Coverage Report

Created: 2025-07-08 11:15

/src/binutils-gdb/opcodes/vax-dis.c
Line
Count
Source (jump to first uncovered line)
1
/* Print VAX instructions.
2
   Copyright (C) 1995-2025 Free Software Foundation, Inc.
3
   Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
4
5
   This file is part of the GNU opcodes library.
6
7
   This library is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3, or (at your option)
10
   any later version.
11
12
   It is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
22
#include "sysdep.h"
23
#include <setjmp.h>
24
#include <string.h>
25
#include "opcode/vax.h"
26
#include "disassemble.h"
27
28
static char *reg_names[] =
29
{
30
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
31
  "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
32
};
33
34
/* Definitions for the function entry mask bits.  */
35
static char *entry_mask_bit[] =
36
{
37
  /* Registers 0 and 1 shall not be saved, since they're used to pass back
38
     a function's result to its caller...  */
39
  "~r0~", "~r1~",
40
  /* Registers 2 .. 11 are normal registers.  */
41
  "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
42
  /* Registers 12 and 13 are argument and frame pointer and must not
43
     be saved by using the entry mask.  */
44
  "~ap~", "~fp~",
45
  /* Bits 14 and 15 control integer and decimal overflow.  */
46
  "IntOvfl", "DecOvfl",
47
};
48
49
/* Sign-extend an (unsigned char). */
50
487k
#define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
51
52
/* Get a 1 byte signed integer.  */
53
#define NEXTBYTE(p)  \
54
487k
  (p += 1, FETCH_DATA (info, p), \
55
487k
  COERCE_SIGNED_CHAR(p[-1]))
56
57
/* Get a 2 byte signed integer.  */
58
18.3k
#define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
59
#define NEXTWORD(p)  \
60
18.3k
  (p += 2, FETCH_DATA (info, p), \
61
18.3k
   COERCE16 ((p[-1] << 8) + p[-2]))
62
63
/* Get a 4 byte signed integer.  */
64
19.1k
#define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
65
#define NEXTLONG(p)  \
66
19.1k
  (p += 4, FETCH_DATA (info, p), \
67
19.1k
   (COERCE32 (((((((unsigned) p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
68
69
/* Maximum length of an instruction.  */
70
#define MAXLEN 25
71
72
struct private
73
{
74
  /* Points to first byte not fetched.  */
75
  bfd_byte * max_fetched;
76
  bfd_byte   the_buffer[MAXLEN];
77
  bfd_vma    insn_start;
78
  OPCODES_SIGJMP_BUF    bailout;
79
};
80
81
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
82
   to ADDR (exclusive) are valid.  Returns 1 for success, longjmps
83
   on error.  */
84
#define FETCH_DATA(info, addr) \
85
1.39M
  ((addr) <= ((struct private *)(info->private_data))->max_fetched \
86
1.39M
   ? 1 : fetch_data ((info), (addr)))
87
88
static int
89
fetch_data (struct disassemble_info *info, bfd_byte *addr)
90
787k
{
91
787k
  int status;
92
787k
  struct private *priv = (struct private *) info->private_data;
93
787k
  bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
94
95
787k
  status = (*info->read_memory_func) (start,
96
787k
              priv->max_fetched,
97
787k
              addr - priv->max_fetched,
98
787k
              info);
99
787k
  if (status != 0)
100
299
    {
101
299
      (*info->memory_error_func) (status, start, info);
102
299
      OPCODES_SIGLONGJMP (priv->bailout, 1);
103
299
    }
104
787k
  else
105
787k
    priv->max_fetched = addr;
106
107
787k
  return 1;
108
787k
}
109
110
/* Entry mask handling.  */
111
static unsigned int  entry_addr_occupied_slots = 0;
112
static unsigned int  entry_addr_total_slots = 0;
113
static bfd_vma *     entry_addr = NULL;
114
115
/* Parse the VAX specific disassembler options.  These contain function
116
   entry addresses, which can be useful to disassemble ROM images, since
117
   there's no symbol table.  Returns TRUE upon success, FALSE otherwise.  */
118
119
static bool
120
parse_disassembler_options (const char *options)
121
0
{
122
0
  const char * entry_switch = "entry:";
123
124
0
  while ((options = strstr (options, entry_switch)))
125
0
    {
126
0
      options += strlen (entry_switch);
127
128
      /* The greater-than part of the test below is paranoia.  */
129
0
      if (entry_addr_occupied_slots >= entry_addr_total_slots)
130
0
  {
131
    /* A guesstimate of the number of entries we will have to create.  */
132
0
    entry_addr_total_slots
133
0
      += 1 + strlen (options) / (strlen (entry_switch) + 5);
134
135
0
    entry_addr = realloc (entry_addr, sizeof (bfd_vma)
136
0
        * entry_addr_total_slots);
137
0
  }
138
139
0
      if (entry_addr == NULL)
140
0
  return false;
141
142
0
      entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
143
0
      entry_addr_occupied_slots ++;
144
0
    }
145
146
0
  return true;
147
0
}
148
149
#if 0 /* FIXME:  Ideally the disassembler should have target specific
150
   initialisation and termination function pointers.  Then
151
   parse_disassembler_options could be the init function and
152
   free_entry_array (below) could be the termination routine.
