  }
3154
3155
                /* Could be the end of the bracket expression.  If it's
3156
                   not (i.e., when the bracket expression is `[]' so
3157
                   far), the ']' character bit gets set way below.  */
3158
1.05M
                if (c == ']' && p != p1 + 1)
3159
352k
                  break;
3160
3161
                /* Look ahead to see if it's a range when the last thing
3162
                   was a character class.  */
3163
704k
                if (had_char_class && c == '-' && *p != ']')
3164
0
                  FREE_STACK_RETURN (REG_ERANGE);
3165
3166
                /* Look ahead to see if it's a range when the last thing
3167
                   was a character: if this is a hyphen not at the
3168
                   beginning or the end of a list, then it's the range
3169
                   operator.  */
3170
704k
                if (c == '-'
3171
704k
                    && !(p - 2 >= pattern && p[-2] == '[')
3172
704k
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3173
704k
                    && *p != ']')
3174
0
                  {
3175
0
                    reg_errcode_t ret
3176
0
                      = byte_compile_range (range_start, &p, pend, translate,
3177
0
              syntax, b);
3178
0
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3179
0
        range_start = 0xffffffff;
3180
0
                  }
3181
3182
704k
                else if (p[0] == '-' && p[1] != ']')
3183
0
                  { /* This handles ranges made up of characters only.  */
3184
0
                    reg_errcode_t ret;
3185
3186
        /* Move past the `-'.  */
3187
0
                    PATFETCH (c1);
3188
3189
0
                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3190
0
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3191
0
        range_start = 0xffffffff;
3192
0
                  }
3193
3194
                /* See if we're at the beginning of a possible character
3195
                   class.  */
3196
3197
704k
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3198
0
                  { /* Leave room for the null.  */
3199
0
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3200
3201
0
                    PATFETCH (c);
3202
0
                    c1 = 0;
3203
3204
                    /* If pattern is `[[:'.  */
3205
0
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3206
3207
0
                    for (;;)
3208
0
                      {
3209
0
                        PATFETCH (c);
3210
0
                        if ((c == ':' && *p == ']') || p == pend)
3211
0
                          break;
3212
0
      if (c1 < CHAR_CLASS_MAX_LENGTH)
3213
0
        str[c1++] = c;
3214
0
      else
3215
        /* This is in any case an invalid class name.  */
3216
0
        str[0] = '\0';
3217
0
                      }
3218
0
                    str[c1] = '\0';
3219
3220
                    /* If isn't a word bracketed by `[:' and `:]':
3221
                       undo the ending character, the letters, and leave
3222
                       the leading `:' and `[' (but set bits for them).  */
3223
0
                    if (c == ':' && *p == ']')
3224
0
                      {
3225
# if defined _LIBC || WIDE_CHAR_SUPPORT
3226
                        boolean is_lower = STREQ (str, "lower");
3227
                        boolean is_upper = STREQ (str, "upper");
3228
      wctype_t wt;
3229
                        int ch;
3230
3231
      wt = IS_CHAR_CLASS (str);
3232
      if (wt == 0)
3233
        FREE_STACK_RETURN (REG_ECTYPE);
3234
3235
                        /* Throw away the ] at the end of the character
3236
                           class.  */
3237
                        PATFETCH (c);
3238
3239
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3240
3241
                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3242
        {
3243
#  ifdef _LIBC
3244
          if (__iswctype (__btowc (ch), wt))
3245
            SET_LIST_BIT (ch);
3246
#  else
3247
          if (iswctype (btowc (ch), wt))
3248
            SET_LIST_BIT (ch);
3249
#  endif
3250
3251
          if (translate && (is_upper || is_lower)
3252
        && (ISUPPER (ch) || ISLOWER (ch)))
3253
            SET_LIST_BIT (ch);
3254
        }
3255
3256
                        had_char_class = true;
3257
# else
3258
0
                        int ch;
3259
0
                        boolean is_alnum = STREQ (str, "alnum");
3260
0
                        boolean is_alpha = STREQ (str, "alpha");
3261
0
                        boolean is_blank = STREQ (str, "blank");
3262
0
                        boolean is_cntrl = STREQ (str, "cntrl");
3263
0
                        boolean is_digit = STREQ (str, "digit");
3264
0
                        boolean is_graph = STREQ (str, "graph");
3265
0
                        boolean is_lower = STREQ (str, "lower");
3266
0
                        boolean is_print = STREQ (str, "print");
3267
0
                        boolean is_punct = STREQ (str, "punct");
3268
0
                        boolean is_space = STREQ (str, "space");
3269
0
                        boolean is_upper = STREQ (str, "upper");
3270
0
                        boolean is_xdigit = STREQ (str, "xdigit");
3271
3272
0
                        if (!IS_CHAR_CLASS (str))
3273
0
        FREE_STACK_RETURN (REG_ECTYPE);
3274
3275
                        /* Throw away the ] at the end of the character
3276
                           class.  */
3277
0
                        PATFETCH (c);
3278
3279
0
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3280
3281
0
                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3282
0
                          {
3283
          /* This was split into 3 if's to
3284
             avoid an arbitrary limit in some compiler.  */
3285
0
                            if (   (is_alnum  && ISALNUM (ch))
3286
0
                                || (is_alpha  && ISALPHA (ch))
3287
0
                                || (is_blank  && ISBLANK (ch))
3288
0
                                || (is_cntrl  && ISCNTRL (ch)))
3289
0
            SET_LIST_BIT (ch);
3290
0
          if (   (is_digit  && ISDIGIT (ch))
3291
0
                                || (is_graph  && ISGRAPH (ch))
3292
0
                                || (is_lower  && ISLOWER (ch))
3293
0
                                || (is_print  && ISPRINT (ch)))
3294
0
            SET_LIST_BIT (ch);
3295
0
          if (   (is_punct  && ISPUNCT (ch))
3296
0
                                || (is_space  && ISSPACE (ch))
3297
0
                                || (is_upper  && ISUPPER (ch))
3298
0
                                || (is_xdigit && ISXDIGIT (ch)))
3299
0
            SET_LIST_BIT (ch);
3300
0
          if (   translate && (is_upper || is_lower)
3301
0
        && (ISUPPER (ch) || ISLOWER (ch)))
3302
0
            SET_LIST_BIT (ch);
3303
0
                          }
3304
0
                        had_char_class = true;
3305
0
# endif /* libc || wctype.h */
3306
0
                      }
3307
0
                    else
3308
0
                      {
3309
0
                        c1++;
3310
0
                        while (c1--)
3311
0
                          PATUNFETCH;
3312
0
                        SET_LIST_BIT ('[');
3313
0
                        SET_LIST_BIT (':');
3314
0
      range_start = ':';
3315
0
                        had_char_class = false;
3316
0
                      }
3317
0
                  }
3318
704k
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3319
0
      {
3320
0
        unsigned char str[MB_LEN_MAX + 1];
3321
# ifdef _LIBC
3322
        uint32_t nrules =
3323
          _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3324
# endif
3325
3326
0
        PATFETCH (c);
3327
0
        c1 = 0;
3328
3329
        /* If pattern is `[[='.  */
3330
0
        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3331
3332
0
        for (;;)
3333
0
          {
3334
0
      PATFETCH (c);
3335
0
      if ((c == '=' && *p == ']') || p == pend)
3336
0
        break;
3337
0
      if (c1 < MB_LEN_MAX)
3338
0
        str[c1++] = c;
3339
0
      else
3340
        /* This is in any case an invalid class name.  */
3341
0
        str[0] = '\0';
3342
0
                      }
3343
0
        str[c1] = '\0';
3344
3345
0
        if (c == '=' && *p == ']' && str[0] != '\0')
3346
0
          {
3347
      /* If we have no collation data we use the default
3348
         collation in which each character is in a class
3349
         by itself.  It also means that ASCII is the
3350
         character set and therefore we cannot have character
3351
         with more than one byte in the multibyte
3352
         representation.  */
3353
# ifdef _LIBC
3354
      if (nrules == 0)
3355
# endif
3356
0
        {
3357
0
          if (c1 != 1)
3358
0
            FREE_STACK_RETURN (REG_ECOLLATE);
3359
3360
          /* Throw away the ] at the end of the equivalence
3361
             class.  */
3362
0
          PATFETCH (c);
3363
3364
          /* Set the bit for the character.  */
3365
0
          SET_LIST_BIT (str[0]);
3366
0
        }
3367
# ifdef _LIBC
3368
      else
3369
        {
3370
          /* Try to match the byte sequence in `str' against
3371
             those known to the collate implementation.
3372
             First find out whether the bytes in `str' are
3373
             actually from exactly one character.  */
3374
          const int32_t *table;
3375
          const unsigned char *weights;
3376
          const unsigned char *extra;
3377
          const int32_t *indirect;
3378
          int32_t idx;
3379
          const unsigned char *cp = str;
3380
          int ch;
3381
3382
          /* This #include defines a local function!  */
3383
#  include <locale/weight.h>
3384
3385
          table = (const int32_t *)
3386
            _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3387
          weights = (const unsigned char *)
3388
            _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3389
          extra = (const unsigned char *)
3390
            _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3391
          indirect = (const int32_t *)
3392
            _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3393
3394
          idx = findidx (&cp);
3395
          if (idx == 0 || cp < str + c1)
3396
            /* This is no valid character.  */
3397
            FREE_STACK_RETURN (REG_ECOLLATE);
3398
3399
          /* Throw away the ] at the end of the equivalence
3400
             class.  */
3401
          PATFETCH (c);
3402
3403
          /* Now we have to go through the whole table
3404
             and find all characters which have the same
3405
             first level weight.
3406
3407
             XXX Note that this is not entirely correct.
3408
             we would have to match multibyte sequences
3409
             but this is not possible with the current
3410
             implementation.  */
3411
          for (ch = 1; ch < 256; ++ch)
3412
            /* XXX This test would have to be changed if we
3413
         would allow matching multibyte sequences.  */
3414
            if (table[ch] > 0)
3415
        {
3416
          int32_t idx2 = table[ch];
3417
          size_t len = weights[idx2];
3418
3419
          /* Test whether the lenghts match.  */
3420
          if (weights[idx] == len)
3421
            {
3422
              /* They do.  New compare the bytes of
3423
           the weight.  */
3424
              size_t cnt = 0;
3425
3426
              while (cnt < len
3427
               && (weights[idx + 1 + cnt]
3428
             == weights[idx2 + 1 + cnt]))
3429
          ++cnt;
3430
3431
              if (cnt == len)
3432
          /* They match.  Mark the character as
3433
             acceptable.  */
3434
          SET_LIST_BIT (ch);
3435
            }
3436
        }
3437
        }
3438
# endif
3439
0
      had_char_class = true;
3440
0
          }
3441
0
                    else
3442
0
                      {
3443
0
                        c1++;
3444
0
                        while (c1--)
3445
0
                          PATUNFETCH;
3446
0
                        SET_LIST_BIT ('[');
3447
0
                        SET_LIST_BIT ('=');
3448
0
      range_start = '=';
3449
0
                        had_char_class = false;
3450
0
                      }
3451
0
      }
3452
704k
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3453
0
      {
3454
0
        unsigned char str[128]; /* Should be large enough.  */
3455
# ifdef _LIBC
3456
        uint32_t nrules =
3457
          _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3458
# endif
3459
3460
0
        PATFETCH (c);
3461
0
        c1 = 0;
3462
3463
        /* If pattern is `[[.'.  */
3464
0
        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3465
3466
0
        for (;;)
3467
0
          {
3468
0
      PATFETCH (c);
3469
0
      if ((c == '.' && *p == ']') || p == pend)
3470
0
        break;
3471
0
      if (c1 < sizeof (str) - 1)
3472
0
        str[c1++] = c;
3473
0
      else
3474
        /* This is in any case an invalid class name.  */
3475
0
        str[0] = '\0';
3476
0
                      }
3477
0
        str[c1] = '\0';
3478
3479
0
        if (c == '.' && *p == ']' && str[0] != '\0')
3480
0
          {
3481
      /* If we have no collation data we use the default
3482
         collation in which each character is the name
3483
         for its own class which contains only the one
3484
         character.  It also means that ASCII is the
3485
         character set and therefore we cannot have character
3486
         with more than one byte in the multibyte
3487
         representation.  */
3488
# ifdef _LIBC
3489
      if (nrules == 0)
3490
# endif
3491
0
        {
3492
0
          if (c1 != 1)
3493
0
            FREE_STACK_RETURN (REG_ECOLLATE);
3494
3495
          /* Throw away the ] at the end of the equivalence
3496
             class.  */
3497
0
          PATFETCH (c);
3498
3499
          /* Set the bit for the character.  */
3500
0
          SET_LIST_BIT (str[0]);
3501
0
          range_start = ((const unsigned char *) str)[0];
3502
0
        }
3503
# ifdef _LIBC
3504
      else
3505
        {
3506
          /* Try to match the byte sequence in `str' against
3507
             those known to the collate implementation.
3508
             First find out whether the bytes in `str' are
3509
             actually from exactly one character.  */
3510
          int32_t table_size;
3511
          const int32_t *symb_table;
3512
          const unsigned char *extra;
3513
          int32_t idx;
3514
          int32_t elem;
3515
          int32_t second;
3516
          int32_t hash;
3517
3518
          table_size =
3519
            _NL_CURRENT_WORD (LC_COLLATE,
3520
            _NL_COLLATE_SYMB_HASH_SIZEMB);
3521
          symb_table = (const int32_t *)
3522
            _NL_CURRENT (LC_COLLATE,
3523
             _NL_COLLATE_SYMB_TABLEMB);
3524
          extra = (const unsigned char *)
3525
            _NL_CURRENT (LC_COLLATE,
3526
             _NL_COLLATE_SYMB_EXTRAMB);
3527
3528
          /* Locate the character in the hashing table.  */
3529
          hash = elem_hash (str, c1);
3530
3531
          idx = 0;
3532
          elem = hash % table_size;
3533
          second = hash % (table_size - 2);
3534
          while (symb_table[2 * elem] != 0)
3535
            {
3536
        /* First compare the hashing value.  */
3537
        if (symb_table[2 * elem] == hash
3538
            && c1 == extra[symb_table[2 * elem + 1]]
3539
            && memcmp (str,
3540
                 &extra[symb_table[2 * elem + 1]
3541
                 + 1],
3542
                 c1) == 0)
3543
          {
3544
            /* Yep, this is the entry.  */
3545
            idx = symb_table[2 * elem + 1];
3546
            idx += 1 + extra[idx];
3547
            break;
3548
          }
3549
3550
        /* Next entry.  */
3551
        elem += second;
3552
            }
3553
3554
          if (symb_table[2 * elem] == 0)
3555
            /* This is no valid character.  */
3556
            FREE_STACK_RETURN (REG_ECOLLATE);
3557
3558
          /* Throw away the ] at the end of the equivalence
3559
             class.  */
3560
          PATFETCH (c);
3561
3562
          /* Now add the multibyte character(s) we found
3563
             to the accept list.
3564
3565
             XXX Note that this is not entirely correct.
3566
             we would have to match multibyte sequences
3567
             but this is not possible with the current
3568
             implementation.  Also, we have to match
3569
             collating symbols, which expand to more than
3570
             one file, as a whole and not allow the
3571
             individual bytes.  */
3572
          c1 = extra[idx++];
3573
          if (c1 == 1)
3574
            range_start = extra[idx];
3575
          while (c1-- > 0)
3576
            {
3577
        SET_LIST_BIT (extra[idx]);
3578
        ++idx;
3579
            }
3580
        }
3581
# endif
3582
0
      had_char_class = false;
3583
0
          }
3584
0
                    else
3585
0
                      {
3586
0
                        c1++;
3587
0
                        while (c1--)
3588
0
                          PATUNFETCH;
3589
0
                        SET_LIST_BIT ('[');
3590
0
                        SET_LIST_BIT ('.');
3591
0
      range_start = '.';
3592
0
                        had_char_class = false;
3593
0
                      }
3594
0
      }
3595
704k
                else
3596
704k
                  {
3597
704k
                    had_char_class = false;
3598
704k
                    SET_LIST_BIT (c);
3599
704k
        range_start = c;
3600
704k
                  }
3601
704k
              }
3602
3603
            /* Discard any (non)matching list bytes that are all 0 at the
3604
               end of the map.  Decrease the map-length byte too.  */
3605
7.18M
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3606
6.83M
              b[-1]--;
3607
352k
            b += b[-1];
3608
352k
#endif /* WCHAR */
3609
352k
          }
3610
0
          break;
3611
3612
3613
2.30k
  case '(':
3614
2.30k
          if (syntax & RE_NO_BK_PARENS)
3615
0
            goto handle_open;
3616
2.30k
          else
3617
2.30k
            goto normal_char;
3618
3619
3620
2.30k
        case ')':
3621
2.30k
          if (syntax & RE_NO_BK_PARENS)
3622
0
            goto handle_close;
3623
2.30k
          else
3624
2.30k
            goto normal_char;
3625
3626
3627
0
        case '\n':
3628
0
          if (syntax & RE_NEWLINE_ALT)
3629
0
            goto handle_alt;
3630
0
          else
3631
0
            goto normal_char;
3632
3633
3634
0
  case '|':
3635
0
          if (syntax & RE_NO_BK_VBAR)
3636
0
            goto handle_alt;
3637
0
          else
3638
0
            goto normal_char;
3639
3640
3641
0
        case '{':
3642
0
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3643
0
             goto handle_interval;
3644
0
           else
3645
0
             goto normal_char;
3646
3647
3648
41.1k
        case '\\':
3649
41.1k
          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3650
3651
          /* Do not translate the character after the \, so that we can
3652
             distinguish, e.g., \B from \b, even if we normally would
3653
             translate, e.g., B to b.  */
3654
41.1k
          PATFETCH_RAW (c);
3655
3656
41.1k
          switch (c)
3657
41.1k
            {
3658
0
            case '(':
3659
0
              if (syntax & RE_NO_BK_PARENS)
3660
0
                goto normal_backslash;
3661
3662
0
            handle_open:
3663
0
              bufp->re_nsub++;
3664
0
              regnum++;
3665
3666
0
              if (COMPILE_STACK_FULL)
3667
0
                {
3668
0
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3669
0
                            compile_stack_elt_t);
3670
0
                  if (compile_stack.stack == NULL) return REG_ESPACE;
3671
3672
0
                  compile_stack.size <<= 1;
3673
0
                }
3674
3675
              /* These are the values to restore when we hit end of this
3676
                 group.  They are all relative offsets, so that if the
3677
                 whole pattern moves because of realloc, they will still
3678
                 be valid.  */
3679
0
              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3680
0
              COMPILE_STACK_TOP.fixup_alt_jump
3681
0
                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3682
0
              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3683
0
              COMPILE_STACK_TOP.regnum = regnum;
3684
3685
              /* We will eventually replace the 0 with the number of
3686
                 groups inner to this one.  But do not push a
3687
                 start_memory for groups beyond the last one we can
3688
                 represent in the compiled pattern.  */
3689
0
              if (regnum <= MAX_REGNUM)
3690
0
                {
3691
0
                  COMPILE_STACK_TOP.inner_group_offset = b
3692
0
        - COMPILED_BUFFER_VAR + 2;
3693
0
                  BUF_PUSH_3 (start_memory, regnum, 0);
3694
0
                }
3695
3696
0
              compile_stack.avail++;
3697
3698
0
              fixup_alt_jump = 0;
3699
0
              laststart = 0;
3700
0
              begalt = b;
3701
        /* If we've reached MAX_REGNUM groups, then this open
3702
     won't actually generate any code, so we'll have to
3703
     clear pending_exact explicitly.  */
3704
0
        pending_exact = 0;
3705
0
              break;
3706
3707
3708
0
            case ')':
3709
0
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3710
3711
0
              if (COMPILE_STACK_EMPTY)
3712
0
    {
3713
0
      if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3714
0
        goto normal_backslash;
3715
0
      else
3716
0
        FREE_STACK_RETURN (REG_ERPAREN);
3717
0
    }
3718
3719
0
            handle_close:
3720
0
              if (fixup_alt_jump)
3721
0
                { /* Push a dummy failure point at the end of the
3722
                     alternative for a possible future
3723
                     `pop_failure_jump' to pop.  See comments at
3724
                     `push_dummy_failure' in `re_match_2'.  */
3725
0
                  BUF_PUSH (push_dummy_failure);
3726
3727
                  /* We allocated space for this jump when we assigned
3728
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3729
0
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3730
0
                }
3731
3732
              /* See similar code for backslashed left paren above.  */
3733
0
              if (COMPILE_STACK_EMPTY)
3734
0
    {
3735
0
      if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3736
0
        goto normal_char;
3737
0
      else
3738
0
        FREE_STACK_RETURN (REG_ERPAREN);
3739
0
    }
3740
3741
              /* Since we just checked for an empty stack above, this
3742
                 ``can't happen''.  */
3743
0
              assert (compile_stack.avail != 0);
3744
0
              {
3745
                /* We don't just want to restore into `regnum', because
3746
                   later groups should continue to be numbered higher,
3747
                   as in `(ab)c(de)' -- the second group is #2.  */
3748
0
                regnum_t this_group_regnum;
3749
3750
0
                compile_stack.avail--;
3751
0
                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3752
0
                fixup_alt_jump
3753
0
                  = COMPILE_STACK_TOP.fixup_alt_jump
3754
0
                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3755
0
                    : 0;
3756
0
                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3757
0
                this_group_regnum = COMPILE_STACK_TOP.regnum;
3758
    /* If we've reached MAX_REGNUM groups, then this open
3759
       won't actually generate any code, so we'll have to
3760
       clear pending_exact explicitly.  */
3761
0
    pending_exact = 0;
3762
3763
                /* We're at the end of the group, so now we know how many
3764
                   groups were inside this one.  */
3765
0
                if (this_group_regnum <= MAX_REGNUM)
3766
0
                  {
3767
0
        UCHAR_T *inner_group_loc
3768
0
                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3769
3770
0
                    *inner_group_loc = regnum - this_group_regnum;
3771
0
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3772
0
                                regnum - this_group_regnum);
3773
0
                  }
3774
0
              }
3775
0
              break;
3776
3777
3778
0
            case '|':         /* `\|'.  */
3779
0
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3780
0
                goto normal_backslash;
3781
0
            handle_alt:
3782
0
              if (syntax & RE_LIMITED_OPS)
3783
0
                goto normal_char;
3784
3785
              /* Insert before the previous alternative a jump which
3786
                 jumps to this alternative if the former fails.  */
3787
0
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3788
0
              INSERT_JUMP (on_failure_jump, begalt,
3789
0
         b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3790
0
              pending_exact = 0;
3791
0
              b += 1 + OFFSET_ADDRESS_SIZE;
3792
3793
              /* The alternative before this one has a jump after it
3794
                 which gets executed if it gets matched.  Adjust that
3795
                 jump so it will jump to this alternative's analogous
3796
                 jump (put in below, which in turn will jump to the next
3797
                 (if any) alternative's such jump, etc.).  The last such
3798
                 jump jumps to the correct final destination.  A picture:
3799
                          _____ _____
3800
                          |   | |   |
3801
                          |   v |   v
3802
                         a | b   | c
3803
3804
                 If we are at `b', then fixup_alt_jump right now points to a
3805
                 three-byte space after `a'.  We'll put in the jump, set
3806
                 fixup_alt_jump to right after `b', and leave behind three
3807
                 bytes which we'll fill in when we get to after `c'.  */
3808
3809
0
              if (fixup_alt_jump)
3810
0
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3811
3812
              /* Mark and leave space for a jump after this alternative,
3813
                 to be filled in later either by next alternative or
3814
                 when know we're at the end of a series of alternatives.  */
3815
0
              fixup_alt_jump = b;
3816
0
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3817
0
              b += 1 + OFFSET_ADDRESS_SIZE;
3818
3819
0
              laststart = 0;
3820
0
              begalt = b;
3821
0
              break;
3822
3823
3824
0
            case '{':
3825
              /* If \{ is a literal.  */
3826
0
              if (!(syntax & RE_INTERVALS)
3827
                     /* If we're at `\{' and it's not the open-interval
3828
                        operator.  */
3829
0
      || (syntax & RE_NO_BK_BRACES))
3830
0
                goto normal_backslash;
3831
3832
0
            handle_interval:
3833
0
              {
3834
                /* If got here, then the syntax allows intervals.  */
3835
3836
                /* At least (most) this many matches must be made.  */
3837
0
                int lower_bound = -1, upper_bound = -1;
3838
3839
    /* Place in the uncompiled pattern (i.e., just after
3840
       the '{') to go back to if the interval is invalid.  */
3841
0
    const CHAR_T *beg_interval = p;
3842
3843
0
                if (p == pend)
3844
0
      goto invalid_interval;
3845
3846
0
                GET_UNSIGNED_NUMBER (lower_bound);
3847
3848
0
                if (c == ',')
3849
0
                  {
3850
0
                    GET_UNSIGNED_NUMBER (upper_bound);
3851
0
        if (upper_bound < 0)
3852
0
          upper_bound = RE_DUP_MAX;
3853
0
                  }
3854
0
                else
3855
                  /* Interval such as `{1}' => match exactly once. */
3856
0
                  upper_bound = lower_bound;
3857
3858
0
                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3859
0
      goto invalid_interval;
3860
3861
0
                if (!(syntax & RE_NO_BK_BRACES))
3862
0
                  {
3863
0
        if (c != '\\' || p == pend)
3864
0
          goto invalid_interval;
3865
0
                    PATFETCH (c);
3866
0
                  }
3867
3868
0
                if (c != '}')
3869
0
      goto invalid_interval;
3870
3871
                /* If it's invalid to have no preceding re.  */
3872
0
                if (!laststart)
3873
0
                  {
3874
0
        if (syntax & RE_CONTEXT_INVALID_OPS
3875
0
      && !(syntax & RE_INVALID_INTERVAL_ORD))
3876
0
                      FREE_STACK_RETURN (REG_BADRPT);
3877
0
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3878
0
                      laststart = b;
3879
0
                    else
3880
0
                      goto unfetch_interval;
3881
0
                  }
3882
3883
                /* We just parsed a valid interval.  */
3884
3885
0
                if (RE_DUP_MAX < upper_bound)
3886
0
      FREE_STACK_RETURN (REG_BADBR);
3887
3888
                /* If the upper bound is zero, don't want to succeed at
3889
                   all; jump from `laststart' to `b + 3', which will be
3890
       the end of the buffer after we insert the jump.  */
3891
    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3892
       instead of 'b + 3'.  */
3893
0
                 if (upper_bound == 0)
3894
0
                   {
3895
0
                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3896
0
                     INSERT_JUMP (jump, laststart, b + 1
3897
0
          + OFFSET_ADDRESS_SIZE);
3898
0
                     b += 1 + OFFSET_ADDRESS_SIZE;
3899
0
                   }
3900
3901
                 /* Otherwise, we have a nontrivial interval.  When
3902
                    we're all done, the pattern will look like:
3903
                      set_number_at <jump count> <upper bound>
3904
                      set_number_at <succeed_n count> <lower bound>
3905
                      succeed_n <after jump addr> <succeed_n count>
3906
                      <body of loop>
3907
                      jump_n <succeed_n addr> <jump count>
3908
                    (The upper bound and `jump_n' are omitted if
3909
                    `upper_bound' is 1, though.)  */
3910
0
                 else
3911
0
                   { /* If the upper bound is > 1, we need to insert
3912
                        more at the end of the loop.  */
3913
0
                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3914
0
           (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3915
3916
0
                     GET_BUFFER_SPACE (nbytes);
3917
3918
                     /* Initialize lower bound of the `succeed_n', even
3919
                        though it will be set during matching by its
3920
                        attendant `set_number_at' (inserted next),
3921
                        because `re_compile_fastmap' needs to know.
