Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/zlib/deflate.c
Line
Count
Source (jump to first uncovered line)
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available in http://tools.ietf.org/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
/* ===========================================================================
64
 *  Function prototypes.
65
 */
66
typedef enum {
67
    need_more,      /* block not completed, need more input or more output */
68
    block_done,     /* block flush performed */
69
    finish_started, /* finish started, need only more output at next deflate */
70
    finish_done     /* finish done, accept no more input or output */
71
} block_state;
72
73
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74
/* Compression function. Returns the block state after the call. */
75
76
local int deflateStateCheck      OF((z_streamp strm));
77
local void slide_hash     OF((deflate_state *s));
78
local void fill_window    OF((deflate_state *s));
79
local block_state deflate_stored OF((deflate_state *s, int flush));
80
local block_state deflate_fast   OF((deflate_state *s, int flush));
81
#ifndef FASTEST
82
local block_state deflate_slow   OF((deflate_state *s, int flush));
83
#endif
84
local block_state deflate_rle    OF((deflate_state *s, int flush));
85
local block_state deflate_huff   OF((deflate_state *s, int flush));
86
local void lm_init        OF((deflate_state *s));
87
local void putShortMSB    OF((deflate_state *s, uInt b));
88
local void flush_pending  OF((z_streamp strm));
89
local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90
#ifdef ASMV
91
#  pragma message("Assembler code may have bugs -- use at your own risk")
92
      void match_init OF((void)); /* asm code initialization */
93
      uInt longest_match  OF((deflate_state *s, IPos cur_match));
94
#else
95
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96
#endif
97
98
#ifdef ZLIB_DEBUG
99
local  void check_match OF((deflate_state *s, IPos start, IPos match,
100
                            int length));
101
#endif
102
103
/* ===========================================================================
104
 * Local data
105
 */
106
107
791M
#define NIL 0
108
/* Tail of hash chains */
109
110
#ifndef TOO_FAR
111
7.22M
#  define TOO_FAR 4096
112
#endif
113
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115
/* Values for max_lazy_match, good_match and max_chain_length, depending on
116
 * the desired pack level (0..9). The values given below have been tuned to
117
 * exclude worst case performance for pathological files. Better values may be
118
 * found for specific files.
119
 */
120
typedef struct config_s {
121
   ush good_length; /* reduce lazy search above this match length */
122
   ush max_lazy;    /* do not perform lazy search above this match length */
123
   ush nice_length; /* quit search above this match length */
124
   ush max_chain;
125
   compress_func func;
126
} config;
127
128
#ifdef FASTEST
129
local const config configuration_table[2] = {
130
/*      good lazy nice chain */
131
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133
#else
134
local const config configuration_table[10] = {
135
/*      good lazy nice chain */
136
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138
/* 2 */ {4,    5, 16,    8, deflate_fast},
139
/* 3 */ {4,    6, 32,   32, deflate_fast},
140
141
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142
/* 5 */ {8,   16, 32,   32, deflate_slow},
143
/* 6 */ {8,   16, 128, 128, deflate_slow},
144
/* 7 */ {8,   32, 128, 256, deflate_slow},
145
/* 8 */ {32, 128, 258, 1024, deflate_slow},
146
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147
#endif
148
149
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151
 * meaning.
152
 */
153
154
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155
22.0k
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157
/* ===========================================================================
158
 * Update a hash value with the given input byte
159
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160
 *    characters, so that a running hash key can be computed from the previous
161
 *    key instead of complete recalculation each time.
162
 */
163
465M
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166
/* ===========================================================================
167
 * Insert string str in the dictionary and set match_head to the previous head
168
 * of the hash chain (the most recent string with same hash key). Return
169
 * the previous length of the hash chain.
170
 * If this file is compiled with -DFASTEST, the compression level is forced
171
 * to 1, and no hash chains are maintained.
172
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173
 *    characters and the first MIN_MATCH bytes of str are valid (except for
174
 *    the last MIN_MATCH-1 bytes of the input file).
175
 */
176
#ifdef FASTEST
177
#define INSERT_STRING(s, str, match_head) \
178
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179
    match_head = s->head[s->ins_h], \
180
    s->head[s->ins_h] = (Pos)(str))
181
#else
182
#define INSERT_STRING(s, str, match_head) \
183
464M
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184
464M
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185
464M
    s->head[s->ins_h] = (Pos)(str))
186
#endif
187
188
/* ===========================================================================
189
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190
 * prev[] will be initialized on the fly.
191
 */
192
#define CLEAR_HASH(s) \
193
22.0k
    do { \
194
22.0k
        s->head[s->hash_size-1] = NIL; \
195
22.0k
        zmemzero((Bytef *)s->head, \
196
22.0k
                 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197
22.0k
    } while (0)
198
199
/* ===========================================================================
200
 * Slide the hash table when sliding the window down (could be avoided with 32
201
 * bit values at the expense of memory usage). We slide even when level == 0 to
202
 * keep the hash table consistent if we switch back to level > 0 later.
203
 */
204
local void slide_hash(s)
205
    deflate_state *s;
206
5.42k
{
207
5.42k
    unsigned n, m;
208
5.42k
    Posf *p;
209
5.42k
    uInt wsize = s->w_size;
210
211
5.42k
    n = s->hash_size;
212
5.42k
    p = &s->head[n];
213
177M
    do {
214
177M
        m = *--p;
215
177M
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
216
177M
    } while (--n);
217
5.42k
    n = wsize;
218
5.42k
#ifndef FASTEST
219
5.42k
    p = &s->prev[n];
220
177M
    do {
221
177M
        m = *--p;
222
177M
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
223
        /* If n is not on any hash chain, prev[n] is garbage but
224
         * its value will never be used.
225
         */
226
177M
    } while (--n);
227
5.42k
#endif
228
5.42k
}
229
230
/* ========================================================================= */
231
int ZEXPORT deflateInit_(strm, level, version, stream_size)
232
    z_streamp strm;
233
    int level;
234
    const char *version;
235
    int stream_size;
236
22.0k
{
237
22.0k
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238
22.0k
                         Z_DEFAULT_STRATEGY, version, stream_size);
239
    /* To do: ignore strm->next_in if we use it as window */
240
22.0k
}
241
242
/* ========================================================================= */
243
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244
                  version, stream_size)
245
    z_streamp strm;
246
    int  level;
247
    int  method;
248
    int  windowBits;
249
    int  memLevel;
250
    int  strategy;
251
    const char *version;
252
    int stream_size;
253
22.0k
{
254
22.0k
    deflate_state *s;
255
22.0k
    int wrap = 1;
256
22.0k
    static const char my_version[] = ZLIB_VERSION;
257
258
22.0k
    if (version == Z_NULL || version[0] != my_version[0] ||
259
22.0k
        stream_size != sizeof(z_stream)) {
260
0
        return Z_VERSION_ERROR;
261
0
    }
262
22.0k
    if (strm == Z_NULL) return Z_STREAM_ERROR;
263
264
22.0k
    strm->msg = Z_NULL;
265
22.0k
    if (strm->zalloc == (alloc_func)0) {
266
#ifdef Z_SOLO
267
        return Z_STREAM_ERROR;
268
#else
269
22.0k
        strm->zalloc = zcalloc;
270
22.0k
        strm->opaque = (voidpf)0;
271
22.0k
#endif
272
22.0k
    }
273
22.0k
    if (strm->zfree == (free_func)0)
274
#ifdef Z_SOLO
275
        return Z_STREAM_ERROR;
276
#else
277
22.0k
        strm->zfree = zcfree;
278
22.0k
#endif
279
280
#ifdef FASTEST
281
    if (level != 0) level = 1;
282
#else
283
22.0k
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
284
22.0k
#endif
285
286
22.0k
    if (windowBits < 0) { /* suppress zlib wrapper */
287
0
        wrap = 0;
288
0
        windowBits = -windowBits;
289
0
    }
290
22.0k
#ifdef GZIP
291
22.0k
    else if (windowBits > 15) {
292
0
        wrap = 2;       /* write gzip wrapper instead */
293
0
        windowBits -= 16;
294
0
    }
295
22.0k
#endif
296
22.0k
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
297
22.0k
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
298
22.0k
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
299
0
        return Z_STREAM_ERROR;
300
0
    }
301
22.0k
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
302
22.0k
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
303
22.0k
    if (s == Z_NULL) return Z_MEM_ERROR;
304
22.0k
    strm->state = (struct internal_state FAR *)s;
305
22.0k
    s->strm = strm;
306
22.0k
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
307
308
22.0k
    s->wrap = wrap;
309
22.0k
    s->gzhead = Z_NULL;
310
22.0k
    s->w_bits = (uInt)windowBits;
311
22.0k
    s->w_size = 1 << s->w_bits;
312
22.0k
    s->w_mask = s->w_size - 1;
313
314
22.0k
    s->hash_bits = (uInt)memLevel + 7;
315
22.0k
    s->hash_size = 1 << s->hash_bits;
316
22.0k
    s->hash_mask = s->hash_size - 1;
317
22.0k
    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
318
319
22.0k
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
320
22.0k
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
321
22.0k
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
322
323
22.0k
    s->high_water = 0;      /* nothing written to s->window yet */
324
325
22.0k
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
326
327
    /* We overlay pending_buf and sym_buf. This works since the average size
328
     * for length/distance pairs over any compressed block is assured to be 31
329
     * bits or less.
330
     *
331
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
332
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
333
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
334
     * possible fixed-codes length/distance pair is then 31 bits total.
