Coverage Report

Created: 2025-06-24 06:45

/src/binutils-gdb/zlib/trees.c
Line
Count
Source (jump to first uncovered line)
1
/* trees.c -- output deflated data using Huffman coding
2
 * Copyright (C) 1995-2021 Jean-loup Gailly
3
 * detect_data_type() function provided freely by Cosmin Truta, 2006
4
 * For conditions of distribution and use, see copyright notice in zlib.h
5
 */
6
7
/*
8
 *  ALGORITHM
9
 *
10
 *      The "deflation" process uses several Huffman trees. The more
11
 *      common source values are represented by shorter bit sequences.
12
 *
13
 *      Each code tree is stored in a compressed form which is itself
14
 * a Huffman encoding of the lengths of all the code strings (in
15
 * ascending order by source values).  The actual code strings are
16
 * reconstructed from the lengths in the inflate process, as described
17
 * in the deflate specification.
18
 *
19
 *  REFERENCES
20
 *
21
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
 *
24
 *      Storer, James A.
25
 *          Data Compression:  Methods and Theory, pp. 49-50.
26
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27
 *
28
 *      Sedgewick, R.
29
 *          Algorithms, p290.
30
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
 */
32
33
/* @(#) $Id$ */
34
35
/* #define GEN_TREES_H */
36
37
#include "deflate.h"
38
39
#ifdef ZLIB_DEBUG
40
#  include <ctype.h>
41
#endif
42
43
/* ===========================================================================
44
 * Constants
45
 */
46
47
#define MAX_BL_BITS 7
48
/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50
51.0k
#define END_BLOCK 256
51
/* end of block literal code */
52
53
405k
#define REP_3_6      16
54
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56
100k
#define REPZ_3_10    17
57
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59
60.2k
#define REPZ_11_138  18
60
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71
local const uch bl_order[BL_CODES]
72
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73
/* The lengths of the bit length codes are sent in order of decreasing
74
 * probability, to avoid transmitting the lengths for unused bit length codes.
75
 */
76
77
/* ===========================================================================
78
 * Local data. These are initialized only once.
79
 */
80
81
#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82
83
#if defined(GEN_TREES_H) || !defined(STDC)
84
/* non ANSI compilers may not accept trees.h */
85
86
local ct_data static_ltree[L_CODES+2];
87
/* The static literal tree. Since the bit lengths are imposed, there is no
88
 * need for the L_CODES extra codes used during heap construction. However
89
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90
 * below).
91
 */
92
93
local ct_data static_dtree[D_CODES];
94
/* The static distance tree. (Actually a trivial tree since all codes use
95
 * 5 bits.)
96
 */
97
98
uch _dist_code[DIST_CODE_LEN];
99
/* Distance codes. The first 256 values correspond to the distances
100
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101
 * the 15 bit distances.
102
 */
103
104
uch _length_code[MAX_MATCH-MIN_MATCH+1];
105
/* length code for each normalized match length (0 == MIN_MATCH) */
106
107
local int base_length[LENGTH_CODES];
108
/* First normalized length for each code (0 = MIN_MATCH) */
109
110
local int base_dist[D_CODES];
111
/* First normalized distance for each code (0 = distance of 1) */
112
113
#else
114
#  include "trees.h"
115
#endif /* GEN_TREES_H */
116
117
struct static_tree_desc_s {
118
    const ct_data *static_tree;  /* static tree or NULL */
119
    const intf *extra_bits;      /* extra bits for each code or NULL */
120
    int     extra_base;          /* base index for extra_bits */
121
    int     elems;               /* max number of elements in the tree */
122
    int     max_length;          /* max bit length for the codes */
123
};
124
125
local const static_tree_desc  static_l_desc =
126
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127
128
local const static_tree_desc  static_d_desc =
129
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
130
131
local const static_tree_desc  static_bl_desc =
132
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
133
134
/* ===========================================================================
135
 * Local (static) routines in this file.
136
 */
137
138
local void tr_static_init OF((void));
139
local void init_block     OF((deflate_state *s));
140
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
141
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
142
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
143
local void build_tree     OF((deflate_state *s, tree_desc *desc));
144
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
145
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
146
local int  build_bl_tree  OF((deflate_state *s));
147
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148
                              int blcodes));
149
local void compress_block OF((deflate_state *s, const ct_data *ltree,
150
                              const ct_data *dtree));
151
local int  detect_data_type OF((deflate_state *s));
152
local unsigned bi_reverse OF((unsigned code, int len));
153
local void bi_windup      OF((deflate_state *s));
154
local void bi_flush       OF((deflate_state *s));
155
156
#ifdef GEN_TREES_H
157
local void gen_trees_header OF((void));
158
#endif
159
160
#ifndef ZLIB_DEBUG
161
189M
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
162
   /* Send a code of the given tree. c and tree must not have side effects */
163
164
#else /* !ZLIB_DEBUG */
165
#  define send_code(s, c, tree) \
166
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
167
       send_bits(s, tree[c].Code, tree[c].Len); }
168
#endif
169
170
/* ===========================================================================
171
 * Output a short LSB first on the stream.
172
 * IN assertion: there is enough room in pendingBuf.
173
 */
174
95.7M
#define put_short(s, w) { \
175
95.7M
    put_byte(s, (uch)((w) & 0xff)); \
176
95.7M
    put_byte(s, (uch)((ush)(w) >> 8)); \
177
95.7M
}
178
179
/* ===========================================================================
180
 * Send a value on a given number of bits.
181
 * IN assertion: length <= 16 and value fits in length bits.