153
   Until then there is no way for the disassembler to tell us
154
   that it has finished and that we no longer need the entry
155
   array, so this routine is suppressed for now.  It does mean
156
   that we leak memory, but only to the extent that we do not
157
   free it just before the disassembler is about to terminate
158
   anyway.  */
159
160
/* Free memory allocated to our entry array.  */
161
162
static void
163
free_entry_array (void)
164
{
165
  if (entry_addr)
166
    {
167
      free (entry_addr);
168
      entry_addr = NULL;
169
      entry_addr_occupied_slots = entry_addr_total_slots = 0;
170
    }
171
}
172
#endif
173
/* Check if the given address is a known function entry point.  This is
174
   the case if there is a symbol of the function type at this address.
175
   We also check for synthetic symbols as these are used for PLT entries
176
   (weak undefined symbols may not have the function type set).  Finally
177
   the address may have been forced to be treated as an entry point.  The
178
   latter helps in disassembling ROM images, because there's no symbol
179
   table at all.  Forced entry points can be given by supplying several
180
   -M options to objdump: -M entry:0xffbb7730.  */
181
182
static bool
183
is_function_entry (struct disassemble_info *info, bfd_vma addr)
184
446k
{
185
446k
  unsigned int i;
186
187
  /* Check if there's a function or PLT symbol at our address.  */
188
446k
  if (info->symbols
189
446k
      && info->symbols[0]
190
446k
      && (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
191
446k
      && addr == bfd_asymbol_value (info->symbols[0]))
192
0
    return true;
193
194
  /* Check for forced function entry address.  */
195
446k
  for (i = entry_addr_occupied_slots; i--;)
196
0
    if (entry_addr[i] == addr)
197
0
      return true;
198
199
446k
  return false;
200
446k
}
201
202
/* Check if the given address is the last longword of a PLT entry.
203
   This longword is data and depending on the value it may interfere
204
   with disassembly of further PLT entries.  We make use of the fact
205
   PLT symbols are marked BSF_SYNTHETIC.  */
206
static bool
207
is_plt_tail (struct disassemble_info *info, bfd_vma addr)
208
446k
{
209
446k
  if (info->symbols
210
446k
      && info->symbols[0]
211
446k
      && (info->symbols[0]->flags & BSF_SYNTHETIC)
212
446k
      && addr == bfd_asymbol_value (info->symbols[0]) + 8)
213
0
    return true;
214
215
446k
  return false;
216
446k
}
217
218
static int
219
print_insn_mode (const char *d,
220
     int size,
221
     unsigned char *p0,
222
     bfd_vma addr,  /* PC for this arg to be relative to.  */
223
     disassemble_info *info)
224
425k
{
225
425k
  unsigned char *p = p0;
226
425k
  unsigned char mode, reg;
227
228
  /* Fetch and interpret mode byte.  */
229
425k
  mode = (unsigned char) NEXTBYTE (p);
230
425k
  reg = mode & 0xF;
231
425k
  switch (mode & 0xF0)
232
425k
    {
233
130k
    case 0x00:
234
140k
    case 0x10:
235
163k
    case 0x20:
236
183k
    case 0x30: /* Literal mode      $number.  */
237
183k
      if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
238
35.0k
  (*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
239
148k
      else
240
148k
        (*info->fprintf_func) (info->stream, "$0x%x", mode);
241
183k
      break;
242
30.7k
    case 0x40: /* Index:      base-addr[Rn] */
243
30.7k
      {
244
30.7k
  unsigned char *q = p0 + 1;
245
30.7k
  unsigned char nextmode = NEXTBYTE (q);
246
30.7k
  if (nextmode < 0x60 || nextmode == 0x8f)
247
    /* Literal, index, register, or immediate is invalid.  In
248
       particular don't recurse into another index mode which
249
       might overflow the_buffer.   */
250
18.9k
    (*info->fprintf_func) (info->stream, "[invalid base]");
251
11.7k
  else
252
11.7k
    p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
253
30.7k
  (*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
254
30.7k
      }
255
30.7k
      break;
256
27.2k
    case 0x50: /* Register:     Rn */
257
27.2k
      (*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
258
27.2k
      break;
259
76.1k
    case 0x60: /* Register deferred:    (Rn) */
260
76.1k
      (*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