335
     *
336
     * sym_buf starts one-fourth of the way into pending_buf. So there are
337
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
338
     * in sym_buf is three bytes -- two for the distance and one for the
339
     * literal/length. As each symbol is consumed, the pointer to the next
340
     * sym_buf value to read moves forward three bytes. From that symbol, up to
341
     * 31 bits are written to pending_buf. The closest the written pending_buf
342
     * bits gets to the next sym_buf symbol to read is just before the last
343
     * code is written. At that time, 31*(n-2) bits have been written, just
344
     * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
345
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
346
     * symbols are written.) The closest the writing gets to what is unread is
347
     * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
348
     * can range from 128 to 32768.
349
     *
350
     * Therefore, at a minimum, there are 142 bits of space between what is
351
     * written and what is read in the overlain buffers, so the symbols cannot
352
     * be overwritten by the compressed data. That space is actually 139 bits,
353
     * due to the three-bit fixed-code block header.
354
     *
355
     * That covers the case where either Z_FIXED is specified, forcing fixed
356
     * codes, or when the use of fixed codes is chosen, because that choice
357
     * results in a smaller compressed block than dynamic codes. That latter
358
     * condition then assures that the above analysis also covers all dynamic
359
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
360
     * fewer bits than a fixed-code block would for the same set of symbols.
361
     * Therefore its average symbol length is assured to be less than 31. So
362
     * the compressed data for a dynamic block also cannot overwrite the
363
     * symbols from which it is being constructed.
364
     */
365
366
22.0k
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
367
22.0k
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
368
369
22.0k
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
370
22.0k
        s->pending_buf == Z_NULL) {
371
0
        s->status = FINISH_STATE;
372
0
        strm->msg = ERR_MSG(Z_MEM_ERROR);
373
0
        deflateEnd (strm);
374
0
        return Z_MEM_ERROR;
375
0
    }
376
22.0k
    s->sym_buf = s->pending_buf + s->lit_bufsize;
377
22.0k
    s->sym_end = (s->lit_bufsize - 1) * 3;
378
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
379
     * on 16 bit machines and because stored blocks are restricted to
380
     * 64K-1 bytes.
381
     */
382
383
22.0k
    s->level = level;
384
22.0k
    s->strategy = strategy;
385
22.0k
    s->method = (Byte)method;
386
387
22.0k
    return deflateReset(strm);
388
22.0k
}
389
390
/* =========================================================================
391
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
392
 */
393
local int deflateStateCheck (strm)
394
    z_streamp strm;
395
66.1k
{
396
66.1k
    deflate_state *s;
397
66.1k
    if (strm == Z_NULL ||
398
66.1k
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
399
0
        return 1;
400
66.1k
    s = strm->state;
401
66.1k
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
402
66.1k
#ifdef GZIP
403
66.1k
                                           s->status != GZIP_STATE &&
404
66.1k
#endif
405
66.1k
                                           s->status != EXTRA_STATE &&
406
66.1k
                                           s->status != NAME_STATE &&
407
66.1k
                                           s->status != COMMENT_STATE &&
408
66.1k
                                           s->status != HCRC_STATE &&
409
66.1k
                                           s->status != BUSY_STATE &&
410
66.1k
                                           s->status != FINISH_STATE))
411
0
        return 1;
412
66.1k
    return 0;
413
66.1k
}
414
415
/* ========================================================================= */
416
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
417
    z_streamp strm;
418
    const Bytef *dictionary;
419
    uInt  dictLength;
420
0
{
421
0
    deflate_state *s;
422
0
    uInt str, n;
423
0
    int wrap;
424
0
    unsigned avail;
425
0
    z_const unsigned char *next;
426
427
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
428
0
        return Z_STREAM_ERROR;
429
0
    s = strm->state;
430
0
    wrap = s->wrap;
431
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
432
0
        return Z_STREAM_ERROR;
433
434
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
435
0
    if (wrap == 1)
436
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
437
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
438
439
    /* if dictionary would fill window, just replace the history */
440
0
    if (dictLength >= s->w_size) {
441
0
        if (wrap == 0) {            /* already empty otherwise */
442
0
            CLEAR_HASH(s);
443
0
            s->strstart = 0;
444
0
            s->block_start = 0L;
445
0
            s->insert = 0;
446
0
        }
447
0
        dictionary += dictLength - s->w_size;  /* use the tail */
448
0
        dictLength = s->w_size;
449
0
    }
450
451
    /* insert dictionary into window and hash */
452
0
    avail = strm->avail_in;
453
0
    next = strm->next_in;
454
0
    strm->avail_in = dictLength;
455
0
    strm->next_in = (z_const Bytef *)dictionary;
456
0
    fill_window(s);
457
0
    while (s->lookahead >= MIN_MATCH) {
458
0
        str = s->strstart;
459
0
        n = s->lookahead - (MIN_MATCH-1);
460
0
        do {
461
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
462
0
#ifndef FASTEST
463
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
464
0
#endif
465
0
            s->head[s->ins_h] = (Pos)str;
466
0
            str++;
467
0
        } while (--n);
468
0
        s->strstart = str;
469
0
        s->lookahead = MIN_MATCH-1;
470
0
        fill_window(s);
471
0
    }
472
0
    s->strstart += s->lookahead;
473
0
    s->block_start = (long)s->strstart;
474
0
    s->insert = s->lookahead;
475
0
    s->lookahead = 0;
476
0
    s->match_length = s->prev_length = MIN_MATCH-1;
477
0
    s->match_available = 0;
478
0
    strm->next_in = next;
479
0
    strm->avail_in = avail;
480
0
    s->wrap = wrap;
481
0
    return Z_OK;
482
0
}
483
484
/* ========================================================================= */
485
int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
486
    z_streamp strm;
487
    Bytef *dictionary;
488
    uInt  *dictLength;
489
0
{
490
0
    deflate_state *s;
491
0
    uInt len;
492
493
0
    if (deflateStateCheck(strm))
494
0
        return Z_STREAM_ERROR;
495
0
    s = strm->state;
496
0
    len = s->strstart + s->lookahead;
497
0
    if (len > s->w_size)
498
0
        len = s->w_size;
499
0
    if (dictionary != Z_NULL && len)
500
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
501
0
    if (dictLength != Z_NULL)
502
0
        *dictLength = len;
503
0
    return Z_OK;
504
0
}
505
506
/* ========================================================================= */
507
int ZEXPORT deflateResetKeep (strm)
508
    z_streamp strm;
509
22.0k
{
510
22.0k
    deflate_state *s;
511
512
22.0k
    if (deflateStateCheck(strm)) {
513
0
        return Z_STREAM_ERROR;
514
0
    }
515
516
22.0k
    strm->total_in = strm->total_out = 0;
517
22.0k
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
518
22.0k
    strm->data_type = Z_UNKNOWN;
519
520
22.0k
    s = (deflate_state *)strm->state;
521
22.0k
    s->pending = 0;
522
22.0k
    s->pending_out = s->pending_buf;
523
524
22.0k
    if (s->wrap < 0) {
525
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
526
0
    }
527
22.0k
    s->status =
528
22.0k
#ifdef GZIP
529
22.0k
        s->wrap == 2 ? GZIP_STATE :
530
22.0k
#endif
531
22.0k
        INIT_STATE;
532
22.0k
    strm->adler =
533
22.0k
#ifdef GZIP
534
22.0k
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
535
22.0k
#endif
536
22.0k
        adler32(0L, Z_NULL, 0);
537
22.0k
    s->last_flush = -2;
538
539
22.0k
    _tr_init(s);
540
541
22.0k
    return Z_OK;
542
22.0k
}
543
544
/* ========================================================================= */
545
int ZEXPORT deflateReset (strm)
546
    z_streamp strm;
547
22.0k
{
548
22.0k
    int ret;
549
550
22.0k
    ret = deflateResetKeep(strm);
551
22.0k
    if (ret == Z_OK)
552
22.0k
        lm_init(strm->state);
553
22.0k
    return ret;
554
22.0k
}
555
556
/* ========================================================================= */
557
int ZEXPORT deflateSetHeader (strm, head)
558
    z_streamp strm;
559
    gz_headerp head;
560
0
{
561
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
562
0
        return Z_STREAM_ERROR;
563
0
    strm->state->gzhead = head;
564
0
    return Z_OK;
565
0
}
566
567
/* ========================================================================= */
568
int ZEXPORT deflatePending (strm, pending, bits)
569
    unsigned *pending;
570
    int *bits;
571
    z_streamp strm;
572
0
{
573
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
574
0
    if (pending != Z_NULL)
575
0
        *pending = strm->state->pending;
576
0
    if (bits != Z_NULL)
577
0
        *bits = strm->state->bi_valid;
578
0
    return Z_OK;
579
0
}
580
581
/* ========================================================================= */
582
int ZEXPORT deflatePrime (strm, bits, value)
583
    z_streamp strm;
584
    int bits;
585
    int value;
586
0
{
587
0
    deflate_state *s;
588
0
    int put;
589
590
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
591
0
    s = strm->state;
592
0
    if (bits < 0 || bits > 16 ||
593
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
594
0
        return Z_BUF_ERROR;
595
0
    do {
596
0
        put = Buf_size - s->bi_valid;
597
0
        if (put > bits)
598
0
            put = bits;
599
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
600
0
        s->bi_valid += put;
601
0
        _tr_flush_bits(s);
602
0
        value >>= put;
603
0
        bits -= put;
604
0
    } while (bits);
605
0
    return Z_OK;
606
0
}
607
608
/* ========================================================================= */
609
int ZEXPORT deflateParams(strm, level, strategy)
610
    z_streamp strm;
611
    int level;
612
    int strategy;
613
0
{
614
0
    deflate_state *s;
615
0
    compress_func func;
616
617
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
618
0
    s = strm->state;
619
620
#ifdef FASTEST
621
    if (level != 0) level = 1;
622
#else
623
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
624
0
#endif
625
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
626
0
        return Z_STREAM_ERROR;
627
0
    }
628
0
    func = configuration_table[s->level].func;
629
630
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
631
0
        s->last_flush != -2) {
632
        /* Flush the last buffer: */
633
0
        int err = deflate(strm, Z_BLOCK);
634
0
        if (err == Z_STREAM_ERROR)
635
0
            return err;
636
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
637
0
            return Z_BUF_ERROR;
638
0
    }
639
0
    if (s->level != level) {
640
0
        if (s->level == 0 && s->matches != 0) {
641
0
            if (s->matches == 1)
642
0
                slide_hash(s);
643
0
            else
644
0
                CLEAR_HASH(s);
645
0
            s->matches = 0;
646
0
        }
647
0
        s->level = level;
648
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
649
0
        s->good_match       = configuration_table[level].good_length;
650
0
        s->nice_match       = configuration_table[level].nice_length;
651
0
        s->max_chain_length = configuration_table[level].max_chain;
652
0
    }
653
0
    s->strategy = strategy;
654
0
    return Z_OK;
655
0
}
656
657
/* ========================================================================= */
658
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
659
    z_streamp strm;
660
    int good_length;
661
    int max_lazy;
662
    int nice_length;
663
    int max_chain;
664
0
{
665
0
    deflate_state *s;
666
667
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
668
0
    s = strm->state;
669
0
    s->good_match = (uInt)good_length;
670
0
    s->max_lazy_match = (uInt)max_lazy;
671
0
    s->nice_match = nice_length;
672
0
    s->max_chain_length = (uInt)max_chain;
673
0
    return Z_OK;
674
0
}
675
676
/* =========================================================================
677
 * For the default windowBits of 15 and memLevel of 8, this function returns
678
 * a close to exact, as well as small, upper bound on the compressed size.