3922
                        Jump to the `jump_n' we might insert below.  */
3923
0
                     INSERT_JUMP2 (succeed_n, laststart,
3924
0
                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3925
0
           + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3926
0
           , lower_bound);
3927
0
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3928
3929
                     /* Code to initialize the lower bound.  Insert
3930
                        before the `succeed_n'.  The `5' is the last two
3931
                        bytes of this `set_number_at', plus 3 bytes of
3932
                        the following `succeed_n'.  */
3933
         /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3934
      is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3935
      of the following `succeed_n'.  */
3936
0
                     PREFIX(insert_op2) (set_number_at, laststart, 1
3937
0
         + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3938
0
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3939
3940
0
                     if (upper_bound > 1)
3941
0
                       { /* More than one repetition is allowed, so
3942
                            append a backward jump to the `succeed_n'
3943
                            that starts this interval.
3944
3945
                            When we've reached this during matching,
3946
                            we'll have matched the interval once, so
3947
                            jump back only `upper_bound - 1' times.  */
3948
0
                         STORE_JUMP2 (jump_n, b, laststart
3949
0
              + 2 * OFFSET_ADDRESS_SIZE + 1,
3950
0
                                      upper_bound - 1);
3951
0
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3952
3953
                         /* The location we want to set is the second
3954
                            parameter of the `jump_n'; that is `b-2' as
3955
                            an absolute address.  `laststart' will be
3956
                            the `set_number_at' we're about to insert;
3957
                            `laststart+3' the number to set, the source
3958
                            for the relative address.  But we are
3959
                            inserting into the middle of the pattern --
3960
                            so everything is getting moved up by 5.
3961
                            Conclusion: (b - 2) - (laststart + 3) + 5,
3962
                            i.e., b - laststart.
3963
3964
                            We insert this at the beginning of the loop
3965
                            so that if we fail during matching, we'll
3966
                            reinitialize the bounds.  */
3967
0
                         PREFIX(insert_op2) (set_number_at, laststart,
3968
0
               b - laststart,
3969
0
               upper_bound - 1, b);
3970
0
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3971
0
                       }
3972
0
                   }
3973
0
                pending_exact = 0;
3974
0
    break;
3975
3976
0
        invalid_interval:
3977
0
    if (!(syntax & RE_INVALID_INTERVAL_ORD))
3978
0
      FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3979
0
        unfetch_interval:
3980
    /* Match the characters as literals.  */
3981
0
    p = beg_interval;
3982
0
    c = '{';
3983
0
    if (syntax & RE_NO_BK_BRACES)
3984
0
      goto normal_char;
3985
0
    else
3986
0
      goto normal_backslash;
3987
0
        }
3988
3989
#ifdef emacs
3990
            /* There is no way to specify the before_dot and after_dot
3991
               operators.  rms says this is ok.  --karl  */
3992
            case '=':
3993
              BUF_PUSH (at_dot);
3994
              break;
3995
3996
            case 's':
3997
              laststart = b;
3998
              PATFETCH (c);
3999
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4000
              break;
4001
4002
            case 'S':
4003
              laststart = b;
4004
              PATFETCH (c);
4005
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4006
              break;
4007
#endif /* emacs */
4008
4009
4010
0
            case 'w':
4011
0
        if (syntax & RE_NO_GNU_OPS)
4012
0
    goto normal_char;
4013
0
              laststart = b;
4014
0
              BUF_PUSH (wordchar);
4015
0
              break;
4016
4017
4018
0
            case 'W':
4019
0
        if (syntax & RE_NO_GNU_OPS)
4020
0
    goto normal_char;
4021
0
              laststart = b;
4022
0
              BUF_PUSH (notwordchar);
4023
0
              break;
4024
4025
4026
0
            case '<':
4027
0
        if (syntax & RE_NO_GNU_OPS)
4028
0
    goto normal_char;
4029
0
              BUF_PUSH (wordbeg);
4030
0
              break;
4031
4032
0
            case '>':
4033
0
        if (syntax & RE_NO_GNU_OPS)
4034
0
    goto normal_char;
4035
0
              BUF_PUSH (wordend);
4036
0
              break;
4037
4038
0
            case 'b':
4039
0
        if (syntax & RE_NO_GNU_OPS)
4040
0
    goto normal_char;
4041
0
              BUF_PUSH (wordbound);
4042
0
              break;
4043
4044
0
            case 'B':
4045
0
        if (syntax & RE_NO_GNU_OPS)
4046
0
    goto normal_char;
4047
0
              BUF_PUSH (notwordbound);
4048
0
              break;
4049
4050
0
            case '`':
4051
0
        if (syntax & RE_NO_GNU_OPS)
4052
0
    goto normal_char;
4053
0
              BUF_PUSH (begbuf);
4054
0
              break;
4055
4056
0
            case '\'':
4057
0
        if (syntax & RE_NO_GNU_OPS)
4058
0
    goto normal_char;
4059
0
              BUF_PUSH (endbuf);
4060
0
              break;
4061
4062
0
            case '1': case '2': case '3': case '4': case '5':
4063
0
            case '6': case '7': case '8': case '9':
4064
0
              if (syntax & RE_NO_BK_REFS)
4065
0
                goto normal_char;
4066
4067
0
              c1 = c - '0';
4068
4069
0
              if (c1 > regnum)
4070
0
                FREE_STACK_RETURN (REG_ESUBREG);
4071
4072
              /* Can't back reference to a subexpression if inside of it.  */
4073
0
              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4074
0
                goto normal_char;
4075
4076
0
              laststart = b;
4077
0
              BUF_PUSH_2 (duplicate, c1);
4078
0
              break;
4079
4080
4081
0
            case '+':
4082
0
            case '?':
4083
0
              if (syntax & RE_BK_PLUS_QM)
4084
0
                goto handle_plus;
4085
0
              else
4086
0
                goto normal_backslash;
4087
4088
41.1k
            default:
4089
41.1k
            normal_backslash:
4090
              /* You might think it would be useful for \ to mean
4091
                 not to translate; but if we don't translate it
4092
                 it will never match anything.  */
4093
41.1k
              c = TRANSLATE (c);
4094
41.1k
              goto normal_char;
4095
41.1k
            }
4096
0
          break;
4097
4098
4099
168k
  default:
4100
        /* Expects the character in `c'.  */
4101
215k
  normal_char:
4102
        /* If no exactn currently being built.  */
4103
215k
          if (!pending_exact
4104
#ifdef WCHAR
4105
        /* If last exactn handle binary(or character) and
4106
     new exactn handle character(or binary).  */
4107
        || is_exactn_bin != is_binary[p - 1 - pattern]
4108
#endif /* WCHAR */
4109
4110
              /* If last exactn not at current position.  */
4111
215k
              || pending_exact + *pending_exact + 1 != b
4112
4113
              /* We have only one byte following the exactn for the count.  */
4114
215k
        || *pending_exact == (1 << BYTEWIDTH) - 1
4115
4116
              /* If followed by a repetition operator.  */
4117
215k
              || *p == '*' || *p == '^'
4118
215k
        || ((syntax & RE_BK_PLUS_QM)
4119
37.4k
      ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4120
37.4k
      : (*p == '+' || *p == '?'))
4121
215k
        || ((syntax & RE_INTERVALS)
4122
37.4k
                  && ((syntax & RE_NO_BK_BRACES)
4123
37.4k
          ? *p == '{'
4124
37.4k
                      : (p[0] == '\\' && p[1] == '{'))))
4125
177k
      {
4126
        /* Start building a new exactn.  */
4127
4128
177k
              laststart = b;
4129
4130
#ifdef WCHAR
4131
        /* Is this exactn binary data or character? */
4132
        is_exactn_bin = is_binary[p - 1 - pattern];
4133
        if (is_exactn_bin)
4134
      BUF_PUSH_2 (exactn_bin, 0);
4135
        else
4136
      BUF_PUSH_2 (exactn, 0);
4137
#else
4138
177k
        BUF_PUSH_2 (exactn, 0);
4139
177k
#endif /* WCHAR */
4140
177k
        pending_exact = b - 1;
4141
177k
            }
4142
4143
215k
    BUF_PUSH (c);
4144
215k
          (*pending_exact)++;
4145
215k
    break;
4146
1.03M
        } /* switch (c) */
4147
1.03M
    } /* while p != pend */
4148
4149
4150
  /* Through the pattern now.  */
4151
4152
53.8k
  if (fixup_alt_jump)
4153
53.8k
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4154
4155
53.8k
  if (!COMPILE_STACK_EMPTY)
4156
0
    FREE_STACK_RETURN (REG_EPAREN);
4157
4158
  /* If we don't want backtracking, force success
4159
     the first time we reach the end of the compiled pattern.  */
4160
53.8k
  if (syntax & RE_NO_POSIX_BACKTRACKING)
4161
0
    BUF_PUSH (succeed);
4162
4163
#ifdef WCHAR
4164
  free (pattern);
4165
  free (mbs_offset);
4166
  free (is_binary);
4167
#endif
4168
53.8k
  free (compile_stack.stack);
4169
4170
  /* We have succeeded; set the length of the buffer.  */
4171
#ifdef WCHAR
4172
  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4173
#else
4174
53.8k
  bufp->used = b - bufp->buffer;
4175
53.8k
#endif
4176
4177
#ifdef DEBUG
4178
  if (debug)
4179
    {
4180
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4181
      PREFIX(print_compiled_pattern) (bufp);
4182
    }
4183
#endif /* DEBUG */
4184
4185
#ifndef MATCH_MAY_ALLOCATE
4186
  /* Initialize the failure stack to the largest possible stack.  This
4187
     isn't necessary unless we're trying to avoid calling alloca in
4188
     the search and match routines.  */
4189
  {
4190
    int num_regs = bufp->re_nsub + 1;
4191
4192
    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4193
       is strictly greater than re_max_failures, the largest possible stack
4194
       is 2 * re_max_failures failure points.  */
4195
    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4196
      {
4197
  fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4198
4199
# ifdef emacs
4200
  if (! fail_stack.stack)
4201
    fail_stack.stack
4202
      = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4203
            * sizeof (PREFIX(fail_stack_elt_t)));
4204
  else
4205
    fail_stack.stack
4206
      = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4207
             (fail_stack.size
4208
              * sizeof (PREFIX(fail_stack_elt_t))));
4209
# else /* not emacs */
4210
  if (! fail_stack.stack)
4211
    fail_stack.stack
4212
      = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4213
           * sizeof (PREFIX(fail_stack_elt_t)));
4214
  else
4215
    fail_stack.stack
4216
      = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4217
              (fail_stack.size
4218
             * sizeof (PREFIX(fail_stack_elt_t))));
4219
# endif /* not emacs */
4220
      }
4221
4222
   PREFIX(regex_grow_registers) (num_regs);
4223
  }
4224
#endif /* not MATCH_MAY_ALLOCATE */
4225
4226
53.8k
  return REG_NOERROR;
4227
53.8k
} /* regex_compile */
4228
4229
/* Subroutines for `regex_compile'.  */
4230
4231
/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4232
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4233
4234
static void
4235
PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4236
425k
{
4237
425k
  *loc = (UCHAR_T) op;
4238
425k
  STORE_NUMBER (loc + 1, arg);
4239
425k
}
4240
4241
4242
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4243
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4244
4245
static void
4246
PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4247
0
{
4248
0
  *loc = (UCHAR_T) op;
4249
0
  STORE_NUMBER (loc + 1, arg1);
4250
0
  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4251
0
}
4252
4253
4254
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4255
   for OP followed by two-byte integer parameter ARG.  */
4256
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4257
4258
static void
4259
PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4260
212k
{
4261
212k
  register UCHAR_T *pfrom = end;
4262
212k
  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4263
4264
1.38M
  while (pfrom != loc)
4265
1.17M
    *--pto = *--pfrom;
4266
4267
212k
  PREFIX(store_op1) (op, loc, arg);
4268
212k
}
4269
4270
4271
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4272
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4273
4274
static void
4275
PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4276
                    int arg2, UCHAR_T *end)
4277
0
{
4278
0
  register UCHAR_T *pfrom = end;
4279
0
  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4280
4281
0
  while (pfrom != loc)
4282
0
    *--pto = *--pfrom;
4283
4284
0
  PREFIX(store_op2) (op, loc, arg1, arg2);
4285
0
}
4286
4287
4288
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4289
   after an alternative or a begin-subexpression.  We assume there is at
4290
   least one character before the ^.  */
4291
4292
static boolean
4293
PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4294
                          reg_syntax_t syntax)
4295
0
{
4296
0
  const CHAR_T *prev = p - 2;
4297
0
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4298
4299
0
  return
4300
       /* After a subexpression?  */
4301
0
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4302
       /* After an alternative?  */
4303
0
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4304
0
}
4305
4306
4307
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4308
   at least one character after the $, i.e., `P < PEND'.  */
4309
4310
static boolean
4311
PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4312
                          reg_syntax_t syntax)
4313
0
{
4314
0
  const CHAR_T *next = p;
4315
0
  boolean next_backslash = *next == '\\';
4316
0
  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4317
4318
0
  return
4319
       /* Before a subexpression?  */
4320
0
       (syntax & RE_NO_BK_PARENS ? *next == ')'
4321
0
        : next_backslash && next_next && *next_next == ')')
4322
       /* Before an alternative?  */
4323
0
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4324
0
        : next_backslash && next_next && *next_next == '|');
4325
0
}
4326
4327
#else /* not INSIDE_RECURSION */
4328
4329
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4330
   false if it's not.  */
4331
4332
static boolean
4333
group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4334
0
{
4335
0
  int this_element;
4336
4337
0
  for (this_element = compile_stack.avail - 1;
4338
0
       this_element >= 0;
4339
0
       this_element--)
4340
0
    if (compile_stack.stack[this_element].regnum == regnum)
4341
0
      return true;
4342
4343
0
  return false;
4344
0
}
4345
#endif /* not INSIDE_RECURSION */
4346
4347
#ifdef INSIDE_RECURSION
4348
4349
#ifdef WCHAR
4350
/* This insert space, which size is "num", into the pattern at "loc".