261
76.1k
      break;
262
40.3k
    case 0x70: /* Autodecrement:    -(Rn) */
263
40.3k
      (*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
264
40.3k
      break;
265
11.7k
    case 0x80: /* Autoincrement:    (Rn)+ */
266
11.7k
      if (reg == 0xF)
267
3.68k
  { /* Immediate?  */
268
3.68k
    int i;
269
270
3.68k
    FETCH_DATA (info, p + size);
271
3.68k
    (*info->fprintf_func) (info->stream, "$0x");
272
3.68k
    if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
273
1.08k
      {
274
1.08k
        int float_word;
275
276
1.08k
        float_word = p[0] | (p[1] << 8);
277
1.08k
        if ((d[1] == 'd' || d[1] == 'f')
278
1.08k
      && (float_word & 0xff80) == 0x8000)
279
57
    {
280
57
      (*info->fprintf_func) (info->stream, "[invalid %c-float]",
281
57
           d[1]);
282
57
    }
283
1.02k
        else
284
1.02k
    {
285
11.1k
            for (i = 0; i < size; i++)
286
10.1k
        (*info->fprintf_func) (info->stream, "%02x",
287
10.1k
                               p[size - i - 1]);
288
1.02k
            (*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
289
1.02k
    }
290
1.08k
      }
291
2.59k
    else
292
2.59k
      {
293
6.41k
        for (i = 0; i < size; i++)
294
3.81k
          (*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
295
2.59k
      }
296
3.68k
    p += size;
297
3.68k
  }
298
8.10k
      else
299
8.10k
  (*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
300
11.7k
      break;
301
9.89k
    case 0x90: /* Autoincrement deferred: @(Rn)+ */
302
9.89k
      if (reg == 0xF)
303
519
  (*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
304
9.37k
      else
305
9.37k
  (*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
306
9.89k
      break;
307
5.11k
    case 0xB0: /* Displacement byte deferred: *displ(Rn).  */
308
5.11k
      (*info->fprintf_func) (info->stream, "*");
309
      /* Fall through.  */
310
14.3k
    case 0xA0: /* Displacement byte:    displ(Rn).  */
311
14.3k
      if (reg == 0xF)
312
1.16k
  (*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
313
13.1k
      else
314
13.1k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
315
13.1k
             reg_names[reg]);
316
14.3k
      break;
317
5.38k
    case 0xD0: /* Displacement word deferred: *displ(Rn).  */
318
5.38k
      (*info->fprintf_func) (info->stream, "*");
319
      /* Fall through.  */
320
12.0k
    case 0xC0: /* Displacement word:    displ(Rn).  */
321
12.0k
      if (reg == 0xF)
322
967
  (*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
323
11.0k
      else
324
11.0k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
325
11.0k
             reg_names[reg]);
326
12.0k
      break;
327
10.6k
    case 0xF0: /* Displacement long deferred: *displ(Rn).  */
328
10.6k
      (*info->fprintf_func) (info->stream, "*");
329
      /* Fall through.  */
330
18.6k
    case 0xE0: /* Displacement long:    displ(Rn).  */
331
18.6k
      if (reg == 0xF)
332
5.43k
  (*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
333
13.2k
      else
334
13.2k
  (*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
335
13.2k
             reg_names[reg]);
336
18.6k
      break;
337
425k
    }
338
339
425k
  return p - p0;
340
425k
}
341
342
/* Returns number of bytes "eaten" by the operand, or return -1 if an
343
   invalid operand was found, or -2 if an opcode tabel error was
344
   found. */
345
346
static int
347
print_insn_arg (const char *d,
348
    unsigned char *p0,
349
    bfd_vma addr, /* PC for this arg to be relative to.  */
350
    disassemble_info *info)
351
437k
{
352
437k
  int arg_len;
353
354
  /* Check validity of addressing length.  */
355
437k
  switch (d[1])
356
437k
    {
357
145k
    case 'b' : arg_len = 1; break;
358
85.4k
    case 'd' : arg_len = 8; break;
359
47.0k
    case 'f' : arg_len = 4; break;
360
338
    case 'g' : arg_len = 8; break;
361
1.52k
    case 'h' : arg_len = 16;  break;
362
61.3k
    case 'l' : arg_len = 4; break;
363
238
    case 'o' : arg_len = 16;  break;
364
86.6k
    case 'w' : arg_len = 2; break;
365
8.98k
    case 'q' : arg_len = 8; break;
366
0
    default  : abort ();
367
437k
    }
368
369
  /* Branches have no mode byte.  */
370
437k