679
 * They are coded as constants here for a reason--if the #define's are
680
 * changed, then this function needs to be changed as well.  The return
681
 * value for 15 and 8 only works for those exact settings.
682
 *
683
 * For any setting other than those defaults for windowBits and memLevel,
684
 * the value returned is a conservative worst case for the maximum expansion
685
 * resulting from using fixed blocks instead of stored blocks, which deflate
686
 * can emit on compressed data for some combinations of the parameters.
687
 *
688
 * This function could be more sophisticated to provide closer upper bounds for
689
 * every combination of windowBits and memLevel.  But even the conservative
690
 * upper bound of about 14% expansion does not seem onerous for output buffer
691
 * allocation.
692
 */
693
uLong ZEXPORT deflateBound(strm, sourceLen)
694
    z_streamp strm;
695
    uLong sourceLen;
696
0
{
697
0
    deflate_state *s;
698
0
    uLong complen, wraplen;
699
700
    /* conservative upper bound for compressed data */
701
0
    complen = sourceLen +
702
0
              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
703
704
    /* if can't get parameters, return conservative bound plus zlib wrapper */
705
0
    if (deflateStateCheck(strm))
706
0
        return complen + 6;
707
708
    /* compute wrapper length */
709
0
    s = strm->state;
710
0
    switch (s->wrap) {
711
0
    case 0:                                 /* raw deflate */
712
0
        wraplen = 0;
713
0
        break;
714
0
    case 1:                                 /* zlib wrapper */
715
0
        wraplen = 6 + (s->strstart ? 4 : 0);
716
0
        break;
717
0
#ifdef GZIP
718
0
    case 2:                                 /* gzip wrapper */
719
0
        wraplen = 18;
720
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
721
0
            Bytef *str;
722
0
            if (s->gzhead->extra != Z_NULL)
723
0
                wraplen += 2 + s->gzhead->extra_len;
724
0
            str = s->gzhead->name;
725
0
            if (str != Z_NULL)
726
0
                do {
727
0
                    wraplen++;
728
0
                } while (*str++);
729
0
            str = s->gzhead->comment;
730
0
            if (str != Z_NULL)
731
0
                do {
732
0
                    wraplen++;
733
0
                } while (*str++);
734
0
            if (s->gzhead->hcrc)
735
0
                wraplen += 2;
736
0
        }
737
0
        break;
738
0
#endif
739
0
    default:                                /* for compiler happiness */
740
0
        wraplen = 6;
741
0
    }
742
743
    /* if not default parameters, return conservative bound */
744
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
745
0
        return complen + wraplen;
746
747
    /* default settings: return tight bound for that case */
748
0
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
749
0
           (sourceLen >> 25) + 13 - 6 + wraplen;
750
0
}
751
752
/* =========================================================================
753
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
754
 * IN assertion: the stream state is correct and there is enough room in
755
 * pending_buf.
756
 */
757
local void putShortMSB (s, b)
758
    deflate_state *s;
759
    uInt b;
760
66.1k
{
761
66.1k
    put_byte(s, (Byte)(b >> 8));
762
66.1k
    put_byte(s, (Byte)(b & 0xff));
763
66.1k
}
764
765
/* =========================================================================
766
 * Flush as much pending output as possible. All deflate() output, except for
767
 * some deflate_stored() output, goes through this function so some
768
 * applications may wish to modify it to avoid allocating a large
769
 * strm->next_out buffer and copying into it. (See also read_buf()).
770
 */
771
local void flush_pending(strm)
772
    z_streamp strm;
773
73.1k
{
774
73.1k
    unsigned len;
775
73.1k
    deflate_state *s = strm->state;
776
777
73.1k
    _tr_flush_bits(s);
778
73.1k
    len = s->pending;
779
73.1k
    if (len > strm->avail_out) len = strm->avail_out;
780
73.1k
    if (len == 0) return;
781
782
73.1k
    zmemcpy(strm->next_out, s->pending_out, len);
783
73.1k
    strm->next_out  += len;
784
73.1k
    s->pending_out  += len;
785
73.1k
    strm->total_out += len;
786
73.1k
    strm->avail_out -= len;
787
73.1k
    s->pending      -= len;
788
73.1k
    if (s->pending == 0) {
789
73.1k
        s->pending_out = s->pending_buf;
790
73.1k
    }
791
73.1k
}
792
793
/* ===========================================================================
794
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
795
 */
796
#define HCRC_UPDATE(beg) \
797
0
    do { \
798
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
799
0
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
800
0
                                s->pending - (beg)); \
801
0
    } while (0)
802
803
/* ========================================================================= */
804
int ZEXPORT deflate (strm, flush)
805
    z_streamp strm;
806
    int flush;
807
22.0k
{
808
22.0k
    int old_flush; /* value of flush param for previous deflate call */
809
22.0k
    deflate_state *s;
810
811
22.0k
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
812
0
        return Z_STREAM_ERROR;
813
0
    }
814
22.0k
    s = strm->state;
815
816
22.0k
    if (strm->next_out == Z_NULL ||
817
22.0k
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
818
22.0k
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
819
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
820
0
    }
821
22.0k
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
822
823
22.0k
    old_flush = s->last_flush;
824
22.0k
    s->last_flush = flush;
825
826
    /* Flush as much pending output as possible */
827
22.0k
    if (s->pending != 0) {
828
0
        flush_pending(strm);
829
0
        if (strm->avail_out == 0) {
830
            /* Since avail_out is 0, deflate will be called again with
831
             * more output space, but possibly with both pending and
832
             * avail_in equal to zero. There won't be anything to do,
833
             * but this is not an error situation so make sure we
834
             * return OK instead of BUF_ERROR at next call of deflate:
835
             */
836
0
            s->last_flush = -1;
837
0
            return Z_OK;
838
0
        }
839
840
    /* Make sure there is something to do and avoid duplicate consecutive
841
     * flushes. For repeated and useless calls with Z_FINISH, we keep
842
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
843
     */
844
22.0k
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
845
22.0k
               flush != Z_FINISH) {
846
0
        ERR_RETURN(strm, Z_BUF_ERROR);
847
0
    }
848
849
    /* User must not provide more input after the first FINISH: */
850
22.0k
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
851
0
        ERR_RETURN(strm, Z_BUF_ERROR);
852
0
    }
853
854
    /* Write the header */
855
22.0k
    if (s->status == INIT_STATE && s->wrap == 0)
856
0
        s->status = BUSY_STATE;
857
22.0k
    if (s->status == INIT_STATE) {
858
        /* zlib header */
859
22.0k
        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
860
22.0k
        uInt level_flags;
861
862
22.0k
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
863
0
            level_flags = 0;
864
22.0k
        else if (s->level < 6)
865
0
            level_flags = 1;
866
22.0k
        else if (s->level == 6)
867
22.0k
            level_flags = 2;
868
0
        else
869
0
            level_flags = 3;
870
22.0k
        header |= (level_flags << 6);
871
22.0k
        if (s->strstart != 0) header |= PRESET_DICT;
872
22.0k
        header += 31 - (header % 31);
873
874
22.0k
        putShortMSB(s, header);
875
876
        /* Save the adler32 of the preset dictionary: */
877
22.0k
        if (s->strstart != 0) {
878
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
879
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
880
0
        }
881
22.0k
        strm->adler = adler32(0L, Z_NULL, 0);
882
22.0k
        s->status = BUSY_STATE;
883
884
        /* Compression must start with an empty pending buffer */
885
22.0k
        flush_pending(strm);
886
22.0k
        if (s->pending != 0) {
887
0
            s->last_flush = -1;
888
0
            return Z_OK;
889
0
        }
890
22.0k
    }
891
22.0k
#ifdef GZIP
892
22.0k
    if (s->status == GZIP_STATE) {
893
        /* gzip header */
894
0
        strm->adler = crc32(0L, Z_NULL, 0);
895
0
        put_byte(s, 31);
896
0
        put_byte(s, 139);
897
0
        put_byte(s, 8);
898
0
        if (s->gzhead == Z_NULL) {
899
0
            put_byte(s, 0);
900
0
            put_byte(s, 0);
901
0
            put_byte(s, 0);
902
0
            put_byte(s, 0);
903
0
            put_byte(s, 0);
904
0
            put_byte(s, s->level == 9 ? 2 :
905
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
906
0
                      4 : 0));
907
0
            put_byte(s, OS_CODE);
908
0
            s->status = BUSY_STATE;
909
910
            /* Compression must start with an empty pending buffer */
911
0
            flush_pending(strm);
912
0
            if (s->pending != 0) {
913
0
                s->last_flush = -1;
914
0
                return Z_OK;
915
0
            }
916
0
        }
917
0
        else {
918
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
919
0
                     (s->gzhead->hcrc ? 2 : 0) +
920
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
921
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
922
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
923
0
                     );
924
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
925
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
926
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
927
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
928
0
            put_byte(s, s->level == 9 ? 2 :
929
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
930
0
                      4 : 0));
931
0
            put_byte(s, s->gzhead->os & 0xff);
932
0
            if (s->gzhead->extra != Z_NULL) {
933
0
                put_byte(s, s->gzhead->extra_len & 0xff);
934
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
935
0
            }
936
0
            if (s->gzhead->hcrc)
937
0
                strm->adler = crc32(strm->adler, s->pending_buf,
938
0
                                    s->pending);
939
0
            s->gzindex = 0;
940
0
            s->status = EXTRA_STATE;
941
0
        }
942
0
    }
943
22.0k
    if (s->status == EXTRA_STATE) {