4351
   "end" must point the end of the allocated buffer.  */
4352
static void
4353
insert_space (int num, CHAR_T *loc, CHAR_T *end)
4354
{
4355
  register CHAR_T *pto = end;
4356
  register CHAR_T *pfrom = end - num;
4357
4358
  while (pfrom >= loc)
4359
    *pto-- = *pfrom--;
4360
}
4361
#endif /* WCHAR */
4362
4363
#ifdef WCHAR
4364
static reg_errcode_t
4365
wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4366
                   const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4367
                   reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4368
{
4369
  const CHAR_T *p = *p_ptr;
4370
  CHAR_T range_start, range_end;
4371
  reg_errcode_t ret;
4372
# ifdef _LIBC
4373
  uint32_t nrules;
4374
  uint32_t start_val, end_val;
4375
# endif
4376
  if (p == pend)
4377
    return REG_ERANGE;
4378
4379
# ifdef _LIBC
4380
  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4381
  if (nrules != 0)
4382
    {
4383
      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4384
                   _NL_COLLATE_COLLSEQWC);
4385
      const unsigned char *extra = (const unsigned char *)
4386
  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4387
4388
      if (range_start_char < -1)
4389
  {
4390
    /* range_start is a collating symbol.  */
4391
    int32_t *wextra;
4392
    /* Retreive the index and get collation sequence value.  */
4393
    wextra = (int32_t*)(extra + char_set[-range_start_char]);
4394
    start_val = wextra[1 + *wextra];
4395
  }
4396
      else
4397
  start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4398
4399
      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4400
4401
      /* Report an error if the range is empty and the syntax prohibits
4402
   this.  */
4403
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4404
       && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4405
4406
      /* Insert space to the end of the char_ranges.  */
4407
      insert_space(2, b - char_set[5] - 2, b - 1);
4408
      *(b - char_set[5] - 2) = (wchar_t)start_val;
4409
      *(b - char_set[5] - 1) = (wchar_t)end_val;
4410
      char_set[4]++; /* ranges_index */
4411
    }
4412
  else
4413
# endif
4414
    {
4415
      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4416
  range_start_char;
4417
      range_end = TRANSLATE (p[0]);
4418
      /* Report an error if the range is empty and the syntax prohibits
4419
   this.  */
4420
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4421
       && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4422
4423
      /* Insert space to the end of the char_ranges.  */
4424
      insert_space(2, b - char_set[5] - 2, b - 1);
4425
      *(b - char_set[5] - 2) = range_start;
4426
      *(b - char_set[5] - 1) = range_end;
4427
      char_set[4]++; /* ranges_index */
4428
    }
4429
  /* Have to increment the pointer into the pattern string, so the
4430
     caller isn't still at the ending character.  */
4431
  (*p_ptr)++;
4432
4433
  return ret;
4434
}
4435
#else /* BYTE */
4436
/* Read the ending character of a range (in a bracket expression) from the
4437
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4438
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4439
   Then we set the translation of all bits between the starting and
4440
   ending characters (inclusive) in the compiled pattern B.
4441
4442
   Return an error code.
4443
4444
   We use these short variable names so we can use the same macros as
4445
   `regex_compile' itself.  */
4446
4447
static reg_errcode_t
4448
byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4449
                    const char *pend, RE_TRANSLATE_TYPE translate,
4450
                    reg_syntax_t syntax, unsigned char *b)
4451
0
{
4452
0
  unsigned this_char;
4453
0
  const char *p = *p_ptr;
4454
0
  reg_errcode_t ret;
4455
# if _LIBC
4456
  const unsigned char *collseq;
4457
  unsigned int start_colseq;
4458
  unsigned int end_colseq;
4459
# else
4460
0
  unsigned end_char;
4461
0
# endif
4462
4463
0
  if (p == pend)
4464
0
    return REG_ERANGE;
4465
4466
  /* Have to increment the pointer into the pattern string, so the
4467
     caller isn't still at the ending character.  */
4468
0
  (*p_ptr)++;
4469
4470
  /* Report an error if the range is empty and the syntax prohibits this.  */
4471
0
  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4472
4473
# if _LIBC
4474
  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4475
             _NL_COLLATE_COLLSEQMB);
4476
4477
  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4478
  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4479
  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4480
    {
4481
      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4482
4483
      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4484
  {
4485
    SET_LIST_BIT (TRANSLATE (this_char));
4486
    ret = REG_NOERROR;
4487
  }
4488
    }
4489
# else
4490
  /* Here we see why `this_char' has to be larger than an `unsigned
4491
     char' -- we would otherwise go into an infinite loop, since all
4492
     characters <= 0xff.  */
4493
0
  range_start_char = TRANSLATE (range_start_char);
4494
  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4495
     and some compilers cast it to int implicitly, so following for_loop
4496
     may fall to (almost) infinite loop.
4497
     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4498
     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4499
0
  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4500
4501
0
  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4502
0
    {
4503
0
      SET_LIST_BIT (TRANSLATE (this_char));
4504
0
      ret = REG_NOERROR;
4505
0
    }
4506
0
# endif
4507
4508
0
  return ret;
4509
0
}
4510
#endif /* WCHAR */
4511

4512
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4513
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4514
   characters can start a string that matches the pattern.  This fastmap
4515
   is used by re_search to skip quickly over impossible starting points.
4516
4517
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4518
   area as BUFP->fastmap.
4519
4520
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4521
   the pattern buffer.
4522
4523
   Returns 0 if we succeed, -2 if an internal error.   */
4524
4525
#ifdef WCHAR
4526
/* local function for re_compile_fastmap.
4527
   truncate wchar_t character to char.  */
4528
static unsigned char truncate_wchar (CHAR_T c);
4529
4530
static unsigned char
4531
truncate_wchar (CHAR_T c)
4532
{
4533
  unsigned char buf[MB_CUR_MAX];
4534
  mbstate_t state;
4535
  int retval;
4536
  memset (&state, '\0', sizeof (state));
4537
# ifdef _LIBC
4538
  retval = __wcrtomb (buf, c, &state);
4539
# else
4540
  retval = wcrtomb (buf, c, &state);
4541
# endif
4542
  return retval > 0 ? buf[0] : (unsigned char) c;
4543
}
4544
#endif /* WCHAR */
4545
4546
static int
4547
PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4548
53.8k
{
4549
53.8k
  int j, k;
4550
53.8k
#ifdef MATCH_MAY_ALLOCATE
4551
53.8k
  PREFIX(fail_stack_type) fail_stack;
4552
53.8k
#endif
4553
53.8k
#ifndef REGEX_MALLOC
4554
53.8k
  char *destination;
4555
53.8k
#endif
4556
4557
53.8k
  register char *fastmap = bufp->fastmap;
4558
4559
#ifdef WCHAR
4560
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4561
     pattern to (char*) in regex_compile.  */
4562
  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4563
  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4564
#else /* BYTE */
4565
53.8k
  UCHAR_T *pattern = bufp->buffer;
4566
53.8k
  register UCHAR_T *pend = pattern + bufp->used;
4567
53.8k
#endif /* WCHAR */
4568
53.8k
  UCHAR_T *p = pattern;
4569
4570
#ifdef REL_ALLOC
4571
  /* This holds the pointer to the failure stack, when
4572
     it is allocated relocatably.  */
4573
  fail_stack_elt_t *failure_stack_ptr;
4574
#endif
4575
4576
  /* Assume that each path through the pattern can be null until
4577
     proven otherwise.  We set this false at the bottom of switch
4578
     statement, to which we get only if a particular path doesn't
4579
     match the empty string.  */
4580
53.8k
  boolean path_can_be_null = true;
4581
4582
  /* We aren't doing a `succeed_n' to begin with.  */
4583
53.8k
  boolean succeed_n_p = false;
4584
4585
53.8k
  assert (fastmap != NULL && p != NULL);
4586
4587
53.8k
  INIT_FAIL_STACK ();
4588
53.8k
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4589
53.8k
  bufp->fastmap_accurate = 1;     /* It will be when we're done.  */
4590
53.8k
  bufp->can_be_null = 0;
4591
4592
107k
  while (1)
4593
107k
    {
4594
107k
      if (p == pend || *p == (UCHAR_T) succeed)
4595
53.8k
  {
4596
    /* We have reached the (effective) end of pattern.  */
4597
53.8k
    if (!FAIL_STACK_EMPTY ())
4598
0
      {
4599
0
        bufp->can_be_null |= path_can_be_null;
4600
4601
        /* Reset for next path.  */
4602
0
        path_can_be_null = true;
4603
4604
0
        p = fail_stack.stack[--fail_stack.avail].pointer;
4605
4606
0
        continue;
4607
0
      }
4608
53.8k
    else
4609
53.8k
      break;
4610
53.8k
  }
4611
4612
      /* We should never be about to go beyond the end of the pattern.  */
4613
53.8k
      assert (p < pend);
4614
4615
53.8k
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4616
53.8k
  {
4617
4618
        /* I guess the idea here is to simply not bother with a fastmap
4619
           if a backreference is used, since it's too hard to figure out
4620
           the fastmap for the corresponding group.  Setting
4621
           `can_be_null' stops `re_search_2' from using the fastmap, so
4622
           that is all we do.  */
4623
0
  case duplicate:
4624
0
    bufp->can_be_null = 1;
4625
0
          goto done;
4626
4627
4628
      /* Following are the cases which match a character.  These end
4629
         with `break'.  */
4630
4631
#ifdef WCHAR
4632
  case exactn:
4633
          fastmap[truncate_wchar(p[1])] = 1;
4634
    break;
4635
#else /* BYTE */
4636
163
  case exactn:
4637
163
          fastmap[p[1]] = 1;
4638
163
    break;
4639
0
#endif /* WCHAR */
4640
#ifdef MBS_SUPPORT
4641
  case exactn_bin:
4642
    fastmap[p[1]] = 1;
4643
    break;
4644
#endif
4645
4646
#ifdef WCHAR
4647
        /* It is hard to distinguish fastmap from (multi byte) characters
4648
           which depends on current locale.  */
4649
        case charset:
4650
  case charset_not:
4651
  case wordchar:
4652
  case notwordchar:
4653
          bufp->can_be_null = 1;
4654
          goto done;
4655
#else /* BYTE */
4656
53.6k
        case charset:
4657
5.99M
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4658
5.93M
      if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4659
107k
              fastmap[j] = 1;
4660
53.6k
    break;
4661
4662
4663
0
  case charset_not:
4664
    /* Chars beyond end of map must be allowed.  */
4665
0
    for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4666
0
            fastmap[j] = 1;
4667
4668
0
    for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4669
0
      if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4670
0
              fastmap[j] = 1;
4671
0
          break;
4672
4673
4674
0
  case wordchar:
4675
0
    for (j = 0; j < (1 << BYTEWIDTH); j++)
4676
0
      if (SYNTAX (j) == Sword)
4677
0
        fastmap[j] = 1;
4678
0
    break;
4679
4680
4681
0
  case notwordchar:
4682
0
    for (j = 0; j < (1 << BYTEWIDTH); j++)
4683
0
      if (SYNTAX (j) != Sword)
4684
0
        fastmap[j] = 1;
4685
0
    break;
4686
0
#endif /* WCHAR */
4687
4688
0
        case anychar:
4689
0
    {
4690
0
      int fastmap_newline = fastmap['\n'];
4691
4692
      /* `.' matches anything ...  */
4693
0
      for (j = 0; j < (1 << BYTEWIDTH); j++)
4694
0
        fastmap[j] = 1;
4695
4696
      /* ... except perhaps newline.  */
4697
0
      if (!(bufp->syntax & RE_DOT_NEWLINE))
4698
0
        fastmap['\n'] = fastmap_newline;
4699
4700
      /* Return if we have already set `can_be_null'; if we have,
4701
         then the fastmap is irrelevant.  Something's wrong here.  */
4702
0
      else if (bufp->can_be_null)
4703
0
        goto done;
4704
4705
      /* Otherwise, have to check alternative paths.  */
4706
0
      break;
4707
0
    }
4708
4709
#ifdef emacs
4710
        case syntaxspec:
4711
    k = *p++;
4712
    for (j = 0; j < (1 << BYTEWIDTH); j++)
4713
      if (SYNTAX (j) == (enum syntaxcode) k)
4714
        fastmap[j] = 1;
4715
    break;
4716
4717
4718
  case notsyntaxspec:
4719
    k = *p++;
4720
    for (j = 0; j < (1 << BYTEWIDTH); j++)
4721
      if (SYNTAX (j) != (enum syntaxcode) k)
4722
        fastmap[j] = 1;
4723
    break;
4724
4725
4726
      /* All cases after this match the empty string.  These end with
4727
         `continue'.  */
4728
4729
4730
  case before_dot:
4731
  case at_dot:
4732
  case after_dot:
4733
          continue;
4734
#endif /* emacs */
4735
4736
4737
0
        case no_op:
4738
0
        case begline:
4739
0
        case endline:
4740
0
  case begbuf:
4741
0
  case endbuf:
4742
0
  case wordbound:
4743
0
  case notwordbound:
4744
0
  case wordbeg:
4745
0
  case wordend:
4746
0
        case push_dummy_failure:
4747
0
          continue;
4748
4749
4750
0
  case jump_n:
4751
0
        case pop_failure_jump:
4752
0
  case maybe_pop_jump:
4753
0
  case jump:
4754
0
        case jump_past_alt:
4755
0
  case dummy_failure_jump:
4756
0
          EXTRACT_NUMBER_AND_INCR (j, p);
4757
0
    p += j;
4758
0
    if (j > 0)
4759
0
      continue;
4760
4761
          /* Jump backward implies we just went through the body of a
4762
             loop and matched nothing.  Opcode jumped to should be
4763
             `on_failure_jump' or `succeed_n'.  Just treat it like an
4764
             ordinary jump.  For a * loop, it has pushed its failure
4765
             point already; if so, discard that as redundant.  */
4766
0
          if ((re_opcode_t) *p != on_failure_jump
4767
0
        && (re_opcode_t) *p != succeed_n)
4768
0
      continue;
4769
4770
0
          p++;
4771
0
          EXTRACT_NUMBER_AND_INCR (j, p);
4772
0
          p += j;
4773
4774
          /* If what's on the stack is where we are now, pop it.  */
4775
0
          if (!FAIL_STACK_EMPTY ()
4776
0
        && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4777
0
            fail_stack.avail--;
4778
4779
0
          continue;
4780
4781
4782
0
        case on_failure_jump:
4783
0
        case on_failure_keep_string_jump:
4784
0
  handle_on_failure_jump:
4785
0
          EXTRACT_NUMBER_AND_INCR (j, p);
4786
4787
          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4788
             end of the pattern.  We don't want to push such a point,
4789
             since when we restore it above, entering the switch will
4790
             increment `p' past the end of the pattern.  We don't need
4791
             to push such a point since we obviously won't find any more
4792
             fastmap entries beyond `pend'.  Such a pattern can match
4793
             the null string, though.  */
4794
0
          if (p + j < pend)
4795
0
            {
4796
0
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4797
0
    {
4798
0
      RESET_FAIL_STACK ();
4799
0
      return -2;
4800
0
    }
4801
0
            }
4802
0
          else
4803
0
            bufp->can_be_null = 1;
4804
4805
0
          if (succeed_n_p)
4806
0
            {
4807
0
              EXTRACT_NUMBER_AND_INCR (k, p);  /* Skip the n.  */
4808
0
              succeed_n_p = false;
4809
0
      }
4810
4811
0
          continue;
4812
4813
4814
0
  case succeed_n:
4815
          /* Get to the number of times to succeed.  */
4816
0
          p += OFFSET_ADDRESS_SIZE;
4817
4818
          /* Increment p past the n for when k != 0.  */
4819
0
          EXTRACT_NUMBER_AND_INCR (k, p);
4820
0
          if (k == 0)
4821
0
      {
4822
0
              p -= 2 * OFFSET_ADDRESS_SIZE;
4823
0
          succeed_n_p = true;  /* Spaghetti code alert.  */
4824
0
              goto handle_on_failure_jump;
4825
0
            }
4826
0
          continue;
4827
4828
4829
0
  case set_number_at:
4830
0
          p += 2 * OFFSET_ADDRESS_SIZE;
4831
0
          continue;
4832
4833
4834
0
  case start_memory:
4835
0
        case stop_memory:
4836
0
    p += 2;
4837
0
    continue;
4838
4839
4840
0
  default:
4841
0
          abort (); /* We have listed all the cases.  */
4842
53.8k
        } /* switch *p++ */
4843
4844
      /* Getting here means we have found the possible starting
4845
         characters for one path of the pattern -- and that the empty
4846
         string does not match.  We need not follow this path further.
4847
         Instead, look at the next alternative (remembered on the
4848
         stack), or quit if no more.  The test at the top of the loop
4849
         does these things.  */
4850
53.8k
      path_can_be_null = false;
4851
53.8k
      p = pend;
4852
53.8k
    } /* while p */
4853
4854
  /* Set `can_be_null' for the last path (also the first path, if the
4855
     pattern is empty).  */
4856
53.8k
  bufp->can_be_null |= path_can_be_null;
4857
4858
53.8k
 done:
4859
53.8k
  RESET_FAIL_STACK ();
4860
53.8k
  return 0;
4861
53.8k
}
4862
4863
#else /* not INSIDE_RECURSION */
4864
4865
int
4866
re_compile_fastmap (struct re_pattern_buffer *bufp)
4867
53.8k
{
4868
# ifdef MBS_SUPPORT
4869
  if (MB_CUR_MAX != 1)
4870
    return wcs_re_compile_fastmap(bufp);
4871
  else
4872
# endif
4873
53.8k
    return byte_re_compile_fastmap(bufp);
4874
53.8k
} /* re_compile_fastmap */
4875
#ifdef _LIBC
4876
weak_alias (__re_compile_fastmap, re_compile_fastmap)
4877
#endif
4878

4879
4880
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4881
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4882
   this memory for recording register information.  STARTS and ENDS
4883
   must be allocated using the malloc library routine, and must each
4884
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4885
4886
   If NUM_REGS == 0, then subsequent matches should allocate their own
4887
   register data.
4888
4889
   Unless this function is called, the first search or match using
4890
   PATTERN_BUFFER will allocate its own register data, without
4891
   freeing the old data.  */
4892
4893
void
4894
re_set_registers (struct re_pattern_buffer *bufp,
4895
                  struct re_registers *regs, unsigned num_regs,
4896
                  regoff_t *starts, regoff_t *ends)
4897
0
{
4898
0
  if (num_regs)
4899
0
    {
4900
0
      bufp->regs_allocated = REGS_REALLOCATE;
4901
0
      regs->num_regs = num_regs;
4902
0
      regs->start = starts;
4903
0
      regs->end = ends;
4904
0
    }
4905
0
  else
4906
0
    {
4907
0
      bufp->regs_allocated = REGS_UNALLOCATED;
4908
0
      regs->num_regs = 0;
4909
0
      regs->start = regs->end = (regoff_t *) 0;
4910
0
    }
4911
0
}
4912
#ifdef _LIBC
4913
weak_alias (__re_set_registers, re_set_registers)
4914
#endif
4915

4916
/* Searching routines.  */
4917
4918
/* Like re_search_2, below, but only one string is specified, and
4919
   doesn't let you say where to stop matching.  */
4920
4921
int
4922
re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4923
           int startpos, int range, struct re_registers *regs)
4924
0
{
4925
0
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4926
0
          regs, size);
4927
0
}
4928
#ifdef _LIBC
4929
weak_alias (__re_search, re_search)
4930
#endif
4931
4932
4933
/* Using the compiled pattern in BUFP->buffer, first tries to match the
4934
   virtual concatenation of STRING1 and STRING2, starting first at index
4935
   STARTPOS, then at STARTPOS + 1, and so on.
4936
4937
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4938
4939
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4940
   only at STARTPOS; in general, the last start tried is STARTPOS +
4941
   RANGE.
4942
4943
   In REGS, return the indices of the virtual concatenation of STRING1
4944
   and STRING2 that matched the entire BUFP->buffer and its contained
4945
   subexpressions.
4946
4947
   Do not consider matching one past the index STOP in the virtual
4948
   concatenation of STRING1 and STRING2.
4949
4950
   We return either the position in the strings at which the match was
4951
   found, -1 if no match, or -2 if error (such as failure
4952
   stack overflow).  */
4953
4954
int
4955
re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4956
             const char *string2, int size2, int startpos, int range,
4957
             struct re_registers *regs, int stop)
4958
0
{
4959
# ifdef MBS_SUPPORT
4960
  if (MB_CUR_MAX != 1)
4961
    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962
          range, regs, stop);
4963
  else
4964
# endif
4965
0
    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4966
0
           range, regs, stop);
4967
0
} /* re_search_2 */
4968
#ifdef _LIBC
4969
weak_alias (__re_search_2, re_search_2)
4970
#endif
4971
4972
#endif /* not INSIDE_RECURSION */
4973
4974
#ifdef INSIDE_RECURSION
4975
4976
#ifdef MATCH_MAY_ALLOCATE
4977
0
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4978
#else
4979
# define FREE_VAR(var) free (var); var = NULL
4980
#endif
4981
4982
#ifdef WCHAR
4983
# define MAX_ALLOCA_SIZE  2000
4984
4985
# define FREE_WCS_BUFFERS() \
4986
  do {                        \
4987
    if (size1 > MAX_ALLOCA_SIZE)                \
4988
      {                       \
4989
  free (wcs_string1);                 \
4990
  free (mbs_offset1);                 \
4991
      }                       \
4992
    else                      \
4993
      {                       \
4994
  FREE_VAR (wcs_string1);                 \
4995
  FREE_VAR (mbs_offset1);                 \
4996
      }                       \
4997
    if (size2 > MAX_ALLOCA_SIZE)                \
4998
      {                       \
4999
  free (wcs_string2);                 \
5000
  free (mbs_offset2);                 \
5001
      }                       \
5002
    else                      \
5003
      {                       \
5004
  FREE_VAR (wcs_string2);                 \
5005
  FREE_VAR (mbs_offset2);                 \
5006
      }                       \
5007
  } while (0)
5008
5009
#endif
5010
5011
5012
static int
5013
PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5014
                     int size1, const char *string2, int size2,
5015
                     int startpos, int range,
5016
                     struct re_registers *regs, int stop)
5017
0
{
5018
0
  int val;
5019
0
  register char *fastmap = bufp->fastmap;
5020
0
  register RE_TRANSLATE_TYPE translate = bufp->translate;
5021
0
  int total_size = size1 + size2;
5022
0
  int endpos = startpos + range;
5023
#ifdef WCHAR
5024
  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5025
  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5026
  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5027
  int wcs_size1 = 0, wcs_size2 = 0;
5028
  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5029
  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5030
  /* They hold whether each wchar_t is binary data or not.  */
5031
  char *is_binary = NULL;
5032
#endif /* WCHAR */
5033
5034
  /* Check for out-of-range STARTPOS.  */
5035
0
  if (startpos < 0 || startpos > total_size)
5036
0
    return -1;
5037
5038
  /* Fix up RANGE if it might eventually take us outside
5039
     the virtual concatenation of STRING1 and STRING2.