  if (d[0] == 'b')
371
23.6k
    {
372
23.6k
      unsigned char *p = p0;
373
374
23.6k
      if (arg_len == 1)
375
17.3k
  (*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
376
6.28k
      else
377
6.28k
  (*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
378
379
23.6k
      return p - p0;
380
23.6k
    }
381
382
413k
  return print_insn_mode (d, arg_len, p0, addr, info);
383
437k
}
384
385
/* Print the vax instruction at address MEMADDR in debugged memory,
386
   on INFO->STREAM.  Returns length of the instruction, in bytes.  */
387
388
int
389
print_insn_vax (bfd_vma memaddr, disassemble_info *info)
390
446k
{
391
446k
  static bool parsed_disassembler_options = false;
392
446k
  const struct vot *votp;
393
446k
  const char *argp;
394
446k
  unsigned char *arg;
395
446k
  struct private priv;
396
446k
  bfd_byte *buffer = priv.the_buffer;
397
398
446k
  info->private_data = & priv;
399
446k
  priv.max_fetched = priv.the_buffer;
400
446k
  priv.insn_start = memaddr;
401
402
446k
  if (! parsed_disassembler_options
403
446k
      && info->disassembler_options != NULL)
404
0
    {
405
0
      parse_disassembler_options (info->disassembler_options);
406
407
      /* To avoid repeated parsing of these options.  */
408
0
      parsed_disassembler_options = true;
409
0
    }
410
411
446k
  if (OPCODES_SIGSETJMP (priv.bailout) != 0)
412
    /* Error return.  */
413
299
    return -1;
414
415
446k
  argp = NULL;
416
  /* Check if the info buffer has more than one byte left since
417
     the last opcode might be a single byte with no argument data.  */
418
446k
  if (info->buffer_length - (memaddr - info->buffer_vma) > 1
419
446k
      && (info->stop_vma == 0 || memaddr < (info->stop_vma - 1)))
420
446k
    {
421
446k
      FETCH_DATA (info, buffer + 2);
422
446k
    }
423
18.4E
  else
424
18.4E
    {
425
18.4E
      FETCH_DATA (info, buffer + 1);
426
18.4E
      buffer[1] = 0;
427
18.4E
    }
428
429
  /* Decode function entry mask.  */
430
446k
  if (is_function_entry (info, memaddr))
431
0
    {
432
0
      int i = 0;
433
0
      int register_mask = buffer[1] << 8 | buffer[0];
434
435
0
      (*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
436
0
           register_mask);
437
438
0
      for (i = 15; i >= 0; i--)
439
0
  if (register_mask & (1 << i))
440
0
          (*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
441
442
0
      (*info->fprintf_func) (info->stream, " >");
443
444
0
      return 2;
445
0
    }
446
447
  /* Decode PLT entry offset longword.  */
448
446k
  if (is_plt_tail (info, memaddr))
449
0
    {
450
0
      int offset;
451
452
0
      FETCH_DATA (info, buffer + 4);
453
0
      offset = ((unsigned) buffer[3] << 24 | buffer[2] << 16
454
0
    | buffer[1] << 8 | buffer[0]);
455
0
      (*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
456
457
0
      return 4;
458
0
    }
459
460
26.0M
  for (votp = &votstrs[0]; votp->name[0]; votp++)
461
25.9M
    {
462
25.9M
      vax_opcodeT opcode = votp->detail.code;
463
464
      /* 2 byte codes match 2 buffer pos. */
465
25.9M
      if ((bfd_byte) opcode == buffer[0]
466
25.9M
    && (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
467
420k
  {
468
420k
    argp = votp->detail.args;
469
420k
    break;
470
420k
  }
471
25.9M
    }
472
446k
  if (argp == NULL)
473
25.8k
    {
474
      /* Handle undefined instructions. */
475
25.8k
      (*info->fprintf_func) (info->stream, ".word 0x%x",
476
25.8k
           (buffer[0] << 8) + buffer[1]);
477
25.8k
      return 2;
478
25.8k
    }
479
480
  /* Point at first byte of argument data, and at descriptor for first
481
     argument.  */
482
420k
  arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
483
484
  /* Make sure we have it in mem */
485
420k
  FETCH_DATA (info, arg);
486
487
420k
  (*info->fprintf_func) (info->stream, "%s", votp->name);
488
420k
  if (*argp)
489
167k
    (*info->fprintf_func) (info->stream, " ");
490
491
857k
  while (*argp)
492
437k
    {
493
437k
      arg += print_insn_arg (argp, arg, memaddr + (arg - buffer), info);
494
437k
      argp += 2;
495
437k
      if (*argp)
496
269k
  (*info->fprintf_func) (info->stream, ",");
497
437k
    }
498
499
420k
  return arg - buffer;
500
446k
}
501