944
0
        if (s->gzhead->extra != Z_NULL) {
945
0
            ulg beg = s->pending;   /* start of bytes to update crc */
946
0
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
947
0
            while (s->pending + left > s->pending_buf_size) {
948
0
                uInt copy = s->pending_buf_size - s->pending;
949
0
                zmemcpy(s->pending_buf + s->pending,
950
0
                        s->gzhead->extra + s->gzindex, copy);
951
0
                s->pending = s->pending_buf_size;
952
0
                HCRC_UPDATE(beg);
953
0
                s->gzindex += copy;
954
0
                flush_pending(strm);
955
0
                if (s->pending != 0) {
956
0
                    s->last_flush = -1;
957
0
                    return Z_OK;
958
0
                }
959
0
                beg = 0;
960
0
                left -= copy;
961
0
            }
962
0
            zmemcpy(s->pending_buf + s->pending,
963
0
                    s->gzhead->extra + s->gzindex, left);
964
0
            s->pending += left;
965
0
            HCRC_UPDATE(beg);
966
0
            s->gzindex = 0;
967
0
        }
968
0
        s->status = NAME_STATE;
969
0
    }
970
22.0k
    if (s->status == NAME_STATE) {
971
0
        if (s->gzhead->name != Z_NULL) {
972
0
            ulg beg = s->pending;   /* start of bytes to update crc */
973
0
            int val;
974
0
            do {
975
0
                if (s->pending == s->pending_buf_size) {
976
0
                    HCRC_UPDATE(beg);
977
0
                    flush_pending(strm);
978
0
                    if (s->pending != 0) {
979
0
                        s->last_flush = -1;
980
0
                        return Z_OK;
981
0
                    }
982
0
                    beg = 0;
983
0
                }
984
0
                val = s->gzhead->name[s->gzindex++];
985
0
                put_byte(s, val);
986
0
            } while (val != 0);
987
0
            HCRC_UPDATE(beg);
988
0
            s->gzindex = 0;
989
0
        }
990
0
        s->status = COMMENT_STATE;
991
0
    }
992
22.0k
    if (s->status == COMMENT_STATE) {
993
0
        if (s->gzhead->comment != Z_NULL) {
994
0
            ulg beg = s->pending;   /* start of bytes to update crc */
995
0
            int val;
996
0
            do {
997
0
                if (s->pending == s->pending_buf_size) {
998
0
                    HCRC_UPDATE(beg);
999
0
                    flush_pending(strm);
1000
0
                    if (s->pending != 0) {
1001
0
                        s->last_flush = -1;
1002
0
                        return Z_OK;
1003
0
                    }
1004
0
                    beg = 0;
1005
0
                }
1006
0
                val = s->gzhead->comment[s->gzindex++];
1007
0
                put_byte(s, val);
1008
0
            } while (val != 0);
1009
0
            HCRC_UPDATE(beg);
1010
0
        }
1011
0
        s->status = HCRC_STATE;
1012
0
    }
1013
22.0k
    if (s->status == HCRC_STATE) {
1014
0
        if (s->gzhead->hcrc) {
1015
0
            if (s->pending + 2 > s->pending_buf_size) {
1016
0
                flush_pending(strm);
1017
0
                if (s->pending != 0) {
1018
0
                    s->last_flush = -1;
1019
0
                    return Z_OK;
1020
0
                }
1021
0
            }
1022
0
            put_byte(s, (Byte)(strm->adler & 0xff));
1023
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1024
0
            strm->adler = crc32(0L, Z_NULL, 0);
1025
0
        }
1026
0
        s->status = BUSY_STATE;
1027
1028
        /* Compression must start with an empty pending buffer */
1029
0
        flush_pending(strm);
1030
0
        if (s->pending != 0) {
1031
0
            s->last_flush = -1;
1032
0
            return Z_OK;
1033
0
        }
1034
0
    }
1035
22.0k
#endif
1036
1037
    /* Start a new block or continue the current one.
1038
     */
1039
22.0k
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1040
22.0k
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1041
22.0k
        block_state bstate;
1042
1043
22.0k
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1044
22.0k
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1045
22.0k
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1046
22.0k
                 (*(configuration_table[s->level].func))(s, flush);
1047
1048
22.0k
        if (bstate == finish_started || bstate == finish_done) {
1049
22.0k
            s->status = FINISH_STATE;
1050
22.0k
        }
1051
22.0k
        if (bstate == need_more || bstate == finish_started) {
1052
0
            if (strm->avail_out == 0) {
1053
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1054
0
            }
1055
0
            return Z_OK;
1056
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1057
             * of deflate should use the same flush parameter to make sure
1058
             * that the flush is complete. So we don't have to output an
1059
             * empty block here, this will be done at next call. This also
1060
             * ensures that for a very small output buffer, we emit at most
1061
             * one empty block.
1062
             */
1063
0
        }
1064
22.0k
        if (bstate == block_done) {
1065
0
            if (flush == Z_PARTIAL_FLUSH) {
1066
0
                _tr_align(s);
1067
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1068
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1069
                /* For a full flush, this empty block will be recognized
1070
                 * as a special marker by inflate_sync().
1071
                 */
1072
0
                if (flush == Z_FULL_FLUSH) {
1073
0
                    CLEAR_HASH(s);             /* forget history */
1074
0
                    if (s->lookahead == 0) {
1075
0
                        s->strstart = 0;
1076
0
                        s->block_start = 0L;
1077
0
                        s->insert = 0;
1078
0
                    }
1079
0
                }
1080
0
            }
1081
0
            flush_pending(strm);
1082
0
            if (strm->avail_out == 0) {
1083
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1084
0
              return Z_OK;
1085
0
            }
1086
0
        }
1087
22.0k
    }
1088
1089
22.0k
    if (flush != Z_FINISH) return Z_OK;
1090
22.0k
    if (s->wrap <= 0) return Z_STREAM_END;
1091
1092
    /* Write the trailer */
1093
22.0k
#ifdef GZIP
1094
22.0k
    if (s->wrap == 2) {
1095
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1096
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1097
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1098
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1099
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1100
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1101
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1102
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1103
0
    }
1104
22.0k
    else
1105
22.0k
#endif
1106
22.0k
    {
1107
22.0k
        putShortMSB(s, (uInt)(strm->adler >> 16));
1108
22.0k
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1109
22.0k
    }
1110
22.0k
    flush_pending(strm);
1111
    /* If avail_out is zero, the application will call deflate again
1112
     * to flush the rest.
1113
     */
1114
22.0k
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1115
22.0k
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1116
22.0k
}
1117
1118
/* ========================================================================= */
1119
int ZEXPORT deflateEnd (strm)
1120
    z_streamp strm;
1121
22.0k
{
1122
22.0k
    int status;
1123
1124
22.0k
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1125
1126
22.0k
    status = strm->state->status;
1127
1128
    /* Deallocate in reverse order of allocations: */
1129
22.0k
    TRY_FREE(strm, strm->state->pending_buf);
1130
22.0k
    TRY_FREE(strm, strm->state->head);
1131
22.0k
    TRY_FREE(strm, strm->state->prev);
1132
22.0k
    TRY_FREE(strm, strm->state->window);
1133
1134
22.0k
    ZFREE(strm, strm->state);
1135
22.0k
    strm->state = Z_NULL;
1136
1137
22.0k
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1138
22.0k
}
1139
1140
/* =========================================================================
1141
 * Copy the source state to the destination state.
1142
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1143
 * doesn't have enough memory anyway to duplicate compression states).
1144
 */
1145
int ZEXPORT deflateCopy (dest, source)
1146
    z_streamp dest;
1147
    z_streamp source;
1148
0
{
1149
#ifdef MAXSEG_64K
1150
    return Z_STREAM_ERROR;
1151
#else
1152
0
    deflate_state *ds;
1153
0
    deflate_state *ss;
1154
1155
1156
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1157
0
        return Z_STREAM_ERROR;
1158
0
    }
1159
1160
0
    ss = source->state;
1161
1162
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1163
1164
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1165
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1166
0
    dest->state = (struct internal_state FAR *) ds;
1167
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1168
0
    ds->strm = dest;
1169
1170
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1171
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1172
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1173
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1174
1175
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1176
0
        ds->pending_buf == Z_NULL) {
1177
0
        deflateEnd (dest);
1178
0
        return Z_MEM_ERROR;
1179
0
    }
1180
    /* following zmemcpy do not work for 16-bit MSDOS */
1181
0
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1182
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1183
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1184
0
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1185
1186
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1187
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1188
1189
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1190
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1191
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1192
1193
0
    return Z_OK;
1194
0
#endif /* MAXSEG_64K */
1195
0
}
1196
1197
/* ===========================================================================
1198
 * Read a new buffer from the current input stream, update the adler32
1199
 * and total number of bytes read.  All deflate() input goes through
1200
 * this function so some applications may wish to modify it to avoid
1201
 * allocating a large strm->next_in buffer and copying from it.