182
 */
183
#ifdef ZLIB_DEBUG
184
local void send_bits      OF((deflate_state *s, int value, int length));
185
186
local void send_bits(s, value, length)
187
    deflate_state *s;
188
    int value;  /* value to send */
189
    int length; /* number of bits */
190
{
191
    Tracevv((stderr," l %2d v %4x ", length, value));
192
    Assert(length > 0 && length <= 15, "invalid length");
193
    s->bits_sent += (ulg)length;
194
195
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
196
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
197
     * unused bits in value.
198
     */
199
    if (s->bi_valid > (int)Buf_size - length) {
200
        s->bi_buf |= (ush)value << s->bi_valid;
201
        put_short(s, s->bi_buf);
202
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
203
        s->bi_valid += length - Buf_size;
204
    } else {
205
        s->bi_buf |= (ush)value << s->bi_valid;
206
        s->bi_valid += length;
207
    }
208
}
209
#else /* !ZLIB_DEBUG */
210
211
212M
#define send_bits(s, value, length) \
212
212M
{ int len = length;\
213
212M
  if (s->bi_valid > (int)Buf_size - len) {\
214
95.7M
    int val = (int)value;\
215
95.7M
    s->bi_buf |= (ush)val << s->bi_valid;\
216
95.7M
    put_short(s, s->bi_buf);\
217
95.7M
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
218
95.7M
    s->bi_valid += len - Buf_size;\
219
117M
  } else {\
220
117M
    s->bi_buf |= (ush)(value) << s->bi_valid;\
221
117M
    s->bi_valid += len;\
222
117M
  }\
223
212M
}
224
#endif /* ZLIB_DEBUG */
225
226
227
/* the arguments must not have side effects */
228
229
/* ===========================================================================
230
 * Initialize the various 'constant' tables.
231
 */
232
local void tr_static_init()
233
22.0k
{
234
#if defined(GEN_TREES_H) || !defined(STDC)
235
    static int static_init_done = 0;
236
    int n;        /* iterates over tree elements */
237
    int bits;     /* bit counter */
238
    int length;   /* length value */
239
    int code;     /* code value */
240
    int dist;     /* distance index */
241
    ush bl_count[MAX_BITS+1];
242
    /* number of codes at each bit length for an optimal tree */
243
244
    if (static_init_done) return;
245
246
    /* For some embedded targets, global variables are not initialized: */
247
#ifdef NO_INIT_GLOBAL_POINTERS
248
    static_l_desc.static_tree = static_ltree;
249
    static_l_desc.extra_bits = extra_lbits;
250
    static_d_desc.static_tree = static_dtree;
251
    static_d_desc.extra_bits = extra_dbits;
252
    static_bl_desc.extra_bits = extra_blbits;
253
#endif
254
255
    /* Initialize the mapping length (0..255) -> length code (0..28) */
256
    length = 0;
257
    for (code = 0; code < LENGTH_CODES-1; code++) {
258
        base_length[code] = length;
259
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
260
            _length_code[length++] = (uch)code;
261
        }
262
    }
263
    Assert (length == 256, "tr_static_init: length != 256");
264
    /* Note that the length 255 (match length 258) can be represented
265
     * in two different ways: code 284 + 5 bits or code 285, so we
266
     * overwrite length_code[255] to use the best encoding:
267
     */
268
    _length_code[length-1] = (uch)code;
269
270
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
271
    dist = 0;
272
    for (code = 0 ; code < 16; code++) {
273
        base_dist[code] = dist;
274
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
275
            _dist_code[dist++] = (uch)code;
276
        }
277
    }
278
    Assert (dist == 256, "tr_static_init: dist != 256");
279
    dist >>= 7; /* from now on, all distances are divided by 128 */
280
    for ( ; code < D_CODES; code++) {
281
        base_dist[code] = dist << 7;
282
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
283
            _dist_code[256 + dist++] = (uch)code;
284
        }
285
    }
286
    Assert (dist == 256, "tr_static_init: 256+dist != 512");
287
288
    /* Construct the codes of the static literal tree */
289
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
290
    n = 0;
291
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
292
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
293
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
294
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
295
    /* Codes 286 and 287 do not exist, but we must include them in the
296
     * tree construction to get a canonical Huffman tree (longest code
297
     * all ones)
298
     */
299
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
300
301
    /* The static distance tree is trivial: */
302
    for (n = 0; n < D_CODES; n++) {
303
        static_dtree[n].Len = 5;
304
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
305
    }
306
    static_init_done = 1;
307
308
#  ifdef GEN_TREES_H
309
    gen_trees_header();
310
#  endif
311
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
312
22.0k
}
313
314
/* ===========================================================================
315
 * Genererate the file trees.h describing the static trees.