5040
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5041
0
  if (endpos < 0)
5042
0
    range = 0 - startpos;
5043
0
  else if (endpos > total_size)
5044
0
    range = total_size - startpos;
5045
5046
  /* If the search isn't to be a backwards one, don't waste time in a
5047
     search for a pattern that must be anchored.  */
5048
0
  if (bufp->used > 0 && range > 0
5049
0
      && ((re_opcode_t) bufp->buffer[0] == begbuf
5050
    /* `begline' is like `begbuf' if it cannot match at newlines.  */
5051
0
    || ((re_opcode_t) bufp->buffer[0] == begline
5052
0
        && !bufp->newline_anchor)))
5053
0
    {
5054
0
      if (startpos > 0)
5055
0
  return -1;
5056
0
      else
5057
0
  range = 1;
5058
0
    }
5059
5060
#ifdef emacs
5061
  /* In a forward search for something that starts with \=.
5062
     don't keep searching past point.  */
5063
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5064
    {
5065
      range = PT - startpos;
5066
      if (range <= 0)
5067
  return -1;
5068
    }
5069
#endif /* emacs */
5070
5071
  /* Update the fastmap now if not correct already.  */
5072
0
  if (fastmap && !bufp->fastmap_accurate)
5073
0
    if (re_compile_fastmap (bufp) == -2)
5074
0
      return -2;
5075
5076
#ifdef WCHAR
5077
  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5078
     fill them with converted string.  */
5079
  if (size1 != 0)
5080
    {
5081
      if (size1 > MAX_ALLOCA_SIZE)
5082
  {
5083
    wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5084
    mbs_offset1 = TALLOC (size1 + 1, int);
5085
    is_binary = TALLOC (size1 + 1, char);
5086
  }
5087
      else
5088
  {
5089
    wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5090
    mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5091
    is_binary = REGEX_TALLOC (size1 + 1, char);
5092
  }
5093
      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5094
  {
5095
    if (size1 > MAX_ALLOCA_SIZE)
5096
      {
5097
        free (wcs_string1);
5098
        free (mbs_offset1);
5099
        free (is_binary);
5100
      }
5101
    else
5102
      {
5103
        FREE_VAR (wcs_string1);
5104
        FREE_VAR (mbs_offset1);
5105
        FREE_VAR (is_binary);
5106
      }
5107
    return -2;
5108
  }
5109
      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5110
             mbs_offset1, is_binary);
5111
      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5112
      if (size1 > MAX_ALLOCA_SIZE)
5113
  free (is_binary);
5114
      else
5115
  FREE_VAR (is_binary);
5116
    }
5117
  if (size2 != 0)
5118
    {
5119
      if (size2 > MAX_ALLOCA_SIZE)
5120
  {
5121
    wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5122
    mbs_offset2 = TALLOC (size2 + 1, int);
5123
    is_binary = TALLOC (size2 + 1, char);
5124
  }
5125
      else
5126
  {
5127
    wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5128
    mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5129
    is_binary = REGEX_TALLOC (size2 + 1, char);
5130
  }
5131
      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5132
  {
5133
    FREE_WCS_BUFFERS ();
5134
    if (size2 > MAX_ALLOCA_SIZE)
5135
      free (is_binary);
5136
    else
5137
      FREE_VAR (is_binary);
5138
    return -2;
5139
  }
5140
      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5141
             mbs_offset2, is_binary);
5142
      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5143
      if (size2 > MAX_ALLOCA_SIZE)
5144
  free (is_binary);
5145
      else
5146
  FREE_VAR (is_binary);
5147
    }
5148
#endif /* WCHAR */
5149
5150
5151
  /* Loop through the string, looking for a place to start matching.  */
5152
0
  for (;;)
5153
0
    {
5154
      /* If a fastmap is supplied, skip quickly over characters that
5155
         cannot be the start of a match.  If the pattern can match the
5156
         null string, however, we don't need to skip characters; we want
5157
         the first null string.  */
5158
0
      if (fastmap && startpos < total_size && !bufp->can_be_null)
5159
0
  {
5160
0
    if (range > 0) /* Searching forwards.  */
5161
0
      {
5162
0
        register const char *d;
5163
0
        register int lim = 0;
5164
0
        int irange = range;
5165
5166
0
              if (startpos < size1 && startpos + range >= size1)
5167
0
                lim = range - (size1 - startpos);
5168
5169
0
        d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5170
5171
              /* Written out as an if-else to avoid testing `translate'
5172
                 inside the loop.  */
5173
0
        if (translate)
5174
0
                while (range > lim
5175
0
                       && !fastmap[(unsigned char)
5176
0
           translate[(unsigned char) *d++]])
5177
0
                  range--;
5178
0
        else
5179
0
                while (range > lim && !fastmap[(unsigned char) *d++])
5180
0
                  range--;
5181
5182
0
        startpos += irange - range;
5183
0
      }
5184
0
    else        /* Searching backwards.  */
5185
0
      {
5186
0
        register CHAR_T c = (size1 == 0 || startpos >= size1
5187
0
              ? string2[startpos - size1]
5188
0
              : string1[startpos]);
5189
5190
0
        if (!fastmap[(unsigned char) TRANSLATE (c)])
5191
0
    goto advance;
5192
0
      }
5193
0
  }
5194
5195
      /* If can't match the null string, and that's all we have left, fail.  */
5196
0
      if (range >= 0 && startpos == total_size && fastmap
5197
0
          && !bufp->can_be_null)
5198
0
       {
5199
#ifdef WCHAR
5200
         FREE_WCS_BUFFERS ();
5201
#endif
5202
0
         return -1;
5203
0
       }
5204
5205
#ifdef WCHAR
5206
      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5207
             size2, startpos, regs, stop,
5208
             wcs_string1, wcs_size1,
5209
             wcs_string2, wcs_size2,
5210
             mbs_offset1, mbs_offset2);
5211
#else /* BYTE */
5212
0
      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5213
0
              size2, startpos, regs, stop);
5214
0
#endif /* BYTE */
5215
5216
0
#ifndef REGEX_MALLOC
5217
# ifdef C_ALLOCA
5218
      alloca (0);
5219
# endif
5220
0
#endif
5221
5222
0
      if (val >= 0)
5223
0
  {
5224
#ifdef WCHAR
5225
    FREE_WCS_BUFFERS ();
5226
#endif
5227
0
    return startpos;
5228
0
  }
5229
5230
0
      if (val == -2)
5231
0
  {
5232
#ifdef WCHAR
5233
    FREE_WCS_BUFFERS ();
5234
#endif
5235
0
    return -2;
5236
0
  }
5237
5238
0
    advance:
5239
0
      if (!range)
5240
0
        break;
5241
0
      else if (range > 0)
5242
0
        {
5243
0
          range--;
5244
0
          startpos++;
5245
0
        }
5246
0
      else
5247
0
        {
5248
0
          range++;
5249
0
          startpos--;
5250
0
        }
5251
0
    }
5252
#ifdef WCHAR
5253
  FREE_WCS_BUFFERS ();
5254
#endif
5255
0
  return -1;
5256
0
}
5257
5258
#ifdef WCHAR
5259
/* This converts PTR, a pointer into one of the search wchar_t strings
5260
   `string1' and `string2' into an multibyte string offset from the
5261
   beginning of that string. We use mbs_offset to optimize.
5262
   See convert_mbs_to_wcs.  */
5263
# define POINTER_TO_OFFSET(ptr)           \
5264
  (FIRST_STRING_P (ptr)             \
5265
   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))  \
5266
   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)  \
5267
     + csize1)))
5268
#else /* BYTE */
5269
/* This converts PTR, a pointer into one of the search strings `string1'
5270
   and `string2' into an offset from the beginning of that string.  */
5271
# define POINTER_TO_OFFSET(ptr)     \
5272
0
  (FIRST_STRING_P (ptr)        \
5273
0
   ? ((regoff_t) ((ptr) - string1))    \
5274
0
   : ((regoff_t) ((ptr) - string2 + size1)))
5275
#endif /* WCHAR */
5276
5277
/* Macros for dealing with the split strings in re_match_2.  */
5278
5279
0
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5280
5281
/* Call before fetching a character with *d.  This switches over to
5282
   string2 if necessary.  */
5283
#define PREFETCH()              \
5284
0
  while (d == dend)                 \
5285
0
    {                 \
5286
0
      /* End of string2 => fail.  */          \
5287
0
      if (dend == end_match_2)             \
5288
0
        goto fail;             \
5289
0
      /* End of string1 => advance to string2.  */      \
5290
0
      d = string2;                    \
5291
0
      dend = end_match_2;           \
5292
0
    }
5293
5294
/* Test if at very beginning or at very end of the virtual concatenation
5295
   of `string1' and `string2'.  If only one string, it's `string2'.  */
5296
0
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5297
0
#define AT_STRINGS_END(d) ((d) == end2)
5298
5299
5300
/* Test if D points to a character which is word-constituent.  We have
5301
   two special cases to check for: if past the end of string1, look at
5302
   the first character in string2; and if before the beginning of
5303
   string2, look at the last character in string1.  */
5304
#ifdef WCHAR
5305
/* Use internationalized API instead of SYNTAX.  */
5306
# define WORDCHAR_P(d)              \
5307
  (iswalnum ((wint_t)((d) == end1 ? *string2        \
5308
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0   \
5309
   || ((d) == end1 ? *string2           \
5310
       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5311
#else /* BYTE */
5312
# define WORDCHAR_P(d)              \
5313
0
  (SYNTAX ((d) == end1 ? *string2          \
5314
0
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))     \
5315
0
   == Sword)
5316
#endif /* WCHAR */
5317
5318
/* Disabled due to a compiler bug -- see comment at case wordbound */
5319
#if 0
5320
/* Test if the character before D and the one at D differ with respect
5321
   to being word-constituent.  */
5322
#define AT_WORD_BOUNDARY(d)           \
5323
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)       \
5324
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5325
#endif
5326
5327
/* Free everything we malloc.  */
5328
#ifdef MATCH_MAY_ALLOCATE
5329
# ifdef WCHAR
5330
#  define FREE_VARIABLES()            \
5331
  do {                  \
5332
    REGEX_FREE_STACK (fail_stack.stack);        \
5333
    FREE_VAR (regstart);            \
5334
    FREE_VAR (regend);              \
5335
    FREE_VAR (old_regstart);            \
5336
    FREE_VAR (old_regend);            \
5337
    FREE_VAR (best_regstart);           \
5338
    FREE_VAR (best_regend);           \
5339
    FREE_VAR (reg_info);            \
5340
    FREE_VAR (reg_dummy);           \
5341
    FREE_VAR (reg_info_dummy);            \
5342
    if (!cant_free_wcs_buf)           \
5343
      {                 \
5344
        FREE_VAR (string1);           \
5345
        FREE_VAR (string2);           \
5346
        FREE_VAR (mbs_offset1);           \
5347
        FREE_VAR (mbs_offset2);           \
5348
      }                 \
5349
  } while (0)
5350
# else /* BYTE */
5351
#  define FREE_VARIABLES()            \
5352
0
  do {                 \
5353
0
    REGEX_FREE_STACK (fail_stack.stack);        \
5354
0
    FREE_VAR (regstart);            \
5355
0
    FREE_VAR (regend);              \
5356
0
    FREE_VAR (old_regstart);            \
5357
0
    FREE_VAR (old_regend);            \
5358
0
    FREE_VAR (best_regstart);           \
5359
0
    FREE_VAR (best_regend);           \
5360
0
    FREE_VAR (reg_info);            \
5361
0
    FREE_VAR (reg_dummy);           \
5362
0
    FREE_VAR (reg_info_dummy);            \
5363
0
  } while (0)
5364
# endif /* WCHAR */
5365
#else
5366
# ifdef WCHAR
5367
#  define FREE_VARIABLES()            \
5368
  do {                  \
5369
    if (!cant_free_wcs_buf)           \
5370
      {                 \
5371
        FREE_VAR (string1);           \
5372
        FREE_VAR (string2);           \
5373
        FREE_VAR (mbs_offset1);           \
5374
        FREE_VAR (mbs_offset2);           \
5375
      }                 \
5376
  } while (0)
5377
# else /* BYTE */
5378
#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5379
# endif /* WCHAR */
5380
#endif /* not MATCH_MAY_ALLOCATE */
5381
5382
/* These values must meet several constraints.  They must not be valid
5383
   register values; since we have a limit of 255 registers (because
5384
   we use only one byte in the pattern for the register number), we can
5385
   use numbers larger than 255.  They must differ by 1, because of
5386
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5387
   be larger than the value for the highest register, so we do not try
5388
   to actually save any registers when none are active.  */
5389
0
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5390
0
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5391

5392
#else /* not INSIDE_RECURSION */
5393
/* Matching routines.  */
5394
5395
#ifndef emacs   /* Emacs never uses this.  */
5396
/* re_match is like re_match_2 except it takes only a single string.  */
5397
5398
int
5399
re_match (struct re_pattern_buffer *bufp, const char *string,
5400
          int size, int pos, struct re_registers *regs)
5401
0
{
5402
0
  int result;
5403
# ifdef MBS_SUPPORT
5404
  if (MB_CUR_MAX != 1)
5405
    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5406
              pos, regs, size,
5407
              NULL, 0, NULL, 0, NULL, NULL);
5408
  else
5409
# endif
5410
0
    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5411
0
          pos, regs, size);
5412
0
# ifndef REGEX_MALLOC
5413
#  ifdef C_ALLOCA
5414
  alloca (0);
5415
#  endif
5416
0
# endif
5417
0
  return result;
5418
0
}
5419
# ifdef _LIBC
5420
weak_alias (__re_match, re_match)
5421
# endif
5422
#endif /* not emacs */
5423
5424
#endif /* not INSIDE_RECURSION */
5425
5426
#ifdef INSIDE_RECURSION
5427
static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5428
                                                  UCHAR_T *end,
5429
          PREFIX(register_info_type) *reg_info);
5430
static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5431
                                                UCHAR_T *end,
5432
          PREFIX(register_info_type) *reg_info);
5433
static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5434
                                                      UCHAR_T *end,
5435
          PREFIX(register_info_type) *reg_info);
5436
static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5437
                                   int len, char *translate);
5438
#else /* not INSIDE_RECURSION */
5439
5440
/* re_match_2 matches the compiled pattern in BUFP against the
5441
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5442
   and SIZE2, respectively).  We start matching at POS, and stop
5443
   matching at STOP.
5444
5445
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5446
   store offsets for the substring each group matched in REGS.  See the
5447
   documentation for exactly how many groups we fill.
5448
5449
   We return -1 if no match, -2 if an internal error (such as the
5450
   failure stack overflowing).  Otherwise, we return the length of the
5451
   matched substring.  */
5452
5453
int
5454
re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5455
            const char *string2, int size2, int pos,
5456
            struct re_registers *regs, int stop)
5457
0
{
5458
0
  int result;
5459
# ifdef MBS_SUPPORT
5460
  if (MB_CUR_MAX != 1)
5461
    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5462
              pos, regs, stop,
5463
              NULL, 0, NULL, 0, NULL, NULL);
5464
  else
5465
# endif
5466
0
    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5467
0
          pos, regs, stop);
5468
5469
0
#ifndef REGEX_MALLOC
5470
# ifdef C_ALLOCA
5471
  alloca (0);
5472
# endif
5473
0
#endif
5474
0
  return result;
5475
0
}
5476
#ifdef _LIBC
5477
weak_alias (__re_match_2, re_match_2)
5478
#endif
5479
5480
#endif /* not INSIDE_RECURSION */
5481
5482
#ifdef INSIDE_RECURSION
5483
5484
#ifdef WCHAR
5485
static int count_mbs_length (int *, int);
5486
5487
/* This check the substring (from 0, to length) of the multibyte string,
5488
   to which offset_buffer correspond. And count how many wchar_t_characters
5489
   the substring occupy. We use offset_buffer to optimization.
5490
   See convert_mbs_to_wcs.  */
5491
5492
static int
5493
count_mbs_length(int *offset_buffer, int length)
5494
{
5495
  int upper, lower;
5496
5497
  /* Check whether the size is valid.  */
5498
  if (length < 0)
5499
    return -1;
5500
5501
  if (offset_buffer == NULL)
5502
    return 0;
5503
5504
  /* If there are no multibyte character, offset_buffer[i] == i.
5505
   Optmize for this case.  */
5506
  if (offset_buffer[length] == length)
5507
    return length;
5508
5509
  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5510
  upper = length;
5511
  lower = 0;
5512
5513
  while (true)
5514
    {
5515
      int middle = (lower + upper) / 2;
5516
      if (middle == lower || middle == upper)
5517
  break;
5518
      if (offset_buffer[middle] > length)
5519
  upper = middle;
5520
      else if (offset_buffer[middle] < length)
5521
  lower = middle;
5522
      else
5523
  return middle;
5524
    }
5525
5526
  return -1;
5527
}
5528
#endif /* WCHAR */
5529
5530
/* This is a separate function so that we can force an alloca cleanup
5531
   afterwards.  */
5532
#ifdef WCHAR
5533
static int
5534
wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5535
                         const char *cstring1, int csize1,
5536
                         const char *cstring2, int csize2,
5537
                         int pos,
5538
       struct re_registers *regs,
5539
                         int stop,
5540
     /* string1 == string2 == NULL means string1/2, size1/2 and
5541
  mbs_offset1/2 need seting up in this function.  */
5542
     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5543
                         wchar_t *string1, int size1,
5544
                         wchar_t *string2, int size2,
5545
     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5546
       int *mbs_offset1, int *mbs_offset2)
5547
#else /* BYTE */
5548
static int
5549
byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5550
                          const char *string1, int size1,
5551
                          const char *string2, int size2,
5552
                          int pos,
5553
        struct re_registers *regs, int stop)
5554
#endif /* BYTE */
5555
0
{
5556
  /* General temporaries.  */
5557
0
  int mcnt;
5558
0
  UCHAR_T *p1;
5559
#ifdef WCHAR
5560
  /* They hold whether each wchar_t is binary data or not.  */
5561
  char *is_binary = NULL;
5562
  /* If true, we can't free string1/2, mbs_offset1/2.  */
5563
  int cant_free_wcs_buf = 1;
5564
#endif /* WCHAR */
5565
5566
  /* Just past the end of the corresponding string.  */
5567
0
  const CHAR_T *end1, *end2;
5568
5569
  /* Pointers into string1 and string2, just past the last characters in
5570
     each to consider matching.  */
5571
0
  const CHAR_T *end_match_1, *end_match_2;
5572
5573
  /* Where we are in the data, and the end of the current string.  */
5574
0
  const CHAR_T *d, *dend;
5575
5576
  /* Where we are in the pattern, and the end of the pattern.  */
5577
#ifdef WCHAR
5578
  UCHAR_T *pattern, *p;
5579
  register UCHAR_T *pend;
5580
#else /* BYTE */
5581
0
  UCHAR_T *p = bufp->buffer;
5582
0
  register UCHAR_T *pend = p + bufp->used;
5583
0
#endif /* WCHAR */
5584
5585
  /* Mark the opcode just after a start_memory, so we can test for an
5586
     empty subpattern when we get to the stop_memory.  */
5587
0
  UCHAR_T *just_past_start_mem = 0;
5588
5589
  /* We use this to map every character in the string.  */
5590
0
  RE_TRANSLATE_TYPE translate = bufp->translate;
5591
5592
  /* Failure point stack.  Each place that can handle a failure further
5593
     down the line pushes a failure point on this stack.  It consists of
5594
     restart, regend, and reg_info for all registers corresponding to
5595
     the subexpressions we're currently inside, plus the number of such
5596
     registers, and, finally, two char *'s.  The first char * is where
5597
     to resume scanning the pattern; the second one is where to resume
5598
     scanning the strings.  If the latter is zero, the failure point is
5599
     a ``dummy''; if a failure happens and the failure point is a dummy,
5600
     it gets discarded and the next one is tried.  */
5601
0
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5602
0
  PREFIX(fail_stack_type) fail_stack;
5603
0
#endif
5604
#ifdef DEBUG
5605
  static unsigned failure_id;
5606
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5607
#endif
5608
5609
#ifdef REL_ALLOC
5610
  /* This holds the pointer to the failure stack, when
5611
     it is allocated relocatably.  */
5612
  fail_stack_elt_t *failure_stack_ptr;
5613
#endif
5614
5615
  /* We fill all the registers internally, independent of what we
5616
     return, for use in backreferences.  The number here includes
5617
     an element for register zero.  */
5618
0
  size_t num_regs = bufp->re_nsub + 1;
5619
5620
  /* The currently active registers.  */
5621
0
  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5622
0
  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5623
5624
  /* Information on the contents of registers. These are pointers into
5625
     the input strings; they record just what was matched (on this
5626
     attempt) by a subexpression part of the pattern, that is, the
5627
     regnum-th regstart pointer points to where in the pattern we began
5628
     matching and the regnum-th regend points to right after where we
5629
     stopped matching the regnum-th subexpression.  (The zeroth register
5630
     keeps track of what the whole pattern matches.)  */
5631
0
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5632
0
  const CHAR_T **regstart, **regend;
5633
0
#endif
5634
5635
  /* If a group that's operated upon by a repetition operator fails to
5636
     match anything, then the register for its start will need to be
5637
     restored because it will have been set to wherever in the string we
5638
     are when we last see its open-group operator.  Similarly for a
5639
     register's end.  */
5640
0
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5641
0
  const CHAR_T **old_regstart, **old_regend;
5642
0
#endif
5643
5644
  /* The is_active field of reg_info helps us keep track of which (possibly
5645
     nested) subexpressions we are currently in. The matched_something
5646
     field of reg_info[reg_num] helps us tell whether or not we have
5647
     matched any of the pattern so far this time through the reg_num-th
5648
     subexpression.  These two fields get reset each time through any
5649
     loop their register is in.  */
5650
0
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5651
0
  PREFIX(register_info_type) *reg_info;
5652
0
#endif
5653
5654
  /* The following record the register info as found in the above
5655
     variables when we find a match better than any we've seen before.