1202
 * (See also flush_pending()).
1203
 */
1204
local unsigned read_buf(strm, buf, size)
1205
    z_streamp strm;
1206
    Bytef *buf;
1207
    unsigned size;
1208
26.5k
{
1209
26.5k
    unsigned len = strm->avail_in;
1210
1211
26.5k
    if (len > size) len = size;
1212
26.5k
    if (len == 0) return 0;
1213
1214
26.5k
    strm->avail_in  -= len;
1215
1216
26.5k
    zmemcpy(buf, strm->next_in, len);
1217
26.5k
    if (strm->state->wrap == 1) {
1218
26.5k
        strm->adler = adler32(strm->adler, buf, len);
1219
26.5k
    }
1220
0
#ifdef GZIP
1221
0
    else if (strm->state->wrap == 2) {
1222
0
        strm->adler = crc32(strm->adler, buf, len);
1223
0
    }
1224
26.5k
#endif
1225
26.5k
    strm->next_in  += len;
1226
26.5k
    strm->total_in += len;
1227
1228
26.5k
    return len;
1229
26.5k
}
1230
1231
/* ===========================================================================
1232
 * Initialize the "longest match" routines for a new zlib stream
1233
 */
1234
local void lm_init (s)
1235
    deflate_state *s;
1236
22.0k
{
1237
22.0k
    s->window_size = (ulg)2L*s->w_size;
1238
1239
22.0k
    CLEAR_HASH(s);
1240
1241
    /* Set the default configuration parameters:
1242
     */
1243
22.0k
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1244
22.0k
    s->good_match       = configuration_table[s->level].good_length;
1245
22.0k
    s->nice_match       = configuration_table[s->level].nice_length;
1246
22.0k
    s->max_chain_length = configuration_table[s->level].max_chain;
1247
1248
22.0k
    s->strstart = 0;
1249
22.0k
    s->block_start = 0L;
1250
22.0k
    s->lookahead = 0;
1251
22.0k
    s->insert = 0;
1252
22.0k
    s->match_length = s->prev_length = MIN_MATCH-1;
1253
22.0k
    s->match_available = 0;
1254
22.0k
    s->ins_h = 0;
1255
22.0k
#ifndef FASTEST
1256
#ifdef ASMV
1257
    match_init(); /* initialize the asm code */
1258
#endif
1259
22.0k
#endif
1260
22.0k
}
1261
1262
#ifndef FASTEST
1263
/* ===========================================================================
1264
 * Set match_start to the longest match starting at the given string and
1265
 * return its length. Matches shorter or equal to prev_length are discarded,
1266
 * in which case the result is equal to prev_length and match_start is
1267
 * garbage.
1268
 * IN assertions: cur_match is the head of the hash chain for the current
1269
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1270
 * OUT assertion: the match length is not greater than s->lookahead.
1271
 */
1272
#ifndef ASMV
1273
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1274
 * match.S. The code will be functionally equivalent.
1275
 */
1276
local uInt longest_match(s, cur_match)
1277
    deflate_state *s;
1278
    IPos cur_match;                             /* current match */
1279
88.4M
{
1280
88.4M
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1281
88.4M
    register Bytef *scan = s->window + s->strstart; /* current string */
1282
88.4M
    register Bytef *match;                      /* matched string */
1283
88.4M
    register int len;                           /* length of current match */
1284
88.4M
    int best_len = (int)s->prev_length;         /* best match length so far */
1285
88.4M
    int nice_match = s->nice_match;             /* stop if match long enough */
1286
88.4M
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1287
52.7M
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1288
    /* Stop when cur_match becomes <= limit. To simplify the code,
1289
     * we prevent matches with the string of window index 0.
1290
     */
1291
88.4M
    Posf *prev = s->prev;
1292
88.4M
    uInt wmask = s->w_mask;
1293
1294
#ifdef UNALIGNED_OK
1295
    /* Compare two bytes at a time. Note: this is not always beneficial.
1296
     * Try with and without -DUNALIGNED_OK to check.
1297
     */
1298
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1299
    register ush scan_start = *(ushf*)scan;
1300
    register ush scan_end   = *(ushf*)(scan+best_len-1);
1301
#else
1302
88.4M
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1303
88.4M
    register Byte scan_end1  = scan[best_len-1];
1304
88.4M
    register Byte scan_end   = scan[best_len];
1305
88.4M
#endif
1306
1307
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1308
     * It is easy to get rid of this optimization if necessary.
1309
     */
1310
88.4M
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1311
1312
    /* Do not waste too much time if we already have a good match: */
1313
88.4M
    if (s->prev_length >= s->good_match) {
1314
5.07M
        chain_length >>= 2;
1315
5.07M
    }
1316
    /* Do not look for matches beyond the end of the input. This is necessary
1317
     * to make deflate deterministic.
1318
     */
1319
88.4M
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1320
1321
88.4M
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1322
1323
1.86G
    do {
1324
1.86G
        Assert(cur_match < s->strstart, "no future");
1325
1.86G
        match = s->window + cur_match;
1326
1327
        /* Skip to next match if the match length cannot increase
1328
         * or if the match length is less than 2.  Note that the checks below
1329
         * for insufficient lookahead only occur occasionally for performance
1330
         * reasons.  Therefore uninitialized memory will be accessed, and
1331
         * conditional jumps will be made that depend on those values.
1332
         * However the length of the match is limited to the lookahead, so
1333
         * the output of deflate is not affected by the uninitialized values.
1334
         */
1335
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1336
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1337
         * UNALIGNED_OK if your compiler uses a different size.
1338
         */
1339
        if (*(ushf*)(match+best_len-1) != scan_end ||
1340
            *(ushf*)match != scan_start) continue;
1341
1342
        /* It is not necessary to compare scan[2] and match[2] since they are
1343
         * always equal when the other bytes match, given that the hash keys
1344
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1345
         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1346
         * lookahead only every 4th comparison; the 128th check will be made
1347
         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1348
         * necessary to put more guard bytes at the end of the window, or
1349
         * to check more often for insufficient lookahead.
1350
         */
1351
        Assert(scan[2] == match[2], "scan[2]?");
1352
        scan++, match++;
1353
        do {
1354
        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1357
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1358
                 scan < strend);
1359
        /* The funny "do {}" generates better code on most compilers */
1360
1361
        /* Here, scan <= window+strstart+257 */
1362
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1363
        if (*scan == *match) scan++;
1364
1365
        len = (MAX_MATCH - 1) - (int)(strend-scan);
1366
        scan = strend - (MAX_MATCH-1);
1367
1368
#else /* UNALIGNED_OK */
1369
1370
1.86G
        if (match[best_len]   != scan_end  ||
1371
1.86G
            match[best_len-1] != scan_end1 ||
1372
1.86G
            *match            != *scan     ||
1373
1.86G
            *++match          != scan[1])      continue;
1374
1375
        /* The check at best_len-1 can be removed because it will be made
1376
         * again later. (This heuristic is not always a win.)
1377
         * It is not necessary to compare scan[2] and match[2] since they
1378
         * are always equal when the other bytes match, given that
1379
         * the hash keys are equal and that HASH_BITS >= 8.
1380
         */
1381
74.0M
        scan += 2, match++;
1382
74.0M
        Assert(*scan == *match, "match[2]?");
1383
1384
        /* We check for insufficient lookahead only every 8th comparison;
1385
         * the 256th check will be made at strstart+258.
1386
         */
1387
140M
        do {
1388
140M
        } while (*++scan == *++match && *++scan == *++match &&
1389
140M
                 *++scan == *++match && *++scan == *++match &&
1390
140M
                 *++scan == *++match && *++scan == *++match &&
1391
140M
                 *++scan == *++match && *++scan == *++match &&
1392
140M
                 scan < strend);
1393
1394
74.0M
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1395
1396
74.0M
        len = MAX_MATCH - (int)(strend - scan);
1397
74.0M
        scan = strend - MAX_MATCH;
1398
1399
74.0M
#endif /* UNALIGNED_OK */
1400
1401
74.0M
        if (len > best_len) {
1402
45.7M
            s->match_start = cur_match;
1403
45.7M
            best_len = len;
1404
45.7M
            if (len >= nice_match) break;
1405
#ifdef UNALIGNED_OK
1406
            scan_end = *(ushf*)(scan+best_len-1);
1407
#else
1408
45.1M
            scan_end1  = scan[best_len-1];
1409
45.1M
            scan_end   = scan[best_len];
1410
45.1M
#endif
1411
45.1M
        }
1412
1.86G
    } while ((cur_match = prev[cur_match & wmask]) > limit
1413
1.86G
             && --chain_length != 0);
1414
1415
88.4M
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1416
9.11k
    return s->lookahead;
1417
88.4M
}
1418
#endif /* ASMV */
1419
1420
#else /* FASTEST */
1421
1422
/* ---------------------------------------------------------------------------
1423
 * Optimized version for FASTEST only
1424
 */
1425
local uInt longest_match(s, cur_match)
1426
    deflate_state *s;
1427
    IPos cur_match;                             /* current match */
1428
{
1429
    register Bytef *scan = s->window + s->strstart; /* current string */
1430
    register Bytef *match;                       /* matched string */
1431
    register int len;                           /* length of current match */
1432
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1433
1434
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1435
     * It is easy to get rid of this optimization if necessary.