316
 */
317
#ifdef GEN_TREES_H
318
#  ifndef ZLIB_DEBUG
319
#    include <stdio.h>
320
#  endif
321
322
#  define SEPARATOR(i, last, width) \
323
      ((i) == (last)? "\n};\n\n" :    \
324
       ((i) % (width) == (width)-1 ? ",\n" : ", "))
325
326
void gen_trees_header()
327
{
328
    FILE *header = fopen("trees.h", "w");
329
    int i;
330
331
    Assert (header != NULL, "Can't open trees.h");
332
    fprintf(header,
333
            "/* header created automatically with -DGEN_TREES_H */\n\n");
334
335
    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
336
    for (i = 0; i < L_CODES+2; i++) {
337
        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
338
                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
339
    }
340
341
    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
342
    for (i = 0; i < D_CODES; i++) {
343
        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
344
                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
345
    }
346
347
    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
348
    for (i = 0; i < DIST_CODE_LEN; i++) {
349
        fprintf(header, "%2u%s", _dist_code[i],
350
                SEPARATOR(i, DIST_CODE_LEN-1, 20));
351
    }
352
353
    fprintf(header,
354
        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
356
        fprintf(header, "%2u%s", _length_code[i],
357
                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
358
    }
359
360
    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
361
    for (i = 0; i < LENGTH_CODES; i++) {
362
        fprintf(header, "%1u%s", base_length[i],
363
                SEPARATOR(i, LENGTH_CODES-1, 20));
364
    }
365
366
    fprintf(header, "local const int base_dist[D_CODES] = {\n");
367
    for (i = 0; i < D_CODES; i++) {
368
        fprintf(header, "%5u%s", base_dist[i],
369
                SEPARATOR(i, D_CODES-1, 10));
370
    }
371
372
    fclose(header);
373
}
374
#endif /* GEN_TREES_H */
375
376
/* ===========================================================================
377
 * Initialize the tree data structures for a new zlib stream.
378
 */
379
void ZLIB_INTERNAL _tr_init(s)
380
    deflate_state *s;
381
22.0k
{
382
22.0k
    tr_static_init();
383
384
22.0k
    s->l_desc.dyn_tree = s->dyn_ltree;
385
22.0k
    s->l_desc.stat_desc = &static_l_desc;
386
387
22.0k
    s->d_desc.dyn_tree = s->dyn_dtree;
388
22.0k
    s->d_desc.stat_desc = &static_d_desc;
389
390
22.0k
    s->bl_desc.dyn_tree = s->bl_tree;
391
22.0k
    s->bl_desc.stat_desc = &static_bl_desc;
392
393
22.0k
    s->bi_buf = 0;
394
22.0k
    s->bi_valid = 0;
395
#ifdef ZLIB_DEBUG
396
    s->compressed_len = 0L;
397
    s->bits_sent = 0L;
398
#endif
399
400
    /* Initialize the first block of the first file: */
401
22.0k
    init_block(s);
402
22.0k
}
403
404
/* ===========================================================================
405
 * Initialize a new block.
406
 */
407
local void init_block(s)
408
    deflate_state *s;
409
51.0k
{
410
51.0k
    int n; /* iterates over tree elements */
411
412
    /* Initialize the trees. */
413
14.6M
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
414
1.58M
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
415
1.02M
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
416
417
51.0k
    s->dyn_ltree[END_BLOCK].Freq = 1;
418
51.0k
    s->opt_len = s->static_len = 0L;
419
51.0k
    s->sym_next = s->matches = 0;
420
51.0k
}
421
422
32.9M
#define SMALLEST 1
423
/* Index within the heap array of least frequent node in the Huffman tree */
424
425
426
/* ===========================================================================
427
 * Remove the smallest element from the heap and recreate the heap with
428
 * one less element. Updates heap and heap_len.
429
 */
430
5.48M
#define pqremove(s, tree, top) \
431
5.48M
{\
432
5.48M
    top = s->heap[SMALLEST]; \
433
5.48M
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
434
5.48M
    pqdownheap(s, tree, SMALLEST); \
435
5.48M
}
436
437
/* ===========================================================================
438
 * Compares to subtrees, using the tree depth as tie breaker when
439
 * the subtrees have equal frequency. This minimizes the worst case length.
440
 */
441
#define smaller(tree, n, m, depth) \
442
119M
   (tree[n].Freq < tree[m].Freq || \
443
119M
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
444
445
/* ===========================================================================
446
 * Restore the heap property by moving down the tree starting at node k,
447
 * exchanging a node with the smallest of its two sons if necessary, stopping
448
 * when the heap property is re-established (each father smaller than its
449
 * two sons).
450
 */
451
local void pqdownheap(s, tree, k)
452
    deflate_state *s;
453
    ct_data *tree;  /* the tree to restore */
454
    int k;               /* node to move down */
455
13.7M
{
456
13.7M
    int v = s->heap[k];
457
13.7M
    int j = k << 1;  /* left son of k */
458
71.3M
    while (j <= s->heap_len) {
459
        /* Set j to the smallest of the two sons: */
460
60.4M
        if (j < s->heap_len &&
461
60.4M
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
462
28.3M
            j++;
463
28.3M
        }
464
        /* Exit if v is smaller than both sons */
465
60.4M
        if (smaller(tree, v, s->heap[j], s->depth)) break;
466
467
        /* Exchange v with the smallest son */
468
57.6M
        s->heap[k] = s->heap[j];  k = j;
469
470
        /* And continue down the tree, setting j to the left son of k */
471
57.6M
        j <<= 1;
472
57.6M
    }
473
13.7M
    s->heap[k] = v;
474
13.7M
}
475
476
/* ===========================================================================
477
 * Compute the optimal bit lengths for a tree and update the total bit length
478
 * for the current block.
479
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
480
 *    above are the tree nodes sorted by increasing frequency.
481
 * OUT assertions: the field len is set to the optimal bit length, the
482
 *     array bl_count contains the frequencies for each bit length.
483
 *     The length opt_len is updated; static_len is also updated if stree is
484
 *     not null.