5656
     This happens as we backtrack through the failure points, which in
5657
     turn happens only if we have not yet matched the entire string. */
5658
0
  unsigned best_regs_set = false;
5659
0
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5660
0
  const CHAR_T **best_regstart, **best_regend;
5661
0
#endif
5662
5663
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5664
     allocate space for that if we're not allocating space for anything
5665
     else (see below).  Also, we never need info about register 0 for
5666
     any of the other register vectors, and it seems rather a kludge to
5667
     treat `best_regend' differently than the rest.  So we keep track of
5668
     the end of the best match so far in a separate variable.  We
5669
     initialize this to NULL so that when we backtrack the first time
5670
     and need to test it, it's not garbage.  */
5671
0
  const CHAR_T *match_end = NULL;
5672
5673
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5674
0
  int set_regs_matched_done = 0;
5675
5676
  /* Used when we pop values we don't care about.  */
5677
0
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5678
0
  const CHAR_T **reg_dummy;
5679
0
  PREFIX(register_info_type) *reg_info_dummy;
5680
0
#endif
5681
5682
#ifdef DEBUG
5683
  /* Counts the total number of registers pushed.  */
5684
  unsigned num_regs_pushed = 0;
5685
#endif
5686
5687
0
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5688
5689
0
  INIT_FAIL_STACK ();
5690
5691
0
#ifdef MATCH_MAY_ALLOCATE
5692
  /* Do not bother to initialize all the register variables if there are
5693
     no groups in the pattern, as it takes a fair amount of time.  If
5694
     there are groups, we include space for register 0 (the whole
5695
     pattern), even though we never use it, since it simplifies the
5696
     array indexing.  We should fix this.  */
5697
0
  if (bufp->re_nsub)
5698
0
    {
5699
0
      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5700
0
      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5701
0
      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5702
0
      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5703
0
      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5704
0
      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5705
0
      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5706
0
      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5707
0
      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5708
5709
0
      if (!(regstart && regend && old_regstart && old_regend && reg_info
5710
0
            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5711
0
        {
5712
0
          FREE_VARIABLES ();
5713
0
          return -2;
5714
0
        }
5715
0
    }
5716
0
  else
5717
0
    {
5718
      /* We must initialize all our variables to NULL, so that
5719
         `FREE_VARIABLES' doesn't try to free them.  */
5720
0
      regstart = regend = old_regstart = old_regend = best_regstart
5721
0
        = best_regend = reg_dummy = NULL;
5722
0
      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5723
0
    }
5724
0
#endif /* MATCH_MAY_ALLOCATE */
5725
5726
  /* The starting position is bogus.  */
5727
#ifdef WCHAR
5728
  if (pos < 0 || pos > csize1 + csize2)
5729
#else /* BYTE */
5730
0
  if (pos < 0 || pos > size1 + size2)
5731
0
#endif
5732
0
    {
5733
0
      FREE_VARIABLES ();
5734
0
      return -1;
5735
0
    }
5736
5737
#ifdef WCHAR
5738
  /* Allocate wchar_t array for string1 and string2 and
5739
     fill them with converted string.  */
5740
  if (string1 == NULL && string2 == NULL)
5741
    {
5742
      /* We need seting up buffers here.  */
5743
5744
      /* We must free wcs buffers in this function.  */
5745
      cant_free_wcs_buf = 0;
5746
5747
      if (csize1 != 0)
5748
  {
5749
    string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5750
    mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5751
    is_binary = REGEX_TALLOC (csize1 + 1, char);
5752
    if (!string1 || !mbs_offset1 || !is_binary)
5753
      {
5754
        FREE_VAR (string1);
5755
        FREE_VAR (mbs_offset1);
5756
        FREE_VAR (is_binary);
5757
        return -2;
5758
      }
5759
  }
5760
      if (csize2 != 0)
5761
  {
5762
    string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5763
    mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5764
    is_binary = REGEX_TALLOC (csize2 + 1, char);
5765
    if (!string2 || !mbs_offset2 || !is_binary)
5766
      {
5767
        FREE_VAR (string1);
5768
        FREE_VAR (mbs_offset1);
5769
        FREE_VAR (string2);
5770
        FREE_VAR (mbs_offset2);
5771
        FREE_VAR (is_binary);
5772
        return -2;
5773
      }
5774
    size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5775
             mbs_offset2, is_binary);
5776
    string2[size2] = L'\0'; /* for a sentinel  */
5777
    FREE_VAR (is_binary);
5778
  }
5779
    }
5780
5781
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5782
     pattern to (char*) in regex_compile.  */
5783
  p = pattern = (CHAR_T*)bufp->buffer;
5784
  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5785
5786
#endif /* WCHAR */
5787
5788
  /* Initialize subexpression text positions to -1 to mark ones that no
5789
     start_memory/stop_memory has been seen for. Also initialize the
5790
     register information struct.  */
5791
0
  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5792
0
    {
5793
0
      regstart[mcnt] = regend[mcnt]
5794
0
        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5795
5796
0
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5797
0
      IS_ACTIVE (reg_info[mcnt]) = 0;
5798
0
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5799
0
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5800
0
    }
5801
5802
  /* We move `string1' into `string2' if the latter's empty -- but not if
5803
     `string1' is null.  */
5804
0
  if (size2 == 0 && string1 != NULL)
5805
0
    {
5806
0
      string2 = string1;
5807
0
      size2 = size1;
5808
0
      string1 = 0;
5809
0
      size1 = 0;
5810
#ifdef WCHAR
5811
      mbs_offset2 = mbs_offset1;
5812
      csize2 = csize1;
5813
      mbs_offset1 = NULL;
5814
      csize1 = 0;
5815
#endif
5816
0
    }
5817
0
  end1 = string1 + size1;
5818
0
  end2 = string2 + size2;
5819
5820
  /* Compute where to stop matching, within the two strings.  */
5821
#ifdef WCHAR
5822
  if (stop <= csize1)
5823
    {
5824
      mcnt = count_mbs_length(mbs_offset1, stop);
5825
      end_match_1 = string1 + mcnt;
5826
      end_match_2 = string2;
5827
    }
5828
  else
5829
    {
5830
      if (stop > csize1 + csize2)
5831
  stop = csize1 + csize2;
5832
      end_match_1 = end1;
5833
      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5834
      end_match_2 = string2 + mcnt;
5835
    }
5836
  if (mcnt < 0)
5837
    { /* count_mbs_length return error.  */
5838
      FREE_VARIABLES ();
5839
      return -1;
5840
    }
5841
#else
5842
0
  if (stop <= size1)
5843
0
    {
5844
0
      end_match_1 = string1 + stop;
5845
0
      end_match_2 = string2;
5846
0
    }
5847
0
  else
5848
0
    {
5849
0
      end_match_1 = end1;
5850
0
      end_match_2 = string2 + stop - size1;
5851
0
    }
5852
0
#endif /* WCHAR */
5853
5854
  /* `p' scans through the pattern as `d' scans through the data.
5855
     `dend' is the end of the input string that `d' points within.  `d'
5856
     is advanced into the following input string whenever necessary, but
5857
     this happens before fetching; therefore, at the beginning of the
5858
     loop, `d' can be pointing at the end of a string, but it cannot
5859
     equal `string2'.  */
5860
#ifdef WCHAR
5861
  if (size1 > 0 && pos <= csize1)
5862
    {
5863
      mcnt = count_mbs_length(mbs_offset1, pos);
5864
      d = string1 + mcnt;
5865
      dend = end_match_1;
5866
    }
5867
  else
5868
    {
5869
      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5870
      d = string2 + mcnt;
5871
      dend = end_match_2;
5872
    }
5873
5874
  if (mcnt < 0)
5875
    { /* count_mbs_length return error.  */
5876
      FREE_VARIABLES ();
5877
      return -1;
5878
    }
5879
#else
5880
0
  if (size1 > 0 && pos <= size1)
5881
0
    {
5882
0
      d = string1 + pos;
5883
0
      dend = end_match_1;
5884
0
    }
5885
0
  else
5886
0
    {
5887
0
      d = string2 + pos - size1;
5888
0
      dend = end_match_2;
5889
0
    }
5890
0
#endif /* WCHAR */
5891
5892
0
  DEBUG_PRINT1 ("The compiled pattern is:\n");
5893
0
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5894
0
  DEBUG_PRINT1 ("The string to match is: `");
5895
0
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5896
0
  DEBUG_PRINT1 ("'\n");
5897
5898
  /* This loops over pattern commands.  It exits by returning from the
5899
     function if the match is complete, or it drops through if the match
5900
     fails at this starting point in the input data.  */
5901
0
  for (;;)
5902
0
    {
5903
#ifdef _LIBC
5904
      DEBUG_PRINT2 ("\n%p: ", p);
5905
#else
5906
0
      DEBUG_PRINT2 ("\n0x%x: ", p);
5907
0
#endif
5908
5909
0
      if (p == pend)
5910
0
  { /* End of pattern means we might have succeeded.  */
5911
0
          DEBUG_PRINT1 ("end of pattern ... ");
5912
5913
    /* If we haven't matched the entire string, and we want the
5914
             longest match, try backtracking.  */
5915
0
          if (d != end_match_2)
5916
0
      {
5917
        /* 1 if this match ends in the same string (string1 or string2)
5918
     as the best previous match.  */
5919
0
        boolean same_str_p;
5920
5921
        /* 1 if this match is the best seen so far.  */
5922
0
        boolean best_match_p;
5923
5924
0
              same_str_p = (FIRST_STRING_P (match_end)
5925
0
                            == MATCHING_IN_FIRST_STRING);
5926
5927
        /* AIX compiler got confused when this was combined
5928
     with the previous declaration.  */
5929
0
        if (same_str_p)
5930
0
    best_match_p = d > match_end;
5931
0
        else
5932
0
    best_match_p = !MATCHING_IN_FIRST_STRING;
5933
5934
0
              DEBUG_PRINT1 ("backtracking.\n");
5935
5936
0
              if (!FAIL_STACK_EMPTY ())
5937
0
                { /* More failure points to try.  */
5938
5939
                  /* If exceeds best match so far, save it.  */
5940
0
                  if (!best_regs_set || best_match_p)
5941
0
                    {
5942
0
                      best_regs_set = true;
5943
0
                      match_end = d;
5944
5945
0
                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5946
5947
0
                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5948
0
                        {
5949
0
                          best_regstart[mcnt] = regstart[mcnt];
5950
0
                          best_regend[mcnt] = regend[mcnt];
5951
0
                        }
5952
0
                    }
5953
0
                  goto fail;
5954
0
                }
5955
5956
              /* If no failure points, don't restore garbage.  And if
5957
                 last match is real best match, don't restore second
5958
                 best one. */
5959
0
              else if (best_regs_set && !best_match_p)
5960
0
                {
5961
0
            restore_best_regs:
5962
                  /* Restore best match.  It may happen that `dend ==
5963
                     end_match_1' while the restored d is in string2.
5964
                     For example, the pattern `x.*y.*z' against the
5965
                     strings `x-' and `y-z-', if the two strings are
5966
                     not consecutive in memory.  */
5967
0
                  DEBUG_PRINT1 ("Restoring best registers.\n");
5968
5969
0
                  d = match_end;
5970
0
                  dend = ((d >= string1 && d <= end1)
5971
0
               ? end_match_1 : end_match_2);
5972
5973
0
      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5974
0
        {
5975
0
          regstart[mcnt] = best_regstart[mcnt];
5976
0
          regend[mcnt] = best_regend[mcnt];
5977
0
        }
5978
0
                }
5979
0
            } /* d != end_match_2 */
5980
5981
0
  succeed_label:
5982
0
          DEBUG_PRINT1 ("Accepting match.\n");
5983
          /* If caller wants register contents data back, do it.  */
5984
0
          if (regs && !bufp->no_sub)
5985
0
      {
5986
        /* Have the register data arrays been allocated?  */
5987
0
              if (bufp->regs_allocated == REGS_UNALLOCATED)
5988
0
                { /* No.  So allocate them with malloc.  We need one
5989
                     extra element beyond `num_regs' for the `-1' marker
5990
                     GNU code uses.  */
5991
0
                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5992
0
                  regs->start = TALLOC (regs->num_regs, regoff_t);
5993
0
                  regs->end = TALLOC (regs->num_regs, regoff_t);
5994
0
                  if (regs->start == NULL || regs->end == NULL)
5995
0
        {
5996
0
          FREE_VARIABLES ();
5997
0
          return -2;
5998
0
        }
5999
0
                  bufp->regs_allocated = REGS_REALLOCATE;
6000
0
                }
6001
0
              else if (bufp->regs_allocated == REGS_REALLOCATE)
6002
0
                { /* Yes.  If we need more elements than were already
6003
                     allocated, reallocate them.  If we need fewer, just
6004
                     leave it alone.  */
6005
0
                  if (regs->num_regs < num_regs + 1)
6006
0
                    {
6007
0
                      regs->num_regs = num_regs + 1;
6008
0
                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6009
0
                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6010
0
                      if (regs->start == NULL || regs->end == NULL)
6011
0
      {
6012
0
        FREE_VARIABLES ();
6013
0
        return -2;
6014
0
      }
6015
0
                    }
6016
0
                }
6017
0
              else
6018
0
    {
6019
      /* These braces fend off a "empty body in an else-statement"
6020
         warning under GCC when assert expands to nothing.  */
6021
0
      assert (bufp->regs_allocated == REGS_FIXED);
6022
0
    }
6023
6024
              /* Convert the pointer data in `regstart' and `regend' to
6025
                 indices.  Register zero has to be set differently,
6026
                 since we haven't kept track of any info for it.  */
6027
0
              if (regs->num_regs > 0)
6028
0
                {
6029
0
                  regs->start[0] = pos;
6030
#ifdef WCHAR
6031
      if (MATCHING_IN_FIRST_STRING)
6032
        regs->end[0] = mbs_offset1 != NULL ?
6033
          mbs_offset1[d-string1] : 0;
6034
      else
6035
        regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6036
               mbs_offset2[d-string2] : 0);
6037
#else
6038
0
                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6039
0
          ? ((regoff_t) (d - string1))
6040
0
                : ((regoff_t) (d - string2 + size1)));
6041
0
#endif /* WCHAR */
6042
0
                }
6043
6044
              /* Go through the first `min (num_regs, regs->num_regs)'
6045
                 registers, since that is all we initialized.  */
6046
0
        for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6047
0
       mcnt++)
6048
0
    {
6049
0
                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6050
0
                    regs->start[mcnt] = regs->end[mcnt] = -1;
6051
0
                  else
6052
0
                    {
6053
0
          regs->start[mcnt]
6054
0
      = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6055
0
                      regs->end[mcnt]
6056
0
      = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6057
0
                    }
6058
0
    }
6059
6060
              /* If the regs structure we return has more elements than
6061
                 were in the pattern, set the extra elements to -1.  If
6062
                 we (re)allocated the registers, this is the case,
6063
                 because we always allocate enough to have at least one
6064
                 -1 at the end.  */
6065
0
              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6066
0
                regs->start[mcnt] = regs->end[mcnt] = -1;
6067
0
      } /* regs && !bufp->no_sub */
6068
6069
0
          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6070
0
                        nfailure_points_pushed, nfailure_points_popped,
6071
0
                        nfailure_points_pushed - nfailure_points_popped);
6072
0
          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6073
6074
#ifdef WCHAR
6075
    if (MATCHING_IN_FIRST_STRING)
6076
      mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6077
    else
6078
      mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6079
      csize1;
6080
          mcnt -= pos;
6081
#else
6082
0
          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6083
0
          ? string1
6084
0
          : string2 - size1);
6085
0
#endif /* WCHAR */
6086
6087
0
          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6088
6089
0
          FREE_VARIABLES ();
6090
0
          return mcnt;
6091
0
        }
6092
6093
      /* Otherwise match next pattern command.  */
6094
0
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6095
0
  {
6096
        /* Ignore these.  Used to ignore the n of succeed_n's which
6097
           currently have n == 0.  */
6098
0
        case no_op:
6099
0
          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6100
0
          break;
6101
6102
0
  case succeed:
6103
0
          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6104
0
    goto succeed_label;
6105
6106
        /* Match the next n pattern characters exactly.  The following
6107
           byte in the pattern defines n, and the n bytes after that
6108
           are the characters to match.  */
6109
0
  case exactn:
6110
#ifdef MBS_SUPPORT
6111
  case exactn_bin:
6112
#endif
6113
0
    mcnt = *p++;
6114
0
          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6115
6116
          /* This is written out as an if-else so we don't waste time
6117
             testing `translate' inside the loop.  */
6118
0
          if (translate)
6119
0
      {
6120
0
        do
6121
0
    {
6122
0
      PREFETCH ();
6123
#ifdef WCHAR
6124
      if (*d <= 0xff)
6125
        {
6126
          if ((UCHAR_T) translate[(unsigned char) *d++]
6127
        != (UCHAR_T) *p++)
6128
      goto fail;
6129
        }
6130
      else
6131
        {
6132
          if (*d++ != (CHAR_T) *p++)
6133
      goto fail;
6134
        }
6135
#else
6136
0
      if ((UCHAR_T) translate[(unsigned char) *d++]
6137
0
          != (UCHAR_T) *p++)
6138
0
                    goto fail;
6139
0
#endif /* WCHAR */
6140
0
    }
6141
0
        while (--mcnt);
6142
0
      }
6143
0
    else
6144
0
      {
6145
0
        do
6146
0
    {
6147
0
      PREFETCH ();
6148
0
      if (*d++ != (CHAR_T) *p++) goto fail;
6149
0
    }
6150
0
        while (--mcnt);
6151
0
      }
6152
0
    SET_REGS_MATCHED ();
6153
0
          break;
6154
6155
6156
        /* Match any character except possibly a newline or a null.  */
6157
0
  case anychar:
6158
0
          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6159
6160
0
          PREFETCH ();
6161
6162
0
          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6163
0
              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6164
0
      goto fail;
6165
6166
0
          SET_REGS_MATCHED ();
6167
0
          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6168
0
          d++;
6169
0
    break;
6170
6171
6172
0
  case charset:
6173
0
  case charset_not:
6174
0
    {
6175
0
      register UCHAR_T c;
6176
#ifdef WCHAR
6177
      unsigned int i, char_class_length, coll_symbol_length,
6178
              equiv_class_length, ranges_length, chars_length, length;
6179
      CHAR_T *workp, *workp2, *charset_top;
6180
#define WORK_BUFFER_SIZE 128
6181
            CHAR_T str_buf[WORK_BUFFER_SIZE];
6182
# ifdef _LIBC
6183
      uint32_t nrules;
6184
# endif /* _LIBC */
6185
#endif /* WCHAR */
6186
0
      boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6187
6188
0
            DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6189
0
      PREFETCH ();
6190
0
      c = TRANSLATE (*d); /* The character to match.  */
6191
#ifdef WCHAR
6192
# ifdef _LIBC
6193
      nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6194
# endif /* _LIBC */
6195
      charset_top = p - 1;
6196
      char_class_length = *p++;
6197
      coll_symbol_length = *p++;
6198
      equiv_class_length = *p++;
6199
      ranges_length = *p++;
6200
      chars_length = *p++;
6201
      /* p points charset[6], so the address of the next instruction
6202
         (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6203
         where l=length of char_classes, m=length of collating_symbol,
6204
         n=equivalence_class, o=length of char_range,
6205
         p'=length of character.  */
6206
      workp = p;
6207
      /* Update p to indicate the next instruction.  */
6208
      p += char_class_length + coll_symbol_length+ equiv_class_length +
6209
              2*ranges_length + chars_length;
6210
6211
            /* match with char_class?  */
6212
      for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6213
        {
6214
    wctype_t wctype;
6215
    uintptr_t alignedp = ((uintptr_t)workp
6216
              + __alignof__(wctype_t) - 1)
6217
                & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6218
    wctype = *((wctype_t*)alignedp);
6219
    workp += CHAR_CLASS_SIZE;
6220
# ifdef _LIBC
6221
    if (__iswctype((wint_t)c, wctype))
6222
      goto char_set_matched;
6223
# else
6224
    if (iswctype((wint_t)c, wctype))
6225
      goto char_set_matched;
6226
# endif
6227
        }
6228
6229
            /* match with collating_symbol?  */
6230
# ifdef _LIBC
6231
      if (nrules != 0)
6232
        {
6233
    const unsigned char *extra = (const unsigned char *)
6234
      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6235
6236
    for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6237
         workp++)
6238
      {
6239
        int32_t *wextra;
6240
        wextra = (int32_t*)(extra + *workp++);
6241
        for (i = 0; i < *wextra; ++i)
6242
          if (TRANSLATE(d[i]) != wextra[1 + i])
6243
      break;
6244
6245
        if (i == *wextra)
6246
          {
6247
      /* Update d, however d will be incremented at
6248
         char_set_matched:, we decrement d here.  */
6249
      d += i - 1;
6250
      goto char_set_matched;
6251
          }
6252
      }
6253
        }
6254
      else /* (nrules == 0) */
6255
# endif
6256
        /* If we can't look up collation data, we use wcscoll
6257
     instead.  */
6258
        {
6259
    for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6260
      {
6261
        const CHAR_T *backup_d = d, *backup_dend = dend;
6262
# ifdef _LIBC
6263
        length = __wcslen (workp);
6264
# else
6265
        length = wcslen (workp);
6266
# endif
6267
6268
        /* If wcscoll(the collating symbol, whole string) > 0,
6269
           any substring of the string never match with the
6270
           collating symbol.  */
6271
# ifdef _LIBC
6272
        if (__wcscoll (workp, d) > 0)
6273
# else
6274
        if (wcscoll (workp, d) > 0)
6275
# endif
6276
          {
6277
      workp += length + 1;
6278
      continue;
6279
          }
6280
6281
        /* First, we compare the collating symbol with
6282
           the first character of the string.