1436
     */
1437
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1438
1439
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1440
1441
    Assert(cur_match < s->strstart, "no future");
1442
1443
    match = s->window + cur_match;
1444
1445
    /* Return failure if the match length is less than 2:
1446
     */
1447
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1448
1449
    /* The check at best_len-1 can be removed because it will be made
1450
     * again later. (This heuristic is not always a win.)
1451
     * It is not necessary to compare scan[2] and match[2] since they
1452
     * are always equal when the other bytes match, given that
1453
     * the hash keys are equal and that HASH_BITS >= 8.
1454
     */
1455
    scan += 2, match += 2;
1456
    Assert(*scan == *match, "match[2]?");
1457
1458
    /* We check for insufficient lookahead only every 8th comparison;
1459
     * the 256th check will be made at strstart+258.
1460
     */
1461
    do {
1462
    } while (*++scan == *++match && *++scan == *++match &&
1463
             *++scan == *++match && *++scan == *++match &&
1464
             *++scan == *++match && *++scan == *++match &&
1465
             *++scan == *++match && *++scan == *++match &&
1466
             scan < strend);
1467
1468
    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1469
1470
    len = MAX_MATCH - (int)(strend - scan);
1471
1472
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1473
1474
    s->match_start = cur_match;
1475
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1476
}
1477
1478
#endif /* FASTEST */
1479
1480
#ifdef ZLIB_DEBUG
1481
1482
#define EQUAL 0
1483
/* result of memcmp for equal strings */
1484
1485
/* ===========================================================================
1486
 * Check that the match at match_start is indeed a match.
1487
 */
1488
local void check_match(s, start, match, length)
1489
    deflate_state *s;
1490
    IPos start, match;
1491
    int length;
1492
{
1493
    /* check that the match is indeed a match */
1494
    if (zmemcmp(s->window + match,
1495
                s->window + start, length) != EQUAL) {
1496
        fprintf(stderr, " start %u, match %u, length %d\n",
1497
                start, match, length);
1498
        do {
1499
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1500
        } while (--length != 0);
1501
        z_error("invalid match");
1502
    }
1503
    if (z_verbose > 1) {
1504
        fprintf(stderr,"\\[%d,%d]", start-match, length);
1505
        do { putc(s->window[start++], stderr); } while (--length != 0);
1506
    }
1507
}
1508
#else
1509
#  define check_match(s, start, match, length)
1510
#endif /* ZLIB_DEBUG */
1511
1512
/* ===========================================================================
1513
 * Fill the window when the lookahead becomes insufficient.
1514
 * Updates strstart and lookahead.
1515
 *
1516
 * IN assertion: lookahead < MIN_LOOKAHEAD
1517
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1518
 *    At least one byte has been read, or avail_in == 0; reads are
1519
 *    performed for at least two bytes (required for the zip translate_eol
1520
 *    option -- not supported here).
1521
 */
1522
local void fill_window(s)
1523
    deflate_state *s;
1524
2.13M
{
1525
2.13M
    unsigned n;
1526
2.13M
    unsigned more;    /* Amount of free space at the end of the window. */
1527
2.13M
    uInt wsize = s->w_size;
1528
1529
2.13M
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1530
1531
2.13M
    do {
1532
2.13M
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1533
1534
        /* Deal with !@#$% 64K limit: */
1535
2.13M
        if (sizeof(int) <= 2) {
1536
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1537
0
                more = wsize;
1538
1539
0
            } else if (more == (unsigned)(-1)) {
1540
                /* Very unlikely, but possible on 16 bit machine if
1541
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1542
                 */
1543
0
                more--;
1544
0
            }
1545
0
        }
1546
1547
        /* If the window is almost full and there is insufficient lookahead,
1548
         * move the upper half to the lower one to make room in the upper half.
1549
         */
1550
2.13M
        if (s->strstart >= wsize+MAX_DIST(s)) {
1551
1552
5.42k
            zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1553
5.42k
            s->match_start -= wsize;
1554
5.42k
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1555
5.42k
            s->block_start -= (long) wsize;
1556
5.42k
            if (s->insert > s->strstart)
1557
0
                s->insert = s->strstart;
1558
5.42k
            slide_hash(s);
1559
5.42k
            more += wsize;
1560
5.42k
        }
1561
2.13M
        if (s->strm->avail_in == 0) break;
1562
1563
        /* If there was no sliding:
1564
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1565
         *    more == window_size - lookahead - strstart
1566
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1567
         * => more >= window_size - 2*WSIZE + 2
1568
         * In the BIG_MEM or MMAP case (not yet supported),
1569
         *   window_size == input_size + MIN_LOOKAHEAD  &&
1570
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1571
         * Otherwise, window_size == 2*WSIZE so more >= 2.
1572
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1573
         */
1574
26.5k
        Assert(more >= 2, "more < 2");
1575
1576
26.5k
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1577
26.5k
        s->lookahead += n;
1578
1579
        /* Initialize the hash value now that we have some input: */
1580
26.5k
        if (s->lookahead + s->insert >= MIN_MATCH) {
1581
26.5k
            uInt str = s->strstart - s->insert;
1582
26.5k
            s->ins_h = s->window[str];
1583
26.5k
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1584
#if MIN_MATCH != 3
1585
            Call UPDATE_HASH() MIN_MATCH-3 more times
1586
#endif
1587
26.5k
            while (s->insert) {
1588
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1589
0
#ifndef FASTEST
1590
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
1591
0
#endif
1592
0
                s->head[s->ins_h] = (Pos)str;
1593
0
                str++;
1594
0
                s->insert--;
1595
0
                if (s->lookahead + s->insert < MIN_MATCH)
1596
0
                    break;
1597
0
            }
1598
26.5k
        }
1599
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1600
         * but this is not important since only literal bytes will be emitted.
1601
         */
1602
1603
26.5k
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1604
1605
    /* If the WIN_INIT bytes after the end of the current data have never been
1606
     * written, then zero those bytes in order to avoid memory check reports of
1607
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1608
     * the longest match routines.  Update the high water mark for the next
1609
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1610
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1611
     */
1612
2.13M
    if (s->high_water < s->window_size) {
1613
1.91M
        ulg curr = s->strstart + (ulg)(s->lookahead);
1614
1.91M
        ulg init;
1615
1616
1.91M
        if (s->high_water < curr) {
1617
            /* Previous high water mark below current data -- zero WIN_INIT
1618
             * bytes or up to end of window, whichever is less.
1619
             */
1620
22.0k
            init = s->window_size - curr;
1621
22.0k
            if (init > WIN_INIT)
1622
19.5k
                init = WIN_INIT;
1623
22.0k
            zmemzero(s->window + curr, (unsigned)init);
1624
22.0k
            s->high_water = curr + init;
1625
22.0k
        }
1626
1.89M
        else if (s->high_water < (ulg)curr + WIN_INIT) {
1627
            /* High water mark at or above current data, but below current data
1628
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1629
             * to end of window, whichever is less.
1630
             */
1631
0
            init = (ulg)curr + WIN_INIT - s->high_water;
1632
0
            if (init > s->window_size - s->high_water)
1633
0
                init = s->window_size - s->high_water;
1634
0
            zmemzero(s->window + s->high_water, (unsigned)init);
1635
0
            s->high_water += init;
1636
0
        }
1637
1.91M
    }
1638
1639
2.13M
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1640
2.13M
           "not enough room for search");
1641
2.13M
}
1642
1643
/* ===========================================================================
1644
 * Flush the current block, with given end-of-file flag.
1645
 * IN assertion: strstart is set to the end of the current match.
1646
 */
1647
29.0k
#define FLUSH_BLOCK_ONLY(s, last) { \
1648
29.0k
   _tr_flush_block(s, (s->block_start >= 0L ? \
1649
29.0k
                   (charf *)&s->window[(unsigned)s->block_start] : \
1650
29.0k
                   (charf *)Z_NULL), \
1651
29.0k
                (ulg)((long)s->strstart - s->block_start), \
1652
29.0k
                (last)); \
1653
29.0k
   s->block_start = s->strstart; \
1654
29.0k
   flush_pending(s->strm); \
1655
29.0k
   Tracev((stderr,"[FLUSH]")); \
1656
29.0k
}
1657
1658
/* Same but force premature exit if necessary. */
1659
23.0k
#define FLUSH_BLOCK(s, last) { \
1660
23.0k
   FLUSH_BLOCK_ONLY(s, last); \
1661
23.0k
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1662
23.0k
}
1663
1664
/* Maximum stored block length in deflate format (not including header). */
1665
0
#define MAX_STORED 65535
1666
1667
/* Minimum of a and b. */
1668
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1669
1670
/* ===========================================================================
1671
 * Copy without compression as much as possible from the input stream, return
1672
 * the current block state.
1673
 *
1674
 * In case deflateParams() is used to later switch to a non-zero compression
1675
 * level, s->matches (otherwise unused when storing) keeps track of the number
1676
 * of hash table slides to perform. If s->matches is 1, then one hash table
1677
 * slide will be done when switching. If s->matches is 2, the maximum value
1678
 * allowed here, then the hash table will be cleared, since two or more slides
1679
 * is the same as a clear.
1680
 *
1681
 * deflate_stored() is written to minimize the number of times an input byte is
1682
 * copied. It is most efficient with large input and output buffers, which
1683
 * maximizes the opportunites to have a single copy from next_in to next_out.
1684
 */
1685
local block_state deflate_stored(s, flush)
1686
    deflate_state *s;
1687
    int flush;
1688
0
{
1689
    /* Smallest worthy block size when not flushing or finishing. By default
1690
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1691
     * large input and output buffers, the stored block size will be larger.
1692
     */
1693
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1694
1695
    /* Copy as many min_block or larger stored blocks directly to next_out as
1696
     * possible. If flushing, copy the remaining available input to next_out as
1697
     * stored blocks, if there is enough space.