485
 */
486
local void gen_bitlen(s, desc)
487
    deflate_state *s;
488
    tree_desc *desc;    /* the tree descriptor */
489
87.0k
{
490
87.0k
    ct_data *tree        = desc->dyn_tree;
491
87.0k
    int max_code         = desc->max_code;
492
87.0k
    const ct_data *stree = desc->stat_desc->static_tree;
493
87.0k
    const intf *extra    = desc->stat_desc->extra_bits;
494
87.0k
    int base             = desc->stat_desc->extra_base;
495
87.0k
    int max_length       = desc->stat_desc->max_length;
496
87.0k
    int h;              /* heap index */
497
87.0k
    int n, m;           /* iterate over the tree elements */
498
87.0k
    int bits;           /* bit length */
499
87.0k
    int xbits;          /* extra bits */
500
87.0k
    ush f;              /* frequency */
501
87.0k
    int overflow = 0;   /* number of elements with bit length too large */
502
503
1.47M
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
504
505
    /* In a first pass, compute the optimal bit lengths (which may
506
     * overflow in the case of the bit length tree).
507
     */
508
87.0k
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
509
510
11.0M
    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
511
10.9M
        n = s->heap[h];
512
10.9M
        bits = tree[tree[n].Dad].Len + 1;
513
10.9M
        if (bits > max_length) bits = max_length, overflow++;
514
10.9M
        tree[n].Len = (ush)bits;
515
        /* We overwrite tree[n].Dad which is no longer needed */
516
517
10.9M
        if (n > max_code) continue; /* not a leaf node */
518
519
5.57M
        s->bl_count[bits]++;
520
5.57M
        xbits = 0;
521
5.57M
        if (n >= base) xbits = extra[n-base];
522
5.57M
        f = tree[n].Freq;
523
5.57M
        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
524
5.57M
        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
525
5.57M
    }
526
87.0k
    if (overflow == 0) return;
527
528
2.66k
    Tracev((stderr,"\nbit length overflow\n"));
529
    /* This happens for example on obj2 and pic of the Calgary corpus */
530
531
    /* Find the first bit length which could increase: */
532
3.40k
    do {
533
3.40k
        bits = max_length-1;
534
4.08k
        while (s->bl_count[bits] == 0) bits--;
535
3.40k
        s->bl_count[bits]--;      /* move one leaf down the tree */
536
3.40k
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
537
3.40k
        s->bl_count[max_length]--;
538
        /* The brother of the overflow item also moves one step up,
539
         * but this does not affect bl_count[max_length]
540
         */
541
3.40k
        overflow -= 2;
542
3.40k
    } while (overflow > 0);
543
544
    /* Now recompute all bit lengths, scanning in increasing frequency.
545
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
546
     * lengths instead of fixing only the wrong ones. This idea is taken
547
     * from 'ar' written by Haruhiko Okumura.)
548
     */
549
21.2k
    for (bits = max_length; bits != 0; bits--) {
550
18.6k
        n = s->bl_count[bits];
551
74.4k
        while (n != 0) {
552
55.7k
            m = s->heap[--h];
553
55.7k
            if (m > max_code) continue;
554
32.8k
            if ((unsigned) tree[m].Len != (unsigned) bits) {
555
2.78k
                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
556
2.78k
                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
557
2.78k
                tree[m].Len = (ush)bits;
558
2.78k
            }
559
32.8k
            n--;
560
32.8k
        }
561
18.6k
    }
562
2.66k
}
563
564
/* ===========================================================================
565
 * Generate the codes for a given tree and bit counts (which need not be
566
 * optimal).
567
 * IN assertion: the array bl_count contains the bit length statistics for
568
 * the given tree and the field len is set for all tree elements.
569
 * OUT assertion: the field code is set for all tree elements of non
570
 *     zero code length.
571
 */
572
local void gen_codes (tree, max_code, bl_count)
573
    ct_data *tree;             /* the tree to decorate */
574
    int max_code;              /* largest code with non zero frequency */
575
    ushf *bl_count;            /* number of codes at each bit length */
576
87.0k
{
577
87.0k
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
578
87.0k
    unsigned code = 0;         /* running code value */
579
87.0k
    int bits;                  /* bit index */
580
87.0k
    int n;                     /* code index */
581
582
    /* The distribution counts are first used to generate the code values
583
     * without bit reversal.
584
     */
585
1.39M
    for (bits = 1; bits <= MAX_BITS; bits++) {
586
1.30M
        code = (code + bl_count[bits-1]) << 1;
587
1.30M
        next_code[bits] = (ush)code;
588
1.30M
    }
589
    /* Check that the bit counts in bl_count are consistent. The last code
590
     * must be all ones.
591
     */
592
87.0k
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
593
87.0k
            "inconsistent bit counts");
594
87.0k
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
595
596
9.26M
    for (n = 0;  n <= max_code; n++) {
597
9.18M
        int len = tree[n].Len;
598
9.18M
        if (len == 0) continue;
599
        /* Now reverse the bits */
600
5.57M
        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
601
602
5.57M
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
603
5.57M
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
604
5.57M
    }
605
87.0k
}
606
607
/* ===========================================================================
608
 * Construct one Huffman tree and assigns the code bit strings and lengths.
609
 * Update the total bit length for the current block.
610
 * IN assertion: the field freq is set for all tree elements.
611
 * OUT assertions: the fields len and code are set to the optimal bit length
612
 *     and corresponding code. The length opt_len is updated; static_len is
613
 *     also updated if stree is not null. The field max_code is set.
614
 */
615
local void build_tree(s, desc)
616
    deflate_state *s;
617
    tree_desc *desc; /* the tree descriptor */
618
87.0k
{
619
87.0k
    ct_data *tree         = desc->dyn_tree;
620
87.0k
    const ct_data *stree  = desc->stat_desc->static_tree;
621
87.0k
    int elems             = desc->stat_desc->elems;
622
87.0k
    int n, m;          /* iterate over heap elements */
623
87.0k
    int max_code = -1; /* largest code with non zero frequency */
624
87.0k
    int node;          /* new node being created */
625
626
    /* Construct the initial heap, with least frequent element in
627
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
628
     * heap[0] is not used.