6283
           If it don't match, we add the next character to
6284
           the compare buffer in turn.  */
6285
        for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6286
          {
6287
      int match;
6288
      if (d == dend)
6289
        {
6290
          if (dend == end_match_2)
6291
            break;
6292
          d = string2;
6293
          dend = end_match_2;
6294
        }
6295
6296
      /* add next character to the compare buffer.  */
6297
      str_buf[i] = TRANSLATE(*d);
6298
      str_buf[i+1] = '\0';
6299
6300
# ifdef _LIBC
6301
      match = __wcscoll (workp, str_buf);
6302
# else
6303
      match = wcscoll (workp, str_buf);
6304
# endif
6305
      if (match == 0)
6306
        goto char_set_matched;
6307
6308
      if (match < 0)
6309
        /* (str_buf > workp) indicate (str_buf + X > workp),
6310
           because for all X (str_buf + X > str_buf).
6311
           So we don't need continue this loop.  */
6312
        break;
6313
6314
      /* Otherwise(str_buf < workp),
6315
         (str_buf+next_character) may equals (workp).
6316
         So we continue this loop.  */
6317
          }
6318
        /* not matched */
6319
        d = backup_d;
6320
        dend = backup_dend;
6321
        workp += length + 1;
6322
      }
6323
              }
6324
            /* match with equivalence_class?  */
6325
# ifdef _LIBC
6326
      if (nrules != 0)
6327
        {
6328
                const CHAR_T *backup_d = d, *backup_dend = dend;
6329
    /* Try to match the equivalence class against
6330
       those known to the collate implementation.  */
6331
    const int32_t *table;
6332
    const int32_t *weights;
6333
    const int32_t *extra;
6334
    const int32_t *indirect;
6335
    int32_t idx, idx2;
6336
    wint_t *cp;
6337
    size_t len;
6338
6339
    /* This #include defines a local function!  */
6340
#  include <locale/weightwc.h>
6341
6342
    table = (const int32_t *)
6343
      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6344
    weights = (const wint_t *)
6345
      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6346
    extra = (const wint_t *)
6347
      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6348
    indirect = (const int32_t *)
6349
      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6350
6351
    /* Write 1 collating element to str_buf, and
6352
       get its index.  */
6353
    idx2 = 0;
6354
6355
    for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6356
      {
6357
        cp = (wint_t*)str_buf;
6358
        if (d == dend)
6359
          {
6360
      if (dend == end_match_2)
6361
        break;
6362
      d = string2;
6363
      dend = end_match_2;
6364
          }
6365
        str_buf[i] = TRANSLATE(*(d+i));
6366
        str_buf[i+1] = '\0'; /* sentinel */
6367
        idx2 = findidx ((const wint_t**)&cp);
6368
      }
6369
6370
    /* Update d, however d will be incremented at
6371
       char_set_matched:, we decrement d here.  */
6372
    d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6373
    if (d >= dend)
6374
      {
6375
        if (dend == end_match_2)
6376
      d = dend;
6377
        else
6378
          {
6379
      d = string2;
6380
      dend = end_match_2;
6381
          }
6382
      }
6383
6384
    len = weights[idx2];
6385
6386
    for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6387
         workp++)
6388
      {
6389
        idx = (int32_t)*workp;
6390
        /* We already checked idx != 0 in regex_compile. */
6391
6392
        if (idx2 != 0 && len == weights[idx])
6393
          {
6394
      int cnt = 0;
6395
      while (cnt < len && (weights[idx + 1 + cnt]
6396
               == weights[idx2 + 1 + cnt]))
6397
        ++cnt;
6398
6399
      if (cnt == len)
6400
        goto char_set_matched;
6401
          }
6402
      }
6403
    /* not matched */
6404
                d = backup_d;
6405
                dend = backup_dend;
6406
        }
6407
      else /* (nrules == 0) */
6408
# endif
6409
        /* If we can't look up collation data, we use wcscoll
6410
     instead.  */
6411
        {
6412
    for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6413
      {
6414
        const CHAR_T *backup_d = d, *backup_dend = dend;
6415
# ifdef _LIBC
6416
        length = __wcslen (workp);
6417
# else
6418
        length = wcslen (workp);
6419
# endif
6420
6421
        /* If wcscoll(the collating symbol, whole string) > 0,
6422
           any substring of the string never match with the
6423
           collating symbol.  */
6424
# ifdef _LIBC
6425
        if (__wcscoll (workp, d) > 0)
6426
# else
6427
        if (wcscoll (workp, d) > 0)
6428
# endif
6429
          {
6430
      workp += length + 1;
6431
      break;
6432
          }
6433
6434
        /* First, we compare the equivalence class with
6435
           the first character of the string.
6436
           If it don't match, we add the next character to
6437
           the compare buffer in turn.  */
6438
        for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6439
          {
6440
      int match;
6441
      if (d == dend)
6442
        {
6443
          if (dend == end_match_2)
6444
            break;
6445
          d = string2;
6446
          dend = end_match_2;
6447
        }
6448
6449
      /* add next character to the compare buffer.  */
6450
      str_buf[i] = TRANSLATE(*d);
6451
      str_buf[i+1] = '\0';
6452
6453
# ifdef _LIBC
6454
      match = __wcscoll (workp, str_buf);
6455
# else
6456
      match = wcscoll (workp, str_buf);
6457
# endif
6458
6459
      if (match == 0)
6460
        goto char_set_matched;
6461
6462
      if (match < 0)
6463
      /* (str_buf > workp) indicate (str_buf + X > workp),
6464
         because for all X (str_buf + X > str_buf).
6465
         So we don't need continue this loop.  */
6466
        break;
6467
6468
      /* Otherwise(str_buf < workp),
6469
         (str_buf+next_character) may equals (workp).
6470
         So we continue this loop.  */
6471
          }
6472
        /* not matched */
6473
        d = backup_d;
6474
        dend = backup_dend;
6475
        workp += length + 1;
6476
      }
6477
        }
6478
6479
            /* match with char_range?  */
6480
# ifdef _LIBC
6481
      if (nrules != 0)
6482
        {
6483
    uint32_t collseqval;
6484
    const char *collseq = (const char *)
6485
      _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6486
6487
    collseqval = collseq_table_lookup (collseq, c);
6488
6489
    for (; workp < p - chars_length ;)
6490
      {
6491
        uint32_t start_val, end_val;
6492
6493
        /* We already compute the collation sequence value
6494
           of the characters (or collating symbols).  */
6495
        start_val = (uint32_t) *workp++; /* range_start */
6496
        end_val = (uint32_t) *workp++; /* range_end */
6497
6498
        if (start_val <= collseqval && collseqval <= end_val)
6499
          goto char_set_matched;
6500
      }
6501
        }
6502
      else
6503
# endif
6504
        {
6505
    /* We set range_start_char at str_buf[0], range_end_char
6506
       at str_buf[4], and compared char at str_buf[2].  */
6507
    str_buf[1] = 0;
6508
    str_buf[2] = c;
6509
    str_buf[3] = 0;
6510
    str_buf[5] = 0;
6511
    for (; workp < p - chars_length ;)
6512
      {
6513
        wchar_t *range_start_char, *range_end_char;
6514
6515
        /* match if (range_start_char <= c <= range_end_char).  */
6516
6517
        /* If range_start(or end) < 0, we assume -range_start(end)
6518
           is the offset of the collating symbol which is specified
6519
           as the character of the range start(end).  */
6520
6521
        /* range_start */
6522
        if (*workp < 0)
6523
          range_start_char = charset_top - (*workp++);
6524
        else
6525
          {
6526
      str_buf[0] = *workp++;
6527
      range_start_char = str_buf;
6528
          }
6529
6530
        /* range_end */
6531
        if (*workp < 0)
6532
          range_end_char = charset_top - (*workp++);
6533
        else
6534
          {
6535
      str_buf[4] = *workp++;
6536
      range_end_char = str_buf + 4;
6537
          }
6538
6539
# ifdef _LIBC
6540
        if (__wcscoll (range_start_char, str_buf+2) <= 0
6541
      && __wcscoll (str_buf+2, range_end_char) <= 0)
6542
# else
6543
        if (wcscoll (range_start_char, str_buf+2) <= 0
6544
      && wcscoll (str_buf+2, range_end_char) <= 0)
6545
# endif
6546
          goto char_set_matched;
6547
      }
6548
        }
6549
6550
            /* match with char?  */
6551
      for (; workp < p ; workp++)
6552
        if (c == *workp)
6553
    goto char_set_matched;
6554
6555
      negate = !negate;
6556
6557
    char_set_matched:
6558
      if (negate) goto fail;
6559
#else
6560
            /* Cast to `unsigned' instead of `unsigned char' in case the
6561
               bit list is a full 32 bytes long.  */
6562
0
      if (c < (unsigned) (*p * BYTEWIDTH)
6563
0
    && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6564
0
        negate = !negate;
6565
6566
0
      p += 1 + *p;
6567
6568
0
      if (!negate) goto fail;
6569
0
#undef WORK_BUFFER_SIZE
6570
0
#endif /* WCHAR */
6571
0
      SET_REGS_MATCHED ();
6572
0
            d++;
6573
0
      break;
6574
0
    }
6575
6576
6577
        /* The beginning of a group is represented by start_memory.
6578
           The arguments are the register number in the next byte, and the
6579
           number of groups inner to this one in the next.  The text
6580
           matched within the group is recorded (in the internal
6581
           registers data structure) under the register number.  */
6582
0
        case start_memory:
6583
0
    DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6584
0
      (long int) *p, (long int) p[1]);
6585
6586
          /* Find out if this group can match the empty string.  */
6587
0
    p1 = p;   /* To send to group_match_null_string_p.  */
6588
6589
0
          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6590
0
            REG_MATCH_NULL_STRING_P (reg_info[*p])
6591
0
              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6592
6593
          /* Save the position in the string where we were the last time
6594
             we were at this open-group operator in case the group is
6595
             operated upon by a repetition operator, e.g., with `(a*)*b'
6596
             against `ab'; then we want to ignore where we are now in
6597
             the string in case this attempt to match fails.  */
6598
0
          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6599
0
                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6600
0
                             : regstart[*p];
6601
0
    DEBUG_PRINT2 ("  old_regstart: %d\n",
6602
0
       POINTER_TO_OFFSET (old_regstart[*p]));
6603
6604
0
          regstart[*p] = d;
6605
0
    DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6606
6607
0
          IS_ACTIVE (reg_info[*p]) = 1;
6608
0
          MATCHED_SOMETHING (reg_info[*p]) = 0;
6609
6610
    /* Clear this whenever we change the register activity status.  */
6611
0
    set_regs_matched_done = 0;
6612
6613
          /* This is the new highest active register.  */
6614
0
          highest_active_reg = *p;
6615
6616
          /* If nothing was active before, this is the new lowest active
6617
             register.  */
6618
0
          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6619
0
            lowest_active_reg = *p;
6620
6621
          /* Move past the register number and inner group count.  */
6622
0
          p += 2;
6623
0
    just_past_start_mem = p;
6624
6625
0
          break;
6626
6627
6628
        /* The stop_memory opcode represents the end of a group.  Its
6629
           arguments are the same as start_memory's: the register
6630
           number, and the number of inner groups.  */
6631
0
  case stop_memory:
6632
0
    DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6633
0
      (long int) *p, (long int) p[1]);
6634
6635
          /* We need to save the string position the last time we were at
6636
             this close-group operator in case the group is operated
6637
             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6638
             against `aba'; then we want to ignore where we are now in
6639
             the string in case this attempt to match fails.  */
6640
0
          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6641
0
                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6642
0
         : regend[*p];
6643
0
    DEBUG_PRINT2 ("      old_regend: %d\n",
6644
0
       POINTER_TO_OFFSET (old_regend[*p]));
6645
6646
0
          regend[*p] = d;
6647
0
    DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6648
6649
          /* This register isn't active anymore.  */
6650
0
          IS_ACTIVE (reg_info[*p]) = 0;
6651
6652
    /* Clear this whenever we change the register activity status.  */
6653
0
    set_regs_matched_done = 0;
6654
6655
          /* If this was the only register active, nothing is active
6656
             anymore.  */
6657
0
          if (lowest_active_reg == highest_active_reg)
6658
0
            {
6659
0
              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6660
0
              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6661
0
            }
6662
0
          else
6663
0
            { /* We must scan for the new highest active register, since
6664
                 it isn't necessarily one less than now: consider
6665
                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6666
                 new highest active register is 1.  */
6667
0
              UCHAR_T r = *p - 1;
6668
0
              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6669
0
                r--;
6670
6671
              /* If we end up at register zero, that means that we saved
6672
                 the registers as the result of an `on_failure_jump', not
6673
                 a `start_memory', and we jumped to past the innermost
6674
                 `stop_memory'.  For example, in ((.)*) we save
6675
                 registers 1 and 2 as a result of the *, but when we pop
6676
                 back to the second ), we are at the stop_memory 1.
6677
                 Thus, nothing is active.  */
6678
0
        if (r == 0)
6679
0
                {
6680
0
                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6681
0
                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6682
0
                }
6683
0
              else
6684
0
                highest_active_reg = r;
6685
0
            }
6686
6687
          /* If just failed to match something this time around with a
6688
             group that's operated on by a repetition operator, try to
6689
             force exit from the ``loop'', and restore the register
6690
             information for this group that we had before trying this
6691
             last match.  */
6692
0
          if ((!MATCHED_SOMETHING (reg_info[*p])
6693
0
               || just_past_start_mem == p - 1)
6694
0
        && (p + 2) < pend)
6695
0
            {
6696
0
              boolean is_a_jump_n = false;
6697
6698
0
              p1 = p + 2;
6699
0
              mcnt = 0;
6700
0
              switch ((re_opcode_t) *p1++)
6701
0
                {
6702
0
                  case jump_n:
6703
0
        is_a_jump_n = true;
6704
        /* Fall through.  */
6705
0
                  case pop_failure_jump:
6706
0
      case maybe_pop_jump:
6707
0
      case jump:
6708
0
      case dummy_failure_jump:
6709
0
                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6710
0
        if (is_a_jump_n)
6711
0
          p1 += OFFSET_ADDRESS_SIZE;
6712
0
                    break;
6713
6714
0
                  default:
6715
0
                    /* do nothing */ ;
6716
0
                }
6717
0
        p1 += mcnt;
6718
6719
              /* If the next operation is a jump backwards in the pattern
6720
           to an on_failure_jump right before the start_memory
6721
                 corresponding to this stop_memory, exit from the loop
6722
                 by forcing a failure after pushing on the stack the
6723
                 on_failure_jump's jump in the pattern, and d.  */
6724
0
              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6725
0
                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6726
0
      && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6727
0
    {
6728
                  /* If this group ever matched anything, then restore
6729
                     what its registers were before trying this last
6730
                     failed match, e.g., with `(a*)*b' against `ab' for
6731
                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6732
                     against `aba' for regend[3].
6733
6734
                     Also restore the registers for inner groups for,
6735
                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6736
                     otherwise get trashed).  */
6737
6738
0
                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6739
0
        {
6740
0
          unsigned r;
6741
6742
0
                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6743
6744
          /* Restore this and inner groups' (if any) registers.  */
6745
0
                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6746
0
         r++)
6747
0
                        {
6748
0
                          regstart[r] = old_regstart[r];
6749
6750
                          /* xx why this test?  */
6751
0
                          if (old_regend[r] >= regstart[r])
6752
0
                            regend[r] = old_regend[r];
6753
0
                        }
6754
0
                    }
6755
0
      p1++;
6756
0
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6757
0
                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6758
6759
0
                  goto fail;
6760
0
                }
6761
0
            }
6762
6763
          /* Move past the register number and the inner group count.  */
6764
0
          p += 2;
6765
0
          break;
6766
6767
6768
  /* \<digit> has been turned into a `duplicate' command which is
6769
           followed by the numeric value of <digit> as the register number.  */
6770
0
        case duplicate:
6771
0
    {
6772
0
      register const CHAR_T *d2, *dend2;
6773
0
      int regno = *p++;   /* Get which register to match against.  */
6774
0
      DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6775
6776
      /* Can't back reference a group which we've never matched.  */
6777
0
            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6778
0
              goto fail;
6779
6780
            /* Where in input to try to start matching.  */
6781
0
            d2 = regstart[regno];
6782
6783
            /* Where to stop matching; if both the place to start and
6784
               the place to stop matching are in the same string, then
6785
               set to the place to stop, otherwise, for now have to use
6786
               the end of the first string.  */
6787
6788
0
            dend2 = ((FIRST_STRING_P (regstart[regno])
6789
0
          == FIRST_STRING_P (regend[regno]))
6790
0
         ? regend[regno] : end_match_1);
6791
0
      for (;;)
6792
0
        {
6793
    /* If necessary, advance to next segment in register
6794
                   contents.  */
6795
0
    while (d2 == dend2)
6796
0
      {
6797
0
        if (dend2 == end_match_2) break;
6798
0
        if (dend2 == regend[regno]) break;
6799
6800
                    /* End of string1 => advance to string2. */
6801
0
                    d2 = string2;
6802
0
                    dend2 = regend[regno];
6803
0
      }
6804
    /* At end of register contents => success */
6805
0
    if (d2 == dend2) break;
6806
6807
    /* If necessary, advance to next segment in data.  */
6808
0
    PREFETCH ();
6809
6810
    /* How many characters left in this segment to match.  */
6811
0
    mcnt = dend - d;
6812
6813
    /* Want how many consecutive characters we can match in
6814
                   one shot, so, if necessary, adjust the count.  */
6815
0
                if (mcnt > dend2 - d2)
6816
0
      mcnt = dend2 - d2;
6817
6818
    /* Compare that many; failure if mismatch, else move
6819
                   past them.  */
6820
0
    if (translate
6821
0
                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6822
0
                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6823
0
      goto fail;
6824
0
    d += mcnt, d2 += mcnt;
6825
6826
    /* Do this because we've match some characters.  */
6827
0
    SET_REGS_MATCHED ();
6828
0
        }
6829
0
    }
6830
0
    break;
6831
6832
6833
        /* begline matches the empty string at the beginning of the string
6834
           (unless `not_bol' is set in `bufp'), and, if
6835
           `newline_anchor' is set, after newlines.  */
6836
0
  case begline:
6837
0
          DEBUG_PRINT1 ("EXECUTING begline.\n");
6838
6839
0
          if (AT_STRINGS_BEG (d))
6840
0
            {
6841
0
              if (!bufp->not_bol) break;
6842
0
            }
6843
0
          else if (d[-1] == '\n' && bufp->newline_anchor)
6844
0
            {
6845
0
              break;
6846
0
            }
6847
          /* In all other cases, we fail.  */
6848
0
          goto fail;
6849
6850
6851
        /* endline is the dual of begline.  */
6852
0
  case endline:
6853
0
          DEBUG_PRINT1 ("EXECUTING endline.\n");
6854
6855
0
          if (AT_STRINGS_END (d))
6856
0
            {
6857
0
              if (!bufp->not_eol) break;
6858
0
            }
6859
6860
          /* We have to ``prefetch'' the next character.  */
6861
0
          else if ((d == end1 ? *string2 : *d) == '\n'
6862
0
                   && bufp->newline_anchor)
6863
0
            {
6864
0
              break;
6865
0
            }
6866
0
          goto fail;
6867
6868
6869
  /* Match at the very beginning of the data.  */
6870
0
        case begbuf:
6871
0
          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6872
0
          if (AT_STRINGS_BEG (d))
6873
0
            break;
6874
0
          goto fail;
6875
6876
6877
  /* Match at the very end of the data.  */
6878
0
        case endbuf:
6879
0
          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6880
0
    if (AT_STRINGS_END (d))
6881
0
      break;
6882
0
          goto fail;
6883
6884
6885
        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6886
           pushes NULL as the value for the string on the stack.  Then
6887
           `pop_failure_point' will keep the current value for the
6888
           string, instead of restoring it.  To see why, consider
6889
           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6890
           then the . fails against the \n.  But the next thing we want
6891
           to do is match the \n against the \n; if we restored the
6892
           string value, we would be back at the foo.