1698
     */
1699
0
    unsigned len, left, have, last = 0;
1700
0
    unsigned used = s->strm->avail_in;
1701
0
    do {
1702
        /* Set len to the maximum size block that we can copy directly with the
1703
         * available input data and output space. Set left to how much of that
1704
         * would be copied from what's left in the window.
1705
         */
1706
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1707
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1708
0
        if (s->strm->avail_out < have)          /* need room for header */
1709
0
            break;
1710
            /* maximum stored block length that will fit in avail_out: */
1711
0
        have = s->strm->avail_out - have;
1712
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1713
0
        if (len > (ulg)left + s->strm->avail_in)
1714
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1715
0
        if (len > have)
1716
0
            len = have;                         /* limit len to the output */
1717
1718
        /* If the stored block would be less than min_block in length, or if
1719
         * unable to copy all of the available input when flushing, then try
1720
         * copying to the window and the pending buffer instead. Also don't
1721
         * write an empty block when flushing -- deflate() does that.
1722
         */
1723
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1724
0
                                flush == Z_NO_FLUSH ||
1725
0
                                len != left + s->strm->avail_in))
1726
0
            break;
1727
1728
        /* Make a dummy stored block in pending to get the header bytes,
1729
         * including any pending bits. This also updates the debugging counts.
1730
         */
1731
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1732
0
        _tr_stored_block(s, (char *)0, 0L, last);
1733
1734
        /* Replace the lengths in the dummy stored block with len. */
1735
0
        s->pending_buf[s->pending - 4] = len;
1736
0
        s->pending_buf[s->pending - 3] = len >> 8;
1737
0
        s->pending_buf[s->pending - 2] = ~len;
1738
0
        s->pending_buf[s->pending - 1] = ~len >> 8;
1739
1740
        /* Write the stored block header bytes. */
1741
0
        flush_pending(s->strm);
1742
1743
#ifdef ZLIB_DEBUG
1744
        /* Update debugging counts for the data about to be copied. */
1745
        s->compressed_len += len << 3;
1746
        s->bits_sent += len << 3;
1747
#endif
1748
1749
        /* Copy uncompressed bytes from the window to next_out. */
1750
0
        if (left) {
1751
0
            if (left > len)
1752
0
                left = len;
1753
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1754
0
            s->strm->next_out += left;
1755
0
            s->strm->avail_out -= left;
1756
0
            s->strm->total_out += left;
1757
0
            s->block_start += left;
1758
0
            len -= left;
1759
0
        }
1760
1761
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1762
         * the check value.
1763
         */
1764
0
        if (len) {
1765
0
            read_buf(s->strm, s->strm->next_out, len);
1766
0
            s->strm->next_out += len;
1767
0
            s->strm->avail_out -= len;
1768
0
            s->strm->total_out += len;
1769
0
        }
1770
0
    } while (last == 0);
1771
1772
    /* Update the sliding window with the last s->w_size bytes of the copied
1773
     * data, or append all of the copied data to the existing window if less
1774
     * than s->w_size bytes were copied. Also update the number of bytes to
1775
     * insert in the hash tables, in the event that deflateParams() switches to
1776
     * a non-zero compression level.
1777
     */
1778
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1779
0
    if (used) {
1780
        /* If any input was used, then no unused input remains in the window,
1781
         * therefore s->block_start == s->strstart.
1782
         */
1783
0
        if (used >= s->w_size) {    /* supplant the previous history */
1784
0
            s->matches = 2;         /* clear hash */
1785
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1786
0
            s->strstart = s->w_size;
1787
0
            s->insert = s->strstart;
1788
0
        }
1789
0
        else {
1790
0
            if (s->window_size - s->strstart <= used) {
1791
                /* Slide the window down. */
1792
0
                s->strstart -= s->w_size;
1793
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1794
0
                if (s->matches < 2)
1795
0
                    s->matches++;   /* add a pending slide_hash() */
1796
0
                if (s->insert > s->strstart)
1797
0
                    s->insert = s->strstart;
1798
0
            }
1799
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1800
0
            s->strstart += used;
1801
0
            s->insert += MIN(used, s->w_size - s->insert);
1802
0
        }
1803
0
        s->block_start = s->strstart;
1804
0
    }
1805
0
    if (s->high_water < s->strstart)
1806
0
        s->high_water = s->strstart;
1807
1808
    /* If the last block was written to next_out, then done. */
1809
0
    if (last)
1810
0
        return finish_done;
1811
1812
    /* If flushing and all input has been consumed, then done. */
1813
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1814
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1815
0
        return block_done;
1816
1817
    /* Fill the window with any remaining input. */
1818
0
    have = s->window_size - s->strstart;
1819
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1820
        /* Slide the window down. */
1821
0
        s->block_start -= s->w_size;
1822
0
        s->strstart -= s->w_size;
1823
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1824
0
        if (s->matches < 2)
1825
0
            s->matches++;           /* add a pending slide_hash() */
1826
0
        have += s->w_size;          /* more space now */
1827
0
        if (s->insert > s->strstart)
1828
0
            s->insert = s->strstart;
1829
0
    }
1830
0
    if (have > s->strm->avail_in)
1831
0
        have = s->strm->avail_in;
1832
0
    if (have) {
1833
0
        read_buf(s->strm, s->window + s->strstart, have);
1834
0
        s->strstart += have;
1835
0
        s->insert += MIN(have, s->w_size - s->insert);
1836
0
    }
1837
0
    if (s->high_water < s->strstart)
1838
0
        s->high_water = s->strstart;
1839
1840
    /* There was not enough avail_out to write a complete worthy or flushed
1841
     * stored block to next_out. Write a stored block to pending instead, if we
1842
     * have enough input for a worthy block, or if flushing and there is enough
1843
     * room for the remaining input as a stored block in the pending buffer.
1844
     */
1845
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1846
        /* maximum stored block length that will fit in pending: */
1847
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1848
0
    min_block = MIN(have, s->w_size);
1849
0
    left = s->strstart - s->block_start;
1850
0
    if (left >= min_block ||
1851
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1852
0
         s->strm->avail_in == 0 && left <= have)) {
1853
0
        len = MIN(left, have);
1854
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1855
0
               len == left ? 1 : 0;
1856
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1857
0
        s->block_start += len;
1858
0
        flush_pending(s->strm);
1859
0
    }
1860
1861
    /* We've done all we can with the available input and output. */
1862
0
    return last ? finish_started : need_more;
1863
0
}
1864
1865
/* ===========================================================================
1866
 * Compress as much as possible from the input stream, return the current
1867
 * block state.
1868
 * This function does not perform lazy evaluation of matches and inserts
1869
 * new strings in the dictionary only for unmatched strings or for short
1870
 * matches. It is used only for the fast compression options.
1871
 */
1872
local block_state deflate_fast(s, flush)
1873
    deflate_state *s;
1874
    int flush;
1875
0
{
1876
0
    IPos hash_head;       /* head of the hash chain */
1877
0
    int bflush;           /* set if current block must be flushed */
1878
1879
0
    for (;;) {
1880
        /* Make sure that we always have enough lookahead, except
1881
         * at the end of the input file. We need MAX_MATCH bytes
1882
         * for the next match, plus MIN_MATCH bytes to insert the
1883
         * string following the next match.
1884
         */
1885
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1886
0
            fill_window(s);
1887
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1888
0
                return need_more;
1889
0
            }
1890
0
            if (s->lookahead == 0) break; /* flush the current block */
1891
0
        }
1892
1893
        /* Insert the string window[strstart .. strstart+2] in the
1894
         * dictionary, and set hash_head to the head of the hash chain:
1895
         */
1896
0
        hash_head = NIL;
1897
0
        if (s->lookahead >= MIN_MATCH) {
1898
0
            INSERT_STRING(s, s->strstart, hash_head);
1899
0
        }
1900
1901
        /* Find the longest match, discarding those <= prev_length.
1902
         * At this point we have always match_length < MIN_MATCH
1903
         */
1904
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1905
            /* To simplify the code, we prevent matches with the string
1906
             * of window index 0 (in particular we have to avoid a match
1907
             * of the string with itself at the start of the input file).
1908
             */
1909
0
            s->match_length = longest_match (s, hash_head);
1910
            /* longest_match() sets match_start */
1911
0
        }
1912
0
        if (s->match_length >= MIN_MATCH) {
1913
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1914
1915
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1916
0
                           s->match_length - MIN_MATCH, bflush);
1917
1918
0
            s->lookahead -= s->match_length;
1919
1920
            /* Insert new strings in the hash table only if the match length
1921
             * is not too large. This saves time but degrades compression.
1922
             */
1923
0
#ifndef FASTEST
1924
0
            if (s->match_length <= s->max_insert_length &&
1925
0
                s->lookahead >= MIN_MATCH) {
1926
0
                s->match_length--; /* string at strstart already in table */
1927
0
                do {
1928
0
                    s->strstart++;
1929
0
                    INSERT_STRING(s, s->strstart, hash_head);
1930
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1931
                     * always MIN_MATCH bytes ahead.
1932
                     */
1933
0
                } while (--s->match_length != 0);
1934
0
                s->strstart++;
1935
0
            } else
1936
0
#endif
1937
0
            {
1938
0
                s->strstart += s->match_length;
1939
0
                s->match_length = 0;
1940
0
                s->ins_h = s->window[s->strstart];
1941
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1942
#if MIN_MATCH != 3
1943
                Call UPDATE_HASH() MIN_MATCH-3 more times
1944
#endif
1945
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1946
                 * matter since it will be recomputed at next deflate call.
