Coverage Report

Created: 2024-09-11 06:39

/src/cryptofuzz/modules/bitcoin/span.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2018-2020 The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#ifndef BITCOIN_SPAN_H
6
#define BITCOIN_SPAN_H
7
8
#include <type_traits>
9
#include <cstddef>
10
#include <algorithm>
11
#include <assert.h>
12
13
#ifdef DEBUG
14
#define CONSTEXPR_IF_NOT_DEBUG
15
#define ASSERT_IF_DEBUG(x) assert((x))
16
#else
17
#define CONSTEXPR_IF_NOT_DEBUG constexpr
18
#define ASSERT_IF_DEBUG(x)
19
#endif
20
21
#if defined(__clang__)
22
#if __has_attribute(lifetimebound)
23
#define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]]
24
#else
25
#define SPAN_ATTR_LIFETIMEBOUND
26
#endif
27
#else
28
#define SPAN_ATTR_LIFETIMEBOUND
29
#endif
30
31
/** A Span is an object that can refer to a contiguous sequence of objects.
32
 *
33
 * It implements a subset of C++20's std::span.
34
 *
35
 * Things to be aware of when writing code that deals with Spans:
36
 *
37
 * - Similar to references themselves, Spans are subject to reference lifetime
38
 *   issues. The user is responsible for making sure the objects pointed to by
39
 *   a Span live as long as the Span is used. For example:
40
 *
41
 *       std::vector<int> vec{1,2,3,4};
42
 *       Span<int> sp(vec);
43
 *       vec.push_back(5);
44
 *       printf("%i\n", sp.front()); // UB!
45
 *
46
 *   may exhibit undefined behavior, as increasing the size of a vector may
47
 *   invalidate references.
48
 *
49
 * - One particular pitfall is that Spans can be constructed from temporaries,
50
 *   but this is unsafe when the Span is stored in a variable, outliving the
51
 *   temporary. For example, this will compile, but exhibits undefined behavior:
52
 *
53
 *       Span<const int> sp(std::vector<int>{1, 2, 3});
54
 *       printf("%i\n", sp.front()); // UB!
55
 *
56
 *   The lifetime of the vector ends when the statement it is created in ends.
57
 *   Thus the Span is left with a dangling reference, and using it is undefined.
58
 *
59
 * - Due to Span's automatic creation from range-like objects (arrays, and data
60
 *   types that expose a data() and size() member function), functions that
61
 *   accept a Span as input parameter can be called with any compatible
62
 *   range-like object. For example, this works:
63
*
64
 *       void Foo(Span<const int> arg);
65
 *
66
 *       Foo(std::vector<int>{1, 2, 3}); // Works
67
 *
68
 *   This is very useful in cases where a function truly does not care about the
69
 *   container, and only about having exactly a range of elements. However it
70
 *   may also be surprising to see automatic conversions in this case.
71
 *
72
 *   When a function accepts a Span with a mutable element type, it will not
73
 *   accept temporaries; only variables or other references. For example:
74
 *
75
 *       void FooMut(Span<int> arg);
76
 *
77
 *       FooMut(std::vector<int>{1, 2, 3}); // Does not compile
78
 *       std::vector<int> baz{1, 2, 3};
79
 *       FooMut(baz); // Works
80
 *
81
 *   This is similar to how functions that take (non-const) lvalue references
82
 *   as input cannot accept temporaries. This does not work either:
83
 *
84
 *       void FooVec(std::vector<int>& arg);
85
 *       FooVec(std::vector<int>{1, 2, 3}); // Does not compile
86
 *
87
 *   The idea is that if a function accepts a mutable reference, a meaningful
88
 *   result will be present in that variable after the call. Passing a temporary
89
 *   is useless in that context.
90
 */
91
template<typename C>
92
class Span
93
{
94
    C* m_data;
95
    std::size_t m_size;
96
97
    template <class T>
98
    struct is_Span_int : public std::false_type {};
99
    template <class T>
100
    struct is_Span_int<Span<T>> : public std::true_type {};
101
    template <class T>
102
    struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{};
103
104
105
public:
106
    constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
107
108
    /** Construct a span from a begin pointer and a size.
109
     *
110
     * This implements a subset of the iterator-based std::span constructor in C++20,
111
     * which is hard to implement without std::address_of.