6893
6894
           Because this is used only in specific cases, we don't need to
6895
           check all the things that `on_failure_jump' does, to make
6896
           sure the right things get saved on the stack.  Hence we don't
6897
           share its code.  The only reason to push anything on the
6898
           stack at all is that otherwise we would have to change
6899
           `anychar's code to do something besides goto fail in this
6900
           case; that seems worse than this.  */
6901
0
        case on_failure_keep_string_jump:
6902
0
          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6903
6904
0
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6905
#ifdef _LIBC
6906
          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6907
#else
6908
0
          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6909
0
#endif
6910
6911
0
          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6912
0
          break;
6913
6914
6915
  /* Uses of on_failure_jump:
6916
6917
           Each alternative starts with an on_failure_jump that points
6918
           to the beginning of the next alternative.  Each alternative
6919
           except the last ends with a jump that in effect jumps past
6920
           the rest of the alternatives.  (They really jump to the
6921
           ending jump of the following alternative, because tensioning
6922
           these jumps is a hassle.)
6923
6924
           Repeats start with an on_failure_jump that points past both
6925
           the repetition text and either the following jump or
6926
           pop_failure_jump back to this on_failure_jump.  */
6927
0
  case on_failure_jump:
6928
0
        on_failure:
6929
0
          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6930
6931
0
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6932
#ifdef _LIBC
6933
          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6934
#else
6935
0
          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6936
0
#endif
6937
6938
          /* If this on_failure_jump comes right before a group (i.e.,
6939
             the original * applied to a group), save the information
6940
             for that group and all inner ones, so that if we fail back
6941
             to this point, the group's information will be correct.
6942
             For example, in \(a*\)*\1, we need the preceding group,
6943
             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6944
6945
          /* We can't use `p' to check ahead because we push
6946
             a failure point to `p + mcnt' after we do this.  */
6947
0
          p1 = p;
6948
6949
          /* We need to skip no_op's before we look for the
6950
             start_memory in case this on_failure_jump is happening as
6951
             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6952
             against aba.  */
6953
0
          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6954
0
            p1++;
6955
6956
0
          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6957
0
            {
6958
              /* We have a new highest active register now.  This will
6959
                 get reset at the start_memory we are about to get to,
6960
                 but we will have saved all the registers relevant to
6961
                 this repetition op, as described above.  */
6962
0
              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6963
0
              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6964
0
                lowest_active_reg = *(p1 + 1);
6965
0
            }
6966
6967
0
          DEBUG_PRINT1 (":\n");
6968
0
          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6969
0
          break;
6970
6971
6972
        /* A smart repeat ends with `maybe_pop_jump'.
6973
     We change it to either `pop_failure_jump' or `jump'.  */
6974
0
        case maybe_pop_jump:
6975
0
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6976
0
          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6977
0
          {
6978
0
      register UCHAR_T *p2 = p;
6979
6980
            /* Compare the beginning of the repeat with what in the
6981
               pattern follows its end. If we can establish that there
6982
               is nothing that they would both match, i.e., that we
6983
               would have to backtrack because of (as in, e.g., `a*a')
6984
               then we can change to pop_failure_jump, because we'll
6985
               never have to backtrack.
6986
6987
               This is not true in the case of alternatives: in
6988
               `(a|ab)*' we do need to backtrack to the `ab' alternative
6989
               (e.g., if the string was `ab').  But instead of trying to
6990
               detect that here, the alternative has put on a dummy
6991
               failure point which is what we will end up popping.  */
6992
6993
      /* Skip over open/close-group commands.
6994
         If what follows this loop is a ...+ construct,
6995
         look at what begins its body, since we will have to
6996
         match at least one of that.  */
6997
0
      while (1)
6998
0
        {
6999
0
    if (p2 + 2 < pend
7000
0
        && ((re_opcode_t) *p2 == stop_memory
7001
0
      || (re_opcode_t) *p2 == start_memory))
7002
0
      p2 += 3;
7003
0
    else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7004
0
       && (re_opcode_t) *p2 == dummy_failure_jump)
7005
0
      p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7006
0
    else
7007
0
      break;
7008
0
        }
7009
7010
0
      p1 = p + mcnt;
7011
      /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7012
         to the `maybe_finalize_jump' of this case.  Examine what
7013
         follows.  */
7014
7015
            /* If we're at the end of the pattern, we can change.  */
7016
0
            if (p2 == pend)
7017
0
        {
7018
    /* Consider what happens when matching ":\(.*\)"
7019
       against ":/".  I don't really understand this code
7020
       yet.  */
7021
0
            p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7022
0
      pop_failure_jump;
7023
0
                DEBUG_PRINT1
7024
0
                  ("  End of pattern: change to `pop_failure_jump'.\n");
7025
0
              }
7026
7027
0
            else if ((re_opcode_t) *p2 == exactn
7028
#ifdef MBS_SUPPORT
7029
         || (re_opcode_t) *p2 == exactn_bin
7030
#endif
7031
0
         || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7032
0
        {
7033
0
    register UCHAR_T c
7034
0
                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7035
7036
0
                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7037
#ifdef MBS_SUPPORT
7038
         || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7039
#endif
7040
0
        ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7041
0
                  {
7042
0
          p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7043
0
          pop_failure_jump;
7044
#ifdef WCHAR
7045
          DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7046
            (wint_t) c,
7047
            (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7048
#else
7049
0
          DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7050
0
            (char) c,
7051
0
            (char) p1[3+OFFSET_ADDRESS_SIZE]);
7052
0
#endif
7053
0
                  }
7054
7055
0
#ifndef WCHAR
7056
0
    else if ((re_opcode_t) p1[3] == charset
7057
0
       || (re_opcode_t) p1[3] == charset_not)
7058
0
      {
7059
0
        int negate = (re_opcode_t) p1[3] == charset_not;
7060
7061
0
        if (c < (unsigned) (p1[4] * BYTEWIDTH)
7062
0
      && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7063
0
          negate = !negate;
7064
7065
                    /* `negate' is equal to 1 if c would match, which means
7066
                        that we can't change to pop_failure_jump.  */
7067
0
        if (!negate)
7068
0
                      {
7069
0
              p[-3] = (unsigned char) pop_failure_jump;
7070
0
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7071
0
                      }
7072
0
      }
7073
0
#endif /* not WCHAR */
7074
0
        }
7075
0
#ifndef WCHAR
7076
0
            else if ((re_opcode_t) *p2 == charset)
7077
0
        {
7078
    /* We win if the first character of the loop is not part
7079
                   of the charset.  */
7080
0
                if ((re_opcode_t) p1[3] == exactn
7081
0
        && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7082
0
        && (p2[2 + p1[5] / BYTEWIDTH]
7083
0
            & (1 << (p1[5] % BYTEWIDTH)))))
7084
0
      {
7085
0
        p[-3] = (unsigned char) pop_failure_jump;
7086
0
        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7087
0
                  }
7088
7089
0
    else if ((re_opcode_t) p1[3] == charset_not)
7090
0
      {
7091
0
        int idx;
7092
        /* We win if the charset_not inside the loop
7093
           lists every character listed in the charset after.  */
7094
0
        for (idx = 0; idx < (int) p2[1]; idx++)
7095
0
          if (! (p2[2 + idx] == 0
7096
0
           || (idx < (int) p1[4]
7097
0
         && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7098
0
      break;
7099
7100
0
        if (idx == p2[1])
7101
0
                      {
7102
0
              p[-3] = (unsigned char) pop_failure_jump;
7103
0
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7104
0
                      }
7105
0
      }
7106
0
    else if ((re_opcode_t) p1[3] == charset)
7107
0
      {
7108
0
        int idx;
7109
        /* We win if the charset inside the loop
7110
           has no overlap with the one after the loop.  */
7111
0
        for (idx = 0;
7112
0
       idx < (int) p2[1] && idx < (int) p1[4];
7113
0
       idx++)
7114
0
          if ((p2[2 + idx] & p1[5 + idx]) != 0)
7115
0
      break;
7116
7117
0
        if (idx == p2[1] || idx == p1[4])
7118
0
                      {
7119
0
              p[-3] = (unsigned char) pop_failure_jump;
7120
0
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7121
0
                      }
7122
0
      }
7123
0
        }
7124
0
#endif /* not WCHAR */
7125
0
    }
7126
0
    p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again.  */
7127
0
    if ((re_opcode_t) p[-1] != pop_failure_jump)
7128
0
      {
7129
0
        p[-1] = (UCHAR_T) jump;
7130
0
              DEBUG_PRINT1 ("  Match => jump.\n");
7131
0
        goto unconditional_jump;
7132
0
      }
7133
        /* Fall through.  */
7134
7135
7136
  /* The end of a simple repeat has a pop_failure_jump back to
7137
           its matching on_failure_jump, where the latter will push a
7138
           failure point.  The pop_failure_jump takes off failure
7139
           points put on by this pop_failure_jump's matching
7140
           on_failure_jump; we got through the pattern to here from the
7141
           matching on_failure_jump, so didn't fail.  */
7142
0
        case pop_failure_jump:
7143
0
          {
7144
            /* We need to pass separate storage for the lowest and
7145
               highest registers, even though we don't care about the
7146
               actual values.  Otherwise, we will restore only one
7147
               register from the stack, since lowest will == highest in
7148
               `pop_failure_point'.  */
7149
0
            active_reg_t dummy_low_reg, dummy_high_reg;
7150
0
            UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7151
0
            const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7152
7153
0
            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7154
0
            POP_FAILURE_POINT (sdummy, pdummy,
7155
0
                               dummy_low_reg, dummy_high_reg,
7156
0
                               reg_dummy, reg_dummy, reg_info_dummy);
7157
0
          }
7158
    /* Fall through.  */
7159
7160
0
  unconditional_jump:
7161
#ifdef _LIBC
7162
    DEBUG_PRINT2 ("\n%p: ", p);
7163
#else
7164
0
    DEBUG_PRINT2 ("\n0x%x: ", p);
7165
0
#endif
7166
          /* Note fall through.  */
7167
7168
        /* Unconditionally jump (without popping any failure points).  */
7169
0
        case jump:
7170
0
    EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump.  */
7171
0
          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7172
0
    p += mcnt;        /* Do the jump.  */
7173
#ifdef _LIBC
7174
          DEBUG_PRINT2 ("(to %p).\n", p);
7175
#else
7176
0
          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7177
0
#endif
7178
0
    break;
7179
7180
7181
        /* We need this opcode so we can detect where alternatives end
7182
           in `group_match_null_string_p' et al.  */
7183
0
        case jump_past_alt:
7184
0
          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7185
0
          goto unconditional_jump;
7186
7187
7188
        /* Normally, the on_failure_jump pushes a failure point, which
7189
           then gets popped at pop_failure_jump.  We will end up at
7190
           pop_failure_jump, also, and with a pattern of, say, `a+', we
7191
           are skipping over the on_failure_jump, so we have to push
7192
           something meaningless for pop_failure_jump to pop.  */
7193
0
        case dummy_failure_jump:
7194
0
          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7195
          /* It doesn't matter what we push for the string here.  What
7196
             the code at `fail' tests is the value for the pattern.  */
7197
0
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7198
0
          goto unconditional_jump;
7199
7200
7201
        /* At the end of an alternative, we need to push a dummy failure
7202
           point in case we are followed by a `pop_failure_jump', because
7203
           we don't want the failure point for the alternative to be
7204
           popped.  For example, matching `(a|ab)*' against `aab'
7205
           requires that we match the `ab' alternative.  */
7206
0
        case push_dummy_failure:
7207
0
          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7208
          /* See comments just above at `dummy_failure_jump' about the
7209
             two zeroes.  */
7210
0
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7211
0
          break;
7212
7213
        /* Have to succeed matching what follows at least n times.
7214
           After that, handle like `on_failure_jump'.  */
7215
0
        case succeed_n:
7216
0
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7217
0
          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7218
7219
0
          assert (mcnt >= 0);
7220
          /* Originally, this is how many times we HAVE to succeed.  */
7221
0
          if (mcnt > 0)
7222
0
            {
7223
0
               mcnt--;
7224
0
         p += OFFSET_ADDRESS_SIZE;
7225
0
               STORE_NUMBER_AND_INCR (p, mcnt);
7226
#ifdef _LIBC
7227
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7228
           , mcnt);
7229
#else
7230
0
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7231
0
           , mcnt);
7232
0
#endif
7233
0
            }
7234
0
    else if (mcnt == 0)
7235
0
            {
7236
#ifdef _LIBC
7237
              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7238
          p + OFFSET_ADDRESS_SIZE);
7239
#else
7240
0
              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7241
0
          p + OFFSET_ADDRESS_SIZE);
7242
0
#endif /* _LIBC */
7243
7244
#ifdef WCHAR
7245
        p[1] = (UCHAR_T) no_op;
7246
#else
7247
0
        p[2] = (UCHAR_T) no_op;
7248
0
              p[3] = (UCHAR_T) no_op;
7249
0
#endif /* WCHAR */
7250
0
              goto on_failure;
7251
0
            }
7252
0
          break;
7253
7254
0
        case jump_n:
7255
0
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7256
0
          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7257
7258
          /* Originally, this is how many times we CAN jump.  */
7259
0
          if (mcnt)
7260
0
            {
7261
0
               mcnt--;
7262
0
               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7263
7264
#ifdef _LIBC
7265
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7266
           mcnt);
7267
#else
7268
0
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7269
0
           mcnt);
7270
0
#endif /* _LIBC */
7271
0
         goto unconditional_jump;
7272
0
            }
7273
          /* If don't have to jump any more, skip over the rest of command.  */
7274
0
    else
7275
0
      p += 2 * OFFSET_ADDRESS_SIZE;
7276
0
          break;
7277
7278
0
  case set_number_at:
7279
0
    {
7280
0
            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7281
7282
0
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7283
0
            p1 = p + mcnt;
7284
0
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7285
#ifdef _LIBC
7286
            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7287
#else
7288
0
            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7289
0
#endif
7290
0
      STORE_NUMBER (p1, mcnt);
7291
0
            break;
7292
0
          }
7293
7294
#if 0
7295
  /* The DEC Alpha C compiler 3.x generates incorrect code for the
7296
     test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7297
     AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7298
     macro and introducing temporary variables works around the bug.  */
7299
7300
  case wordbound:
7301
    DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7302
    if (AT_WORD_BOUNDARY (d))
7303
      break;
7304
    goto fail;
7305
7306
  case notwordbound:
7307
    DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7308
    if (AT_WORD_BOUNDARY (d))
7309
      goto fail;
7310
    break;
7311
#else
7312
0
  case wordbound:
7313
0
  {
7314
0
    boolean prevchar, thischar;
7315
7316
0
    DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7317
0
    if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7318
0
      break;
7319
7320
0
    prevchar = WORDCHAR_P (d - 1);
7321
0
    thischar = WORDCHAR_P (d);
7322
0
    if (prevchar != thischar)
7323
0
      break;
7324
0
    goto fail;
7325
0
  }
7326
7327
0
      case notwordbound:
7328
0
  {
7329
0
    boolean prevchar, thischar;
7330
7331
0
    DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7332
0
    if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7333
0
      goto fail;
7334
7335
0
    prevchar = WORDCHAR_P (d - 1);
7336
0
    thischar = WORDCHAR_P (d);
7337
0
    if (prevchar != thischar)
7338
0
      goto fail;
7339
0
    break;
7340
0
  }
7341
0
#endif
7342
7343
0
  case wordbeg:
7344
0
          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7345
0
    if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7346
0
        && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7347
0
      break;
7348
0
          goto fail;
7349
7350
0
  case wordend:
7351
0
          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7352
0
    if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7353
0
              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7354
0
      break;
7355
0
          goto fail;
7356
7357
#ifdef emacs
7358
    case before_dot:
7359
          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7360
    if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7361
        goto fail;
7362
      break;
7363
7364
    case at_dot:
7365
          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7366
    if (PTR_CHAR_POS ((unsigned char *) d) != point)
7367
        goto fail;
7368
      break;
7369
7370
    case after_dot:
7371
          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7372
          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7373
        goto fail;
7374
      break;
7375
7376
  case syntaxspec:
7377
          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7378
    mcnt = *p++;
7379
    goto matchsyntax;
7380
7381
        case wordchar:
7382
          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7383
    mcnt = (int) Sword;
7384
        matchsyntax:
7385
    PREFETCH ();
7386
    /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7387
    d++;
7388
    if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7389
      goto fail;
7390
          SET_REGS_MATCHED ();
7391
    break;
7392
7393
  case notsyntaxspec:
7394
          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7395
    mcnt = *p++;
7396
    goto matchnotsyntax;
7397
7398
        case notwordchar:
7399
          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7400
    mcnt = (int) Sword;
7401
        matchnotsyntax:
7402
    PREFETCH ();
7403
    /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7404
    d++;
7405
    if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7406
      goto fail;
7407
    SET_REGS_MATCHED ();
7408
          break;
7409
7410
#else /* not emacs */
7411
0
  case wordchar:
7412
0
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7413
0
    PREFETCH ();
7414
0
          if (!WORDCHAR_P (d))
7415
0
            goto fail;
7416
0
    SET_REGS_MATCHED ();
7417
0
          d++;
7418
0
    break;
7419
7420
0
  case notwordchar:
7421
0
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7422
0
    PREFETCH ();
7423
0
    if (WORDCHAR_P (d))
7424
0
            goto fail;
7425
0
          SET_REGS_MATCHED ();
7426
0
          d++;
7427
0
    break;
7428
0
#endif /* not emacs */
7429
7430
0
        default:
7431
0
          abort ();
7432
0
  }
7433
0
      continue;  /* Successfully executed one pattern command; keep going.  */
7434
7435
7436
    /* We goto here if a matching operation fails. */
7437
0
    fail:
7438
0
      if (!FAIL_STACK_EMPTY ())
7439
0
  { /* A restart point is known.  Restore to that state.  */
7440
0
          DEBUG_PRINT1 ("\nFAIL:\n");
7441
0
          POP_FAILURE_POINT (d, p,
7442
0
                             lowest_active_reg, highest_active_reg,
7443
0
                             regstart, regend, reg_info);
7444
7445
          /* If this failure point is a dummy, try the next one.  */
7446
0
          if (!p)
7447
0
      goto fail;
7448
7449
          /* If we failed to the end of the pattern, don't examine *p.  */
7450
0
    assert (p <= pend);
7451
0
          if (p < pend)
7452
0
            {
7453
0
              boolean is_a_jump_n = false;
7454
7455
              /* If failed to a backwards jump that's part of a repetition
7456
                 loop, need to pop this failure point and use the next one.  */
7457
0
              switch ((re_opcode_t) *p)
7458
0
                {
7459
0
                case jump_n:
7460
0
                  is_a_jump_n = true;
7461
      /* Fall through.  */
7462
0
                case maybe_pop_jump:
7463
0
                case pop_failure_jump:
7464
0
                case jump:
7465
0
                  p1 = p + 1;
7466
0
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7467
0
                  p1 += mcnt;
7468
7469
0
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7470
0
                      || (!is_a_jump_n
7471
0
                          && (re_opcode_t) *p1 == on_failure_jump))
7472
0
                    goto fail;
7473
0
                  break;
7474
0
                default:
7475
0
                  /* do nothing */ ;
7476
0
                }
7477
0
            }
7478
7479
0
          if (d >= string1 && d <= end1)
7480
0
      dend = end_match_1;
7481
0
        }
7482
0
      else
7483
0
        break;   /* Matching at this starting point really fails.  */
7484
0
    } /* for (;;) */
7485
7486
0
  if (best_regs_set)
7487
0
    goto restore_best_regs;
7488
7489
0
  FREE_VARIABLES ();
7490
7491
0
  return -1;              /* Failure to match.  */
7492
0
} /* re_match_2 */
7493

7494
/* Subroutine definitions for re_match_2.  */
7495
7496
7497
/* We are passed P pointing to a register number after a start_memory.
7498
7499
   Return true if the pattern up to the corresponding stop_memory can
7500
   match the empty string, and false otherwise.
7501
7502
   If we find the matching stop_memory, sets P to point to one past its number.
7503
   Otherwise, sets P to an undefined byte less than or equal to END.
7504
7505
   We don't handle duplicates properly (yet).  */
7506
7507
static boolean
7508
PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7509
                                   PREFIX(register_info_type) *reg_info)
7510
0
{
7511
0
  int mcnt;
7512
  /* Point to after the args to the start_memory.  */
7513
0
  UCHAR_T *p1 = *p + 2;
7514
7515
0
  while (p1 < end)
7516
0
    {
7517
      /* Skip over opcodes that can match nothing, and return true or
7518
   false, as appropriate, when we get to one that can't, or to the
7519
         matching stop_memory.  */
7520
7521
0
      switch ((re_opcode_t) *p1)
7522
0
        {
7523
        /* Could be either a loop or a series of alternatives.  */
7524
0
        case on_failure_jump:
7525
0
          p1++;
7526
0
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7527
7528
          /* If the next operation is not a jump backwards in the
7529
       pattern.  */
7530
7531
0
    if (mcnt >= 0)
7532
0
      {
7533
              /* Go through the on_failure_jumps of the alternatives,
7534
                 seeing if any of the alternatives cannot match nothing.