1947
                 */
1948
0
            }
1949
0
        } else {
1950
            /* No match, output a literal byte */
1951
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1952
0
            _tr_tally_lit (s, s->window[s->strstart], bflush);
1953
0
            s->lookahead--;
1954
0
            s->strstart++;
1955
0
        }
1956
0
        if (bflush) FLUSH_BLOCK(s, 0);
1957
0
    }
1958
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1959
0
    if (flush == Z_FINISH) {
1960
0
        FLUSH_BLOCK(s, 1);
1961
0
        return finish_done;
1962
0
    }
1963
0
    if (s->sym_next)
1964
0
        FLUSH_BLOCK(s, 0);
1965
0
    return block_done;
1966
0
}
1967
1968
#ifndef FASTEST
1969
/* ===========================================================================
1970
 * Same as above, but achieves better compression. We use a lazy
1971
 * evaluation for matches: a match is finally adopted only if there is
1972
 * no better match at the next window position.
1973
 */
1974
local block_state deflate_slow(s, flush)
1975
    deflate_state *s;
1976
    int flush;
1977
22.0k
{
1978
22.0k
    IPos hash_head;          /* head of hash chain */
1979
22.0k
    int bflush;              /* set if current block must be flushed */
1980
1981
    /* Process the input block. */
1982
192M
    for (;;) {
1983
        /* Make sure that we always have enough lookahead, except
1984
         * at the end of the input file. We need MAX_MATCH bytes
1985
         * for the next match, plus MIN_MATCH bytes to insert the
1986
         * string following the next match.
1987
         */
1988
192M
        if (s->lookahead < MIN_LOOKAHEAD) {
1989
2.13M
            fill_window(s);
1990
2.13M
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1991
0
                return need_more;
1992
0
            }
1993
2.13M
            if (s->lookahead == 0) break; /* flush the current block */
1994
2.13M
        }
1995
1996
        /* Insert the string window[strstart .. strstart+2] in the
1997
         * dictionary, and set hash_head to the head of the hash chain:
1998
         */
1999
192M
        hash_head = NIL;
2000
192M
        if (s->lookahead >= MIN_MATCH) {
2001
192M
            INSERT_STRING(s, s->strstart, hash_head);
2002
192M
        }
2003
2004
        /* Find the longest match, discarding those <= prev_length.
2005
         */
2006
192M
        s->prev_length = s->match_length, s->prev_match = s->match_start;
2007
192M
        s->match_length = MIN_MATCH-1;
2008
2009
192M
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2010
192M
            s->strstart - hash_head <= MAX_DIST(s)) {
2011
            /* To simplify the code, we prevent matches with the string
2012
             * of window index 0 (in particular we have to avoid a match
2013
             * of the string with itself at the start of the input file).
2014
             */
2015
88.4M
            s->match_length = longest_match (s, hash_head);
2016
            /* longest_match() sets match_start */
2017
2018
88.4M
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2019
69.0M
#if TOO_FAR <= 32767
2020
69.0M
                || (s->match_length == MIN_MATCH &&
2021
69.0M
                    s->strstart - s->match_start > TOO_FAR)
2022
69.0M
#endif
2023
69.0M
                )) {
2024
2025
                /* If prev_match is also MIN_MATCH, match_start is garbage
2026
                 * but we will ignore the current match anyway.
2027
                 */
2028
1.15M
                s->match_length = MIN_MATCH-1;
2029
1.15M
            }
2030
88.4M
        }
2031
        /* If there was a match at the previous step and the current
2032
         * match is not better, output the previous match:
2033
         */
2034
192M
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2035
18.7M
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2036
            /* Do not insert strings in hash table beyond this. */
2037
2038
18.7M
            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2039
2040
18.7M
            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2041
18.7M
                           s->prev_length - MIN_MATCH, bflush);
2042
2043
            /* Insert in hash table all strings up to the end of the match.
2044
             * strstart-1 and strstart are already inserted. If there is not
2045
             * enough lookahead, the last two strings are not inserted in
2046
             * the hash table.
2047
             */
2048
18.7M
            s->lookahead -= s->prev_length-1;
2049
18.7M
            s->prev_length -= 2;
2050
272M
            do {
2051
272M
                if (++s->strstart <= max_insert) {
2052
272M
                    INSERT_STRING(s, s->strstart, hash_head);
2053
272M
                }
2054
272M
            } while (--s->prev_length != 0);
2055
18.7M
            s->match_available = 0;
2056
18.7M
            s->match_length = MIN_MATCH-1;
2057
18.7M
            s->strstart++;
2058
2059
18.7M
            if (bflush) FLUSH_BLOCK(s, 0);
2060
2061
173M
        } else if (s->match_available) {
2062
            /* If there was no match at the previous position, output a
2063
             * single literal. If there was a match but the current match
2064
             * is longer, truncate the previous match to a single literal.
2065
             */
2066
154M
            Tracevv((stderr,"%c", s->window[s->strstart-1]));
2067
154M
            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2068
154M
            if (bflush) {
2069
6.00k
                FLUSH_BLOCK_ONLY(s, 0);
2070
6.00k
            }
2071
154M
            s->strstart++;
2072
154M
            s->lookahead--;
2073
154M
            if (s->strm->avail_out == 0) return need_more;
2074
154M
        } else {
2075
            /* There is no previous match to compare with, wait for
2076
             * the next step to decide.
2077
             */
2078
18.7M
            s->match_available = 1;
2079
18.7M
            s->strstart++;
2080
18.7M
            s->lookahead--;
2081
18.7M
        }
2082
192M
    }
2083
22.0k
    Assert (flush != Z_NO_FLUSH, "no flush?");
2084
22.0k
    if (s->match_available) {
2085
9.32k
        Tracevv((stderr,"%c", s->window[s->strstart-1]));
2086
9.32k
        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2087
9.32k
        s->match_available = 0;
2088
9.32k
    }
2089
22.0k
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2090
22.0k
    if (flush == Z_FINISH) {
2091
22.0k
        FLUSH_BLOCK(s, 1);
2092
22.0k
        return finish_done;
2093
22.0k
    }
2094
0
    if (s->sym_next)
2095
0
        FLUSH_BLOCK(s, 0);
2096
0
    return block_done;
2097
0
}
2098
#endif /* FASTEST */
2099
2100
/* ===========================================================================
2101
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2102
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2103
 * deflate switches away from Z_RLE.)
2104
 */
2105
local block_state deflate_rle(s, flush)
2106
    deflate_state *s;
2107
    int flush;
2108
0
{
2109
0
    int bflush;             /* set if current block must be flushed */
2110
0
    uInt prev;              /* byte at distance one to match */
2111
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2112
2113
0
    for (;;) {
2114
        /* Make sure that we always have enough lookahead, except
2115
         * at the end of the input file. We need MAX_MATCH bytes
2116
         * for the longest run, plus one for the unrolled loop.
2117
         */
2118
0
        if (s->lookahead <= MAX_MATCH) {
2119
0
            fill_window(s);
2120
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2121
0
                return need_more;
2122
0
            }
2123
0
            if (s->lookahead == 0) break; /* flush the current block */
2124
0
        }
2125
2126
        /* See how many times the previous byte repeats */
2127
0
        s->match_length = 0;
2128
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2129
0
            scan = s->window + s->strstart - 1;
2130
0
            prev = *scan;
2131
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2132
0
                strend = s->window + s->strstart + MAX_MATCH;
2133
0
                do {
2134
0
                } while (prev == *++scan && prev == *++scan &&
2135
0
                         prev == *++scan && prev == *++scan &&
2136
0
                         prev == *++scan && prev == *++scan &&
2137
0
                         prev == *++scan && prev == *++scan &&
2138
0
                         scan < strend);
2139
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2140
0
                if (s->match_length > s->lookahead)
2141
0
                    s->match_length = s->lookahead;
2142
0
            }
2143
0
            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2144
0
        }
2145
2146
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2147
0
        if (s->match_length >= MIN_MATCH) {
2148
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2149
2150
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2151
2152
0
            s->lookahead -= s->match_length;
2153
0
            s->strstart += s->match_length;
2154
0
            s->match_length = 0;
2155
0
        } else {
2156
            /* No match, output a literal byte */
2157
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2158
0
            _tr_tally_lit (s, s->window[s->strstart], bflush);
2159
0
            s->lookahead--;
2160
0
            s->strstart++;
2161
0
        }
2162
0
        if (bflush) FLUSH_BLOCK(s, 0);
2163
0
    }
2164
0
    s->insert = 0;
2165
0
    if (flush == Z_FINISH) {
2166
0
        FLUSH_BLOCK(s, 1);
2167
0
        return finish_done;
2168
0
    }
2169
0
    if (s->sym_next)
2170
0
        FLUSH_BLOCK(s, 0);
2171
0
    return block_done;
2172
0
}
2173
2174
/* ===========================================================================
2175
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2176
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2177
 */
2178
local block_state deflate_huff(s, flush)
2179
    deflate_state *s;
2180
    int flush;
2181
0
{
2182
0
    int bflush;             /* set if current block must be flushed */
2183
2184
0
    for (;;) {
2185
        /* Make sure that we have a literal to write. */
2186
0
        if (s->lookahead == 0) {
2187
0
            fill_window(s);
2188
0
            if (s->lookahead == 0) {
2189
0
                if (flush == Z_NO_FLUSH)
2190
0
                    return need_more;
2191
0
                break;      /* flush the current block */
2192
0
            }
2193
0
        }
2194
2195
        /* Output a literal byte */
2196
0
        s->match_length = 0;
2197
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2198
0
        _tr_tally_lit (s, s->window[s->strstart], bflush);
2199
0
        s->lookahead--;
2200
0
        s->strstart++;
2201
0
        if (bflush) FLUSH_BLOCK(s, 0);
2202
0
    }
2203
0
    s->insert = 0;
2204
0
    if (flush == Z_FINISH) {
2205
0
        FLUSH_BLOCK(s, 1);
2206
0
        return finish_done;
2207
0
    }
2208
0
    if (s->sym_next)
2209
0
        FLUSH_BLOCK(s, 0);
2210
0
    return block_done;
2211
0
}