629
     */
630
87.0k
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
631
632
9.80M
    for (n = 0; n < elems; n++) {
633
9.71M
        if (tree[n].Freq != 0) {
634
5.56M
            s->heap[++(s->heap_len)] = max_code = n;
635
5.56M
            s->depth[n] = 0;
636
5.56M
        } else {
637
4.15M
            tree[n].Len = 0;
638
4.15M
        }
639
9.71M
    }
640
641
    /* The pkzip format requires that at least one distance code exists,
642
     * and that at least one bit should be sent even if there is only one
643
     * possible code. So to avoid special checks later on we force at least
644
     * two codes of non zero frequency.
645
     */
646
92.9k
    while (s->heap_len < 2) {
647
5.94k
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
648
5.94k
        tree[node].Freq = 1;
649
5.94k
        s->depth[node] = 0;
650
5.94k
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
651
        /* node is 0 or 1 so it does not have extra bits */
652
5.94k
    }
653
87.0k
    desc->max_code = max_code;
654
655
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
656
     * establish sub-heaps of increasing lengths:
657
     */
658
2.85M
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
659
660
    /* Construct the Huffman tree by repeatedly combining the least two
661
     * frequent nodes.
662
     */
663
87.0k
    node = elems;              /* next internal node of the tree */
664
5.48M
    do {
665
5.48M
        pqremove(s, tree, n);  /* n = node of least frequency */
666
5.48M
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
667
668
5.48M
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
669
5.48M
        s->heap[--(s->heap_max)] = m;
670
671
        /* Create a new node father of n and m */
672
5.48M
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
673
5.48M
        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
674
4.62M
                                s->depth[n] : s->depth[m]) + 1);
675
5.48M
        tree[n].Dad = tree[m].Dad = (ush)node;
676
#ifdef DUMP_BL_TREE
677
        if (tree == s->bl_tree) {
678
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
679
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
680
        }
681
#endif
682
        /* and insert the new node in the heap */
683
5.48M
        s->heap[SMALLEST] = node++;
684
5.48M
        pqdownheap(s, tree, SMALLEST);
685
686
5.48M
    } while (s->heap_len >= 2);
687
688
87.0k
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
689
690
    /* At this point, the fields freq and dad are set. We can now
691
     * generate the bit lengths.
692
     */
693
87.0k
    gen_bitlen(s, (tree_desc *)desc);
694
695
    /* The field len is now set, we can generate the bit codes */
696
87.0k
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
697
87.0k
}
698
699
/* ===========================================================================
700
 * Scan a literal or distance tree to determine the frequencies of the codes
701
 * in the bit length tree.
702
 */
703
local void scan_tree (s, tree, max_code)
704
    deflate_state *s;
705
    ct_data *tree;   /* the tree to be scanned */
706
    int max_code;    /* and its largest code of non zero frequency */
707
58.0k
{
708
58.0k
    int n;                     /* iterates over all tree elements */
709
58.0k
    int prevlen = -1;          /* last emitted length */
710
58.0k
    int curlen;                /* length of current code */
711
58.0k
    int nextlen = tree[0].Len; /* length of next code */
712
58.0k
    int count = 0;             /* repeat count of the current code */
713
58.0k
    int max_count = 7;         /* max repeat count */
714
58.0k
    int min_count = 4;         /* min repeat count */
715
716
58.0k
    if (nextlen == 0) max_count = 138, min_count = 3;
717
58.0k
    tree[max_code+1].Len = (ush)0xffff; /* guard */
718
719
8.71M
    for (n = 0; n <= max_code; n++) {
720
8.65M
        curlen = nextlen; nextlen = tree[n+1].Len;
721
8.65M
        if (++count < max_count && curlen == nextlen) {
722
5.61M
            continue;
723
5.61M
        } else if (count < min_count) {
724
2.47M
            s->bl_tree[curlen].Freq += count;
725
2.47M
        } else if (curlen != 0) {
726
405k
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
727
405k
            s->bl_tree[REP_3_6].Freq++;
728
405k
        } else if (count <= 10) {
729
100k
            s->bl_tree[REPZ_3_10].Freq++;
730
100k
        } else {
731
60.2k
            s->bl_tree[REPZ_11_138].Freq++;
732
60.2k
        }
733
3.03M
        count = 0; prevlen = curlen;
734
3.03M
        if (nextlen == 0) {
735
347k
            max_count = 138, min_count = 3;
736
2.69M
        } else if (curlen == nextlen) {
737
209k
            max_count = 6, min_count = 3;
738
2.48M
        } else {
739
2.48M
            max_count = 7, min_count = 4;
740
2.48M
        }
741
3.03M
    }
742
58.0k
}
743
744
/* ===========================================================================
745
 * Send a literal or distance tree in compressed form, using the codes in
746
 * bl_tree.