7535
                 The last alternative starts with only a jump,
7536
                 whereas the rest start with on_failure_jump and end
7537
                 with a jump, e.g., here is the pattern for `a|b|c':
7538
7539
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7540
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7541
                 /exactn/1/c
7542
7543
                 So, we have to first go through the first (n-1)
7544
                 alternatives and then deal with the last one separately.  */
7545
7546
7547
              /* Deal with the first (n-1) alternatives, which start
7548
                 with an on_failure_jump (see above) that jumps to right
7549
                 past a jump_past_alt.  */
7550
7551
0
              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7552
0
         jump_past_alt)
7553
0
                {
7554
                  /* `mcnt' holds how many bytes long the alternative
7555
                     is, including the ending `jump_past_alt' and
7556
                     its number.  */
7557
7558
0
                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7559
0
            (1 + OFFSET_ADDRESS_SIZE),
7560
0
            reg_info))
7561
0
                    return false;
7562
7563
                  /* Move to right after this alternative, including the
7564
         jump_past_alt.  */
7565
0
                  p1 += mcnt;
7566
7567
                  /* Break if it's the beginning of an n-th alternative
7568
                     that doesn't begin with an on_failure_jump.  */
7569
0
                  if ((re_opcode_t) *p1 != on_failure_jump)
7570
0
                    break;
7571
7572
      /* Still have to check that it's not an n-th
7573
         alternative that starts with an on_failure_jump.  */
7574
0
      p1++;
7575
0
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7576
0
                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7577
0
          jump_past_alt)
7578
0
                    {
7579
          /* Get to the beginning of the n-th alternative.  */
7580
0
                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7581
0
                      break;
7582
0
                    }
7583
0
                }
7584
7585
              /* Deal with the last alternative: go back and get number
7586
                 of the `jump_past_alt' just before it.  `mcnt' contains
7587
                 the length of the alternative.  */
7588
0
              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7589
7590
0
              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7591
0
                return false;
7592
7593
0
              p1 += mcnt; /* Get past the n-th alternative.  */
7594
0
            } /* if mcnt > 0 */
7595
0
          break;
7596
7597
7598
0
        case stop_memory:
7599
0
    assert (p1[1] == **p);
7600
0
          *p = p1 + 2;
7601
0
          return true;
7602
7603
7604
0
        default:
7605
0
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7606
0
            return false;
7607
0
        }
7608
0
    } /* while p1 < end */
7609
7610
0
  return false;
7611
0
} /* group_match_null_string_p */
7612
7613
7614
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7615
   It expects P to be the first byte of a single alternative and END one
7616
   byte past the last. The alternative can contain groups.  */
7617
7618
static boolean
7619
PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7620
                                 PREFIX(register_info_type) *reg_info)
7621
0
{
7622
0
  int mcnt;
7623
0
  UCHAR_T *p1 = p;
7624
7625
0
  while (p1 < end)
7626
0
    {
7627
      /* Skip over opcodes that can match nothing, and break when we get
7628
         to one that can't.  */
7629
7630
0
      switch ((re_opcode_t) *p1)
7631
0
        {
7632
  /* It's a loop.  */
7633
0
        case on_failure_jump:
7634
0
          p1++;
7635
0
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7636
0
          p1 += mcnt;
7637
0
          break;
7638
7639
0
  default:
7640
0
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7641
0
            return false;
7642
0
        }
7643
0
    }  /* while p1 < end */
7644
7645
0
  return true;
7646
0
} /* alt_match_null_string_p */
7647
7648
7649
/* Deals with the ops common to group_match_null_string_p and
7650
   alt_match_null_string_p.
7651
7652
   Sets P to one after the op and its arguments, if any.  */
7653
7654
static boolean
7655
PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7656
                                       PREFIX(register_info_type) *reg_info)
7657
0
{
7658
0
  int mcnt;
7659
0
  boolean ret;
7660
0
  int reg_no;
7661
0
  UCHAR_T *p1 = *p;
7662
7663
0
  switch ((re_opcode_t) *p1++)
7664
0
    {
7665
0
    case no_op:
7666
0
    case begline:
7667
0
    case endline:
7668
0
    case begbuf:
7669
0
    case endbuf:
7670
0
    case wordbeg:
7671
0
    case wordend:
7672
0
    case wordbound:
7673
0
    case notwordbound:
7674
#ifdef emacs
7675
    case before_dot:
7676
    case at_dot:
7677
    case after_dot:
7678
#endif
7679
0
      break;
7680
7681
0
    case start_memory:
7682
0
      reg_no = *p1;
7683
0
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7684
0
      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7685
7686
      /* Have to set this here in case we're checking a group which
7687
         contains a group and a back reference to it.  */
7688
7689
0
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7690
0
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7691
7692
0
      if (!ret)
7693
0
        return false;
7694
0
      break;
7695
7696
    /* If this is an optimized succeed_n for zero times, make the jump.  */
7697
0
    case jump:
7698
0
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7699
0
      if (mcnt >= 0)
7700
0
        p1 += mcnt;
7701
0
      else
7702
0
        return false;
7703
0
      break;
7704
7705
0
    case succeed_n:
7706
      /* Get to the number of times to succeed.  */
7707
0
      p1 += OFFSET_ADDRESS_SIZE;
7708
0
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7709
7710
0
      if (mcnt == 0)
7711
0
        {
7712
0
          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7713
0
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7714
0
          p1 += mcnt;
7715
0
        }
7716
0
      else
7717
0
        return false;
7718
0
      break;
7719
7720
0
    case duplicate:
7721
0
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7722
0
        return false;
7723
0
      break;
7724
7725
0
    case set_number_at:
7726
0
      p1 += 2 * OFFSET_ADDRESS_SIZE;
7727
0
      return false;
7728
7729
0
    default:
7730
      /* All other opcodes mean we cannot match the empty string.  */
7731
0
      return false;
7732
0
  }
7733
7734
0
  *p = p1;
7735
0
  return true;
7736
0
} /* common_op_match_null_string_p */
7737
7738
7739
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7740
   bytes; nonzero otherwise.  */
7741
7742
static int
7743
PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7744
                        RE_TRANSLATE_TYPE translate)
7745
0
{
7746
0
  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7747
0
  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7748
0
  while (len)
7749
0
    {
7750
#ifdef WCHAR
7751
      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7752
    != ((*p2<=0xff)?translate[*p2++]:*p2++))
7753
  return 1;
7754
#else /* BYTE */
7755
0
      if (translate[*p1++] != translate[*p2++]) return 1;
7756
0
#endif /* WCHAR */
7757
0
      len--;
7758
0
    }
7759
0
  return 0;
7760
0
}
7761

7762
7763
#else /* not INSIDE_RECURSION */
7764
7765
/* Entry points for GNU code.  */
7766
7767
/* re_compile_pattern is the GNU regular expression compiler: it
7768
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7769
   Returns 0 if the pattern was valid, otherwise an error string.
7770
7771
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7772
   are set in BUFP on entry.
7773
7774
   We call regex_compile to do the actual compilation.  */
7775
7776
const char *
7777
re_compile_pattern (const char *pattern, size_t length,
7778
                    struct re_pattern_buffer *bufp)
7779
0
{
7780
0
  reg_errcode_t ret;
7781
7782
  /* GNU code is written to assume at least RE_NREGS registers will be set
7783
     (and at least one extra will be -1).  */
7784
0
  bufp->regs_allocated = REGS_UNALLOCATED;
7785
7786
  /* And GNU code determines whether or not to get register information
7787
     by passing null for the REGS argument to re_match, etc., not by
7788
     setting no_sub.  */
7789
0
  bufp->no_sub = 0;
7790
7791
  /* Match anchors at newline.  */
7792
0
  bufp->newline_anchor = 1;
7793
7794
# ifdef MBS_SUPPORT
7795
  if (MB_CUR_MAX != 1)
7796
    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7797
  else
7798
# endif
7799
0
    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7800
7801
0
  if (!ret)
7802
0
    return NULL;
7803
0
  return gettext (re_error_msgid[(int) ret]);
7804
0
}
7805
#ifdef _LIBC
7806
weak_alias (__re_compile_pattern, re_compile_pattern)
7807
#endif
7808

7809
/* Entry points compatible with 4.2 BSD regex library.  We don't define
7810
   them unless specifically requested.  */
7811
7812
#if defined _REGEX_RE_COMP || defined _LIBC
7813
7814
/* BSD has one and only one pattern buffer.  */
7815
static struct re_pattern_buffer re_comp_buf;
7816
7817
char *
7818
#ifdef _LIBC
7819
/* Make these definitions weak in libc, so POSIX programs can redefine
7820
   these names if they don't use our functions, and still use
7821
   regcomp/regexec below without link errors.  */
7822
weak_function
7823
#endif
7824
re_comp (const char *s)
7825
0
{
7826
0
  reg_errcode_t ret;
7827
7828
0
  if (!s)
7829
0
    {
7830
0
      if (!re_comp_buf.buffer)
7831
0
  return (char *) gettext ("No previous regular expression");
7832
0
      return 0;
7833
0
    }
7834
7835
0
  if (!re_comp_buf.buffer)
7836
0
    {
7837
0
      re_comp_buf.buffer = (unsigned char *) malloc (200);
7838
0
      if (re_comp_buf.buffer == NULL)
7839
0
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7840
0
      re_comp_buf.allocated = 200;
7841
7842
0
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7843
0
      if (re_comp_buf.fastmap == NULL)
7844
0
  return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7845
0
    }
7846
7847
  /* Since `re_exec' always passes NULL for the `regs' argument, we
7848
     don't need to initialize the pattern buffer fields which affect it.  */
7849
7850
  /* Match anchors at newlines.  */
7851
0
  re_comp_buf.newline_anchor = 1;
7852
7853
# ifdef MBS_SUPPORT
7854
  if (MB_CUR_MAX != 1)
7855
    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7856
  else
7857
# endif
7858
0
    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7859
7860
0
  if (!ret)
7861
0
    return NULL;
7862
7863
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7864
0
  return (char *) gettext (re_error_msgid[(int) ret]);
7865
0
}
7866
7867
7868
int
7869
#ifdef _LIBC
7870
weak_function
7871
#endif
7872
re_exec (const char *s)
7873
0
{
7874
0
  const int len = strlen (s);
7875
0
  return
7876
0
    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7877
0
}
7878
7879
#endif /* _REGEX_RE_COMP */
7880

7881
/* POSIX.2 functions.  Don't define these for Emacs.  */
7882
7883
#ifndef emacs
7884
7885
/* regcomp takes a regular expression as a string and compiles it.
7886
7887
   PREG is a regex_t *.  We do not expect any fields to be initialized,
7888
   since POSIX says we shouldn't.  Thus, we set
7889
7890
     `buffer' to the compiled pattern;
7891
     `used' to the length of the compiled pattern;
7892
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7893
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7894
       RE_SYNTAX_POSIX_BASIC;
7895
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7896
     `fastmap' to an allocated space for the fastmap;
7897
     `fastmap_accurate' to zero;
7898
     `re_nsub' to the number of subexpressions in PATTERN.
7899
7900
   PATTERN is the address of the pattern string.
7901
7902
   CFLAGS is a series of bits which affect compilation.
7903
7904
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7905
     use POSIX basic syntax.
7906
7907
     If REG_NEWLINE is set, then . and [^...] don't match newline.
7908
     Also, regexec will try a match beginning after every newline.
7909
7910
     If REG_ICASE is set, then we considers upper- and lowercase
7911
     versions of letters to be equivalent when matching.
7912
7913
     If REG_NOSUB is set, then when PREG is passed to regexec, that
7914
     routine will report only success or failure, and nothing about the
7915
     registers.
7916
7917
   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7918
   the return codes and their meanings.)  */
7919
7920
int
7921
regcomp (regex_t *preg, const char *pattern, int cflags)
7922
53.8k
{
7923
53.8k
  reg_errcode_t ret;
7924
53.8k
  reg_syntax_t syntax
7925
53.8k
    = (cflags & REG_EXTENDED) ?
7926
53.8k
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7927
7928
  /* regex_compile will allocate the space for the compiled pattern.  */
7929
53.8k
  preg->buffer = 0;
7930
53.8k
  preg->allocated = 0;
7931
53.8k
  preg->used = 0;
7932
7933
  /* Try to allocate space for the fastmap.  */
7934
53.8k
  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7935
7936
53.8k
  if (cflags & REG_ICASE)
7937
0
    {
7938
0
      int i;
7939
7940
0
      preg->translate
7941
0
  = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7942
0
              * sizeof (*(RE_TRANSLATE_TYPE)0));
7943
0
      if (preg->translate == NULL)
7944
0
        return (int) REG_ESPACE;
7945
7946
      /* Map uppercase characters to corresponding lowercase ones.  */
7947
0
      for (i = 0; i < CHAR_SET_SIZE; i++)
7948
0
        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7949
0
    }
7950
53.8k
  else
7951
53.8k
    preg->translate = NULL;
7952
7953
  /* If REG_NEWLINE is set, newlines are treated differently.  */
7954
53.8k
  if (cflags & REG_NEWLINE)
7955
0
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7956
0
      syntax &= ~RE_DOT_NEWLINE;
7957
0
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7958
      /* It also changes the matching behavior.  */
7959
0
      preg->newline_anchor = 1;
7960
0
    }
7961
53.8k
  else
7962
53.8k
    preg->newline_anchor = 0;
7963
7964
53.8k
  preg->no_sub = !!(cflags & REG_NOSUB);
7965
7966
  /* POSIX says a null character in the pattern terminates it, so we
7967
     can use strlen here in compiling the pattern.  */
7968
# ifdef MBS_SUPPORT
7969
  if (MB_CUR_MAX != 1)
7970
    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7971
  else
7972
# endif
7973
53.8k
    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7974
7975
  /* POSIX doesn't distinguish between an unmatched open-group and an
7976
     unmatched close-group: both are REG_EPAREN.  */
7977
53.8k
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7978
7979
53.8k
  if (ret == REG_NOERROR && preg->fastmap)
7980
53.8k
    {
7981
      /* Compute the fastmap now, since regexec cannot modify the pattern
7982
   buffer.  */
7983
53.8k
      if (re_compile_fastmap (preg) == -2)
7984
0
  {
7985
    /* Some error occurred while computing the fastmap, just forget
7986
       about it.  */
7987
0
    free (preg->fastmap);
7988
0
    preg->fastmap = NULL;
7989
0
  }
7990
53.8k
    }
7991
7992
53.8k
  return (int) ret;
7993
53.8k
}
7994
#ifdef _LIBC
7995
weak_alias (__regcomp, regcomp)
7996
#endif
7997
7998
7999
/* regexec searches for a given pattern, specified by PREG, in the
8000
   string STRING.
8001
8002
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8003
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8004
   least NMATCH elements, and we set them to the offsets of the
8005
   corresponding matched substrings.
8006
8007
   EFLAGS specifies `execution flags' which affect matching: if
8008
   REG_NOTBOL is set, then ^ does not match at the beginning of the
8009
   string; if REG_NOTEOL is set, then $ does not match at the end.
8010
8011
   We return 0 if we find a match and REG_NOMATCH if not.  */
8012
8013
int
8014
regexec (const regex_t *preg, const char *string, size_t nmatch,
8015
         regmatch_t pmatch[], int eflags)
8016
0
{
8017
0
  int ret;
8018
0
  struct re_registers regs;
8019
0
  regex_t private_preg;
8020
0
  int len = strlen (string);
8021
0
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8022
8023
0
  private_preg = *preg;
8024
8025
0
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8026
0
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8027
8028
  /* The user has told us exactly how many registers to return
8029
     information about, via `nmatch'.  We have to pass that on to the
8030
     matching routines.  */
8031
0
  private_preg.regs_allocated = REGS_FIXED;
8032
8033
0
  if (want_reg_info)
8034
0
    {
8035
0
      regs.num_regs = nmatch;
8036
0
      regs.start = TALLOC (nmatch * 2, regoff_t);
8037
0
      if (regs.start == NULL)
8038
0
        return (int) REG_NOMATCH;
8039
0
      regs.end = regs.start + nmatch;
8040
0
    }
8041
8042
  /* Perform the searching operation.  */
8043
0
  ret = re_search (&private_preg, string, len,
8044
0
                   /* start: */ 0, /* range: */ len,
8045
0
                   want_reg_info ? &regs : (struct re_registers *) 0);
8046
8047
  /* Copy the register information to the POSIX structure.  */
8048
0
  if (want_reg_info)
8049
0
    {
8050
0
      if (ret >= 0)
8051
0
        {
8052
0
          unsigned r;
8053
8054
0
          for (r = 0; r < nmatch; r++)
8055
0
            {
8056
0
              pmatch[r].rm_so = regs.start[r];
8057
0
              pmatch[r].rm_eo = regs.end[r];
8058
0
            }
8059
0
        }
8060
8061
      /* If we needed the temporary register info, free the space now.  */
8062
0
      free (regs.start);
8063
0
    }
8064
8065
  /* We want zero return to mean success, unlike `re_search'.  */
8066
0
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8067
0
}
8068
#ifdef _LIBC
8069
weak_alias (__regexec, regexec)
8070
#endif
8071
8072
8073
/* Returns a message corresponding to an error code, ERRCODE, returned
8074
   from either regcomp or regexec.   We don't use PREG here.  */
8075
8076
size_t
8077
regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8078
          char *errbuf, size_t errbuf_size)
8079
0
{
8080
0
  const char *msg;
8081
0
  size_t msg_size;
8082
8083
0
  if (errcode < 0
8084
0
      || errcode >= (int) (sizeof (re_error_msgid)
8085
0
         / sizeof (re_error_msgid[0])))
8086
    /* Only error codes returned by the rest of the code should be passed
8087
       to this routine.  If we are given anything else, or if other regex
8088
       code generates an invalid error code, then the program has a bug.
8089
       Dump core so we can fix it.  */
8090
0
    abort ();
8091
8092
0
  msg = gettext (re_error_msgid[errcode]);
8093
8094
0
  msg_size = strlen (msg) + 1; /* Includes the null.  */
8095
8096
0
  if (errbuf_size != 0)
8097
0
    {
8098
0
      if (msg_size > errbuf_size)
8099
0
        {
8100
#if defined HAVE_MEMPCPY || defined _LIBC
8101
    *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8102
#else
8103
0
          (void) memcpy (errbuf, msg, errbuf_size - 1);
8104
0
          errbuf[errbuf_size - 1] = 0;
8105
0
#endif
8106
0
        }
8107
0
      else
8108
0
        (void) memcpy (errbuf, msg, msg_size);
8109
0
    }
8110
8111
0
  return msg_size;
8112
0
}
8113
#ifdef _LIBC
8114
weak_alias (__regerror, regerror)
8115
#endif
8116
8117
8118
/* Free dynamically allocated space used by PREG.  */
8119
8120
void
8121
regfree (regex_t *preg)
8122
0
{
8123
0
  free (preg->buffer);
8124
0
  preg->buffer = NULL;
8125
8126
0
  preg->allocated = 0;
8127
0
  preg->used = 0;
8128
8129
0
  free (preg->fastmap);
8130
0
  preg->fastmap = NULL;
8131
0
  preg->fastmap_accurate = 0;
8132
8133
0
  free (preg->translate);
8134
0
  preg->translate = NULL;
8135
0
}
8136
#ifdef _LIBC
8137
weak_alias (__regfree, regfree)
8138
#endif
8139
8140
#endif /* not emacs  */
8141
8142
#endif /* not INSIDE_RECURSION */
8143
8144

8145
#undef STORE_NUMBER
8146
#undef STORE_NUMBER_AND_INCR
8147
#undef EXTRACT_NUMBER
8148
#undef EXTRACT_NUMBER_AND_INCR
8149
8150
#undef DEBUG_PRINT_COMPILED_PATTERN
8151
#undef DEBUG_PRINT_DOUBLE_STRING
8152
8153
#undef INIT_FAIL_STACK
8154
#undef RESET_FAIL_STACK
8155
#undef DOUBLE_FAIL_STACK
8156
#undef PUSH_PATTERN_OP
8157
#undef PUSH_FAILURE_POINTER
8158
#undef PUSH_FAILURE_INT
8159
#undef PUSH_FAILURE_ELT
8160
#undef POP_FAILURE_POINTER
8161
#undef POP_FAILURE_INT
8162
#undef POP_FAILURE_ELT
8163
#undef DEBUG_PUSH
8164
#undef DEBUG_POP
8165
#undef PUSH_FAILURE_POINT
8166
#undef POP_FAILURE_POINT
8167
8168
#undef REG_UNSET_VALUE
8169
#undef REG_UNSET
8170
8171
#undef PATFETCH
8172
#undef PATFETCH_RAW
8173
#undef PATUNFETCH
8174
#undef TRANSLATE
8175
8176
#undef INIT_BUF_SIZE
8177
#undef GET_BUFFER_SPACE
8178
#undef BUF_PUSH
8179
#undef BUF_PUSH_2
8180
#undef BUF_PUSH_3
8181
#undef STORE_JUMP
8182
#undef STORE_JUMP2
8183
#undef INSERT_JUMP
8184
#undef INSERT_JUMP2
8185
#undef EXTEND_BUFFER
8186
#undef GET_UNSIGNED_NUMBER
8187
#undef FREE_STACK_RETURN
8188
8189
# undef POINTER_TO_OFFSET
8190
# undef MATCHING_IN_FRST_STRING
8191
# undef PREFETCH
8192
# undef AT_STRINGS_BEG
8193
# undef AT_STRINGS_END
8194
# undef WORDCHAR_P
8195
# undef FREE_VAR
8196
# undef FREE_VARIABLES
8197
# undef NO_HIGHEST_ACTIVE_REG
8198
# undef NO_LOWEST_ACTIVE_REG
8199
8200
# undef CHAR_T
8201
# undef UCHAR_T
8202
# undef COMPILED_BUFFER_VAR
8203
# undef OFFSET_ADDRESS_SIZE
8204
# undef CHAR_CLASS_SIZE
8205
# undef PREFIX
8206
# undef ARG_PREFIX
8207
# undef PUT_CHAR
8208
# undef BYTE
8209
# undef WCHAR
8210
8211
# define DEFINED_ONCE