747
 */
748
local void send_tree (s, tree, max_code)
749
    deflate_state *s;
750
    ct_data *tree; /* the tree to be scanned */
751
    int max_code;       /* and its largest code of non zero frequency */
752
34.5k
{
753
34.5k
    int n;                     /* iterates over all tree elements */
754
34.5k
    int prevlen = -1;          /* last emitted length */
755
34.5k
    int curlen;                /* length of current code */
756
34.5k
    int nextlen = tree[0].Len; /* length of next code */
757
34.5k
    int count = 0;             /* repeat count of the current code */
758
34.5k
    int max_count = 7;         /* max repeat count */
759
34.5k
    int min_count = 4;         /* min repeat count */
760
761
    /* tree[max_code+1].Len = -1; */  /* guard already set */
762
34.5k
    if (nextlen == 0) max_count = 138, min_count = 3;
763
764
5.36M
    for (n = 0; n <= max_code; n++) {
765
5.33M
        curlen = nextlen; nextlen = tree[n+1].Len;
766
5.33M
        if (++count < max_count && curlen == nextlen) {
767
2.86M
            continue;
768
2.86M
        } else if (count < min_count) {
769
2.72M
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
770
771
2.04M
        } else if (curlen != 0) {
772
372k
            if (curlen != prevlen) {
773
218k
                send_code(s, curlen, s->bl_tree); count--;
774
218k
            }
775
372k
            Assert(count >= 3 && count <= 6, " 3_6?");
776
372k
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
777
778
372k
        } else if (count <= 10) {
779
41.9k
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
780
781
41.9k
        } else {
782
7.47k
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
783
7.47k
        }
784
2.46M
        count = 0; prevlen = curlen;
785
2.46M
        if (nextlen == 0) {
786
150k
            max_count = 138, min_count = 3;
787
2.31M
        } else if (curlen == nextlen) {
788
187k
            max_count = 6, min_count = 3;
789
2.12M
        } else {
790
2.12M
            max_count = 7, min_count = 4;
791
2.12M
        }
792
2.46M
    }
793
34.5k
}
794
795
/* ===========================================================================
796
 * Construct the Huffman tree for the bit lengths and return the index in
797
 * bl_order of the last bit length code to send.
798
 */
799
local int build_bl_tree(s)
800
    deflate_state *s;
801
29.0k
{
802
29.0k
    int max_blindex;  /* index of last bit length code of non zero freq */
803
804
    /* Determine the bit length frequencies for literal and distance trees */
805
29.0k
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
806
29.0k
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
807
808
    /* Build the bit length tree: */
809
29.0k
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
810
    /* opt_len now includes the length of the tree representations, except
811
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
812
     */
813
814
    /* Determine the number of bit length codes to send. The pkzip format
815
     * requires that at least 4 bit length codes be sent. (appnote.txt says
816
     * 3 but the actual value used is 4.)
817
     */
818
108k
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
819
108k
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
820
108k
    }
821
    /* Update opt_len to include the bit length tree and counts */
822
29.0k
    s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
823
29.0k
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
824
29.0k
            s->opt_len, s->static_len));
825
826
29.0k
    return max_blindex;
827
29.0k
}
828
829
/* ===========================================================================
830
 * Send the header for a block using dynamic Huffman trees: the counts, the
831
 * lengths of the bit length codes, the literal tree and the distance tree.
832
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
833
 */
834
local void send_all_trees(s, lcodes, dcodes, blcodes)
835
    deflate_state *s;
836
    int lcodes, dcodes, blcodes; /* number of codes for each tree */
837
17.2k
{
838
17.2k
    int rank;                    /* index in bl_order */
839
840
17.2k
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
841
17.2k
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
842
17.2k
            "too many codes");
843
17.2k
    Tracev((stderr, "\nbl counts: "));
844
17.2k
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
845
17.2k
    send_bits(s, dcodes-1,   5);
846
17.2k
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
847
284k
    for (rank = 0; rank < blcodes; rank++) {
848
266k
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
849
266k
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
850
266k
    }
851
17.2k
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
852
853
17.2k
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
854
17.2k
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
855
856
17.2k
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
857
17.2k
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
858
17.2k
}
859
860
/* ===========================================================================
861
 * Send a stored block
862
 */
863
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
864
    deflate_state *s;
865
    charf *buf;       /* input block */
866
    ulg stored_len;   /* length of input block */
867
    int last;         /* one if this is the last block for a file */
868
1.08k
{
869
1.08k
    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
870
1.08k
    bi_windup(s);        /* align on byte boundary */
871
1.08k
    put_short(s, (ush)stored_len);
872
1.08k
    put_short(s, (ush)~stored_len);
873
1.08k
    if (stored_len)
874
1.08k
        zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
875
1.08k
    s->pending += stored_len;
876
#ifdef ZLIB_DEBUG
877
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
878
    s->compressed_len += (stored_len + 4) << 3;
879
    s->bits_sent += 2*16;
880
    s->bits_sent += stored_len<<3;
881
#endif
882
1.08k
}
883
884
/* ===========================================================================
885
 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
886
 */
887
void ZLIB_INTERNAL _tr_flush_bits(s)
888
    deflate_state *s;
889
73.1k
{
890
73.1k
    bi_flush(s);
891
73.1k
}
892
893
/* ===========================================================================
894
 * Send one empty static block to give enough lookahead for inflate.
895
 * This takes 10 bits, of which 7 may remain in the bit buffer.
896
 */
897
void ZLIB_INTERNAL _tr_align(s)
898
    deflate_state *s;
899
0
{
900
0
    send_bits(s, STATIC_TREES<<1, 3);
901
0
    send_code(s, END_BLOCK, static_ltree);
902
#ifdef ZLIB_DEBUG
903
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
904
#endif
905
0
    bi_flush(s);
906
0
}
907
908
/* ===========================================================================
909
 * Determine the best encoding for the current block: dynamic trees, static
910
 * trees or store, and write out the encoded block.
911
 */
912
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
913
    deflate_state *s;
914
    charf *buf;       /* input block, or NULL if too old */
915
    ulg stored_len;   /* length of input block */
916
    int last;         /* one if this is the last block for a file */
917
29.0k
{
918
29.0k
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
919
29.0k
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
920
921
    /* Build the Huffman trees unless a stored block is forced */
922
29.0k
    if (s->level > 0) {
923
924
        /* Check if the file is binary or text */
925
29.0k
        if (s->strm->data_type == Z_UNKNOWN)
926
22.0k
            s->strm->data_type = detect_data_type(s);
927
928
        /* Construct the literal and distance trees */
929
29.0k
        build_tree(s, (tree_desc *)(&(s->l_desc)));
930
29.0k
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
931
29.0k
                s->static_len));
932
933
29.0k
        build_tree(s, (tree_desc *)(&(s->d_desc)));
934
29.0k
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
935
29.0k
                s->static_len));
936
        /* At this point, opt_len and static_len are the total bit lengths of
937
         * the compressed block data, excluding the tree representations.
938
         */
939
940
        /* Build the bit length tree for the above two trees, and get the index
941
         * in bl_order of the last bit length code to send.
942
         */
943
29.0k
        max_blindex = build_bl_tree(s);
944
945
        /* Determine the best encoding. Compute the block lengths in bytes. */
946
29.0k
        opt_lenb = (s->opt_len+3+7)>>3;
947
29.0k
        static_lenb = (s->static_len+3+7)>>3;
948
949
29.0k
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
950
29.0k
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
951
29.0k
                s->sym_next / 3));
952
953
29.0k
        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
954
955
29.0k
    } else {
956
0
        Assert(buf != (char*)0, "lost buf");
957
0
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
958
0
    }
959
960
#ifdef FORCE_STORED
961
    if (buf != (char*)0) { /* force stored block */
962
#else
963
29.0k
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
964
                       /* 4: two words for the lengths */
965
1.08k
#endif
966
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
967
         * Otherwise we can't have processed more than WSIZE input bytes since
968
         * the last block flush, because compression would have been
969
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
970
         * transform a block into a stored block.
971
         */
972
1.08k
        _tr_stored_block(s, buf, stored_len, last);
973
974
#ifdef FORCE_STATIC
975
    } else if (static_lenb >= 0) { /* force static trees */
976
#else
977
27.9k
    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
978
10.6k
#endif
979
10.6k
        send_bits(s, (STATIC_TREES<<1)+last, 3);
980
10.6k
        compress_block(s, (const ct_data *)static_ltree,
981
10.6k
                       (const ct_data *)static_dtree);
982
#ifdef ZLIB_DEBUG
983
        s->compressed_len += 3 + s->static_len;
984
#endif
985
17.2k
    } else {
986
17.2k
        send_bits(s, (DYN_TREES<<1)+last, 3);
987
17.2k
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
988
17.2k
                       max_blindex+1);
989
17.2k
        compress_block(s, (const ct_data *)s->dyn_ltree,
990
17.2k
                       (const ct_data *)s->dyn_dtree);
991
#ifdef ZLIB_DEBUG
992
        s->compressed_len += 3 + s->opt_len;
993
#endif
994
17.2k
    }
995
29.0k
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
996
    /* The above check is made mod 2^32, for files larger than 512 MB
997
     * and uLong implemented on 32 bits.
998
     */
999
29.0k
    init_block(s);
1000
1001
29.0k
    if (last) {
1002
22.0k
        bi_windup(s);
1003
#ifdef ZLIB_DEBUG
1004
        s->compressed_len += 7;  /* align on byte boundary */
1005
#endif
1006
22.0k
    }
1007
29.0k
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1008
29.0k
           s->compressed_len-7*last));
1009
29.0k
}
1010
1011
/* ===========================================================================
1012
 * Save the match info and tally the frequency counts. Return true if
1013
 * the current block must be flushed.
1014
 */
1015
int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1016
    deflate_state *s;
1017
    unsigned dist;  /* distance of matched string */
1018
    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1019
0
{
1020
0
    s->sym_buf[s->sym_next++] = dist;
1021
0
    s->sym_buf[s->sym_next++] = dist >> 8;
1022
0
    s->sym_buf[s->sym_next++] = lc;
1023
0
    if (dist == 0) {
1024
        /* lc is the unmatched char */
1025
0
        s->dyn_ltree[lc].Freq++;
1026
0
    } else {
1027
0
        s->matches++;
1028
        /* Here, lc is the match length - MIN_MATCH */
1029
0
        dist--;             /* dist = match distance - 1 */
1030
0
        Assert((ush)dist < (ush)MAX_DIST(s) &&
1031
0
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1032
0
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1033
1034
0
        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1035
0
        s->dyn_dtree[d_code(dist)].Freq++;
1036
0
    }
1037
0
    return (s->sym_next == s->sym_end);
1038
0
}
1039
1040
/* ===========================================================================
1041
 * Send the block data compressed using the given Huffman trees
1042
 */
1043
local void compress_block(s, ltree, dtree)
1044
    deflate_state *s;
1045
    const ct_data *ltree; /* literal tree */
1046
    const ct_data *dtree; /* distance tree */
1047
27.9k
{
1048
27.9k
    unsigned dist;      /* distance of matched string */
1049
27.9k
    int lc;             /* match length or unmatched char (if dist == 0) */
1050
27.9k
    unsigned sx = 0;    /* running index in sym_buf */
1051
27.9k
    unsigned code;      /* the code to send */
1052
27.9k
    int extra;          /* number of extra bits to send */
1053
1054
167M
    if (s->sym_next != 0) do {
1055
167M
        dist = s->sym_buf[sx++] & 0xff;
1056
167M
        dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
1057
167M
        lc = s->sym_buf[sx++];
1058
167M
        if (dist == 0) {
1059
149M
            send_code(s, lc, ltree); /* send a literal byte */
1060
149M
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1061
149M
        } else {
1062
            /* Here, lc is the match length - MIN_MATCH */
1063
18.7M
            code = _length_code[lc];
1064
18.7M
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1065
18.7M
            extra = extra_lbits[code];
1066
18.7M
            if (extra != 0) {
1067
4.81M
                lc -= base_length[code];
1068
4.81M
                send_bits(s, lc, extra);       /* send the extra length bits */
1069
4.81M
            }
1070
18.7M
            dist--; /* dist is now the match distance - 1 */
1071
18.7M
            code = d_code(dist);
1072
18.7M
            Assert (code < D_CODES, "bad d_code");
1073
1074
18.7M
            send_code(s, code, dtree);       /* send the distance code */
1075
18.7M
            extra = extra_dbits[code];
1076
18.7M
            if (extra != 0) {
1077
17.4M
                dist -= (unsigned)base_dist[code];
1078
17.4M
                send_bits(s, dist, extra);   /* send the extra distance bits */
1079
17.4M
            }
1080
18.7M
        } /* literal or match pair ? */
1081
1082
        /* Check that the overlay between pending_buf and sym_buf is ok: */
1083
167M
        Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
1084
1085
167M
    } while (sx < s->sym_next);
1086
1087
27.9k
    send_code(s, END_BLOCK, ltree);
1088
27.9k
}
1089
1090
/* ===========================================================================
1091
 * Check if the data type is TEXT or BINARY, using the following algorithm:
1092
 * - TEXT if the two conditions below are satisfied:
1093
 *    a) There are no non-portable control characters belonging to the
1094
 *       "block list" (0..6, 14..25, 28..31).
1095
 *    b) There is at least one printable character belonging to the
1096
 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1097
 * - BINARY otherwise.
1098
 * - The following partially-portable control characters form a
1099
 *   "gray list" that is ignored in this detection algorithm:
1100
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1101
 * IN assertion: the fields Freq of dyn_ltree are set.
1102
 */
1103
local int detect_data_type(s)
1104
    deflate_state *s;
1105
22.0k
{
1106
    /* block_mask is the bit mask of block-listed bytes
1107
     * set bits 0..6, 14..25, and 28..31
1108
     * 0xf3ffc07f = binary 11110011111111111100000001111111
1109
     */
1110
22.0k
    unsigned long block_mask = 0xf3ffc07fUL;
1111
22.0k
    int n;
1112
1113
    /* Check for non-textual ("block-listed") bytes. */
1114
100k
    for (n = 0; n <= 31; n++, block_mask >>= 1)
1115
97.6k
        if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1116
19.6k
            return Z_BINARY;
1117
1118
    /* Check for textual ("allow-listed") bytes. */
1119
2.43k
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1120
2.43k
            || s->dyn_ltree[13].Freq != 0)
1121
2.17k
        return Z_TEXT;
1122
8.90k
    for (n = 32; n < LITERALS; n++)
1123
8.88k
        if (s->dyn_ltree[n].Freq != 0)
1124
246
            return Z_TEXT;
1125
1126
    /* There are no "block-listed" or "allow-listed" bytes:
1127
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1128
     */
1129
20
    return Z_BINARY;
1130
266
}
1131
1132
/* ===========================================================================
1133
 * Reverse the first len bits of a code, using straightforward code (a faster
1134
 * method would use a table)
1135
 * IN assertion: 1 <= len <= 15
1136
 */
1137
local unsigned bi_reverse(code, len)
1138
    unsigned code; /* the value to invert */
1139
    int len;       /* its bit length */
1140
5.57M
{
1141
5.57M
    register unsigned res = 0;
1142
43.4M
    do {
1143
43.4M
        res |= code & 1;
1144
43.4M
        code >>= 1, res <<= 1;
1145
43.4M
    } while (--len > 0);
1146
5.57M
    return res >> 1;
1147
5.57M
}
1148
1149
/* ===========================================================================
1150
 * Flush the bit buffer, keeping at most 7 bits in it.
1151
 */
1152
local void bi_flush(s)
1153
    deflate_state *s;
1154
73.1k
{
1155
73.1k
    if (s->bi_valid == 16) {
1156
1.13k
        put_short(s, s->bi_buf);
1157
1.13k
        s->bi_buf = 0;
1158
1.13k
        s->bi_valid = 0;
1159
72.0k
    } else if (s->bi_valid >= 8) {
1160
3.61k
        put_byte(s, (Byte)s->bi_buf);
1161
3.61k
        s->bi_buf >>= 8;
1162
3.61k
        s->bi_valid -= 8;
1163
3.61k
    }
1164
73.1k
}
1165
1166
/* ===========================================================================
1167
 * Flush the bit buffer and align the output on a byte boundary
1168
 */
1169
local void bi_windup(s)
1170
    deflate_state *s;
1171
23.1k
{
1172
23.1k
    if (s->bi_valid > 8) {
1173
10.4k
        put_short(s, s->bi_buf);
1174
12.6k
    } else if (s->bi_valid > 0) {
1175
11.6k
        put_byte(s, (Byte)s->bi_buf);
1176
11.6k
    }
1177
23.1k
    s->bi_buf = 0;
1178
23.1k
    s->bi_valid = 0;
1179
#ifdef ZLIB_DEBUG
1180
    s->bits_sent = (s->bits_sent+7) & ~7;
1181
#endif
1182
23.1k
}