112
     */
113
    template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
114
4.16G
    constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
115
116
    /** Construct a span from a begin and end pointer.
117
     *
118
     * This implements a subset of the iterator-based std::span constructor in C++20,
119
     * which is hard to implement without std::address_of.
120
     */
121
    template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
122
    CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
123
    {
124
        ASSERT_IF_DEBUG(end >= begin);
125
    }
126
127
    /** Implicit conversion of spans between compatible types.
128
     *
129
     *  Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
130
     *  C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
131
     *  C++20 std::span constructor.
132
     *
133
     *  For example this means that a Span<T> can be converted into a Span<const T>.
134
     */
135
    template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
136
    constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
137
138
    /** Default copy constructor. */
139
    constexpr Span(const Span&) noexcept = default;
140
141
    /** Default assignment operator. */
142
    Span& operator=(const Span& other) noexcept = default;
143
144
    /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
145
    template <int N>
146
6.30M
    constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
Span<unsigned char const>::Span<20>(unsigned char const (&) [20])
Line
Count
Source
146
1.79k
    constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
Span<unsigned char const>::Span<32>(unsigned char const (&) [32])
Line
Count
Source
146
6.23M
    constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
Span<unsigned char>::Span<32>(unsigned char (&) [32])
Line
Count
Source
146
62.0k
    constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
147
148
    /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
149
     *
150
     * This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
151
     *
152
     * To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
153
     * Note that this restriction does not exist when converting arrays or other Spans (see above).
154
     */
155
    template <typename V>
156
    constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND,
157
        typename std::enable_if<!is_Span<V>::value &&
158
                                std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value &&
159
                                std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
160
        : m_data(other.data()), m_size(other.size()){}
161
162
    template <typename V>
163
    constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND,
164
        typename std::enable_if<!is_Span<V>::value &&
165
                                std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value &&
166
                                std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
167
11.5M
        : m_data(other.data()), m_size(other.size()){}
168
169
2.53G
    constexpr C* data() const noexcept { return m_data; }
Span<unsigned char const>::data() const
Line
Count
Source
169
978M
    constexpr C* data() const noexcept { return m_data; }
Span<unsigned char>::data() const
Line
Count
Source
169
1.53G
    constexpr C* data() const noexcept { return m_data; }
Span<char const>::data() const
Line
Count
Source
169
18.2M
    constexpr C* data() const noexcept { return m_data; }
170
57.4M
    constexpr C* begin() const noexcept { return m_data; }
171
46.9M
    constexpr C* end() const noexcept { return m_data + m_size; }
172
    CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
173
    {
174
        ASSERT_IF_DEBUG(size() > 0);
175
        return m_data[0];
176
    }
177
    CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
178
    {
179
        ASSERT_IF_DEBUG(size() > 0);
180
        return m_data[m_size - 1];
181
    }
182
4.63G
    constexpr std::size_t size() const noexcept { return m_size; }
Span<unsigned char const>::size() const
Line
Count
Source
182
4.47G
    constexpr std::size_t size() const noexcept { return m_size; }
Span<unsigned char>::size() const
Line
Count
Source
182
31.8M
    constexpr std::size_t size() const noexcept { return m_size; }
Span<char const>::size() const
Line
Count
Source
182
131M
    constexpr std::size_t size() const noexcept { return m_size; }
183
    constexpr bool empty() const noexcept { return size() == 0; }
184
    CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
185
    {
186
        ASSERT_IF_DEBUG(size() > pos);
187
        return m_data[pos];
188
    }
189
    CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
190
4.12G
    {
191
4.12G
        ASSERT_IF_DEBUG(size() >= offset);
192
4.12G
        return Span<C>(m_data + offset, m_size - offset);
193
4.12G
    }
194
    CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
195
    {
196
        ASSERT_IF_DEBUG(size() >= offset + count);
197
        return Span<C>(m_data + offset, count);
198
    }
199
    CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
200
    {
201
        ASSERT_IF_DEBUG(size() >= count);
202
        return Span<C>(m_data, count);
203
    }
204
    CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
205
    {
206
         ASSERT_IF_DEBUG(size() >= count);
207
         return Span<C>(m_data + m_size - count, count);
208
    }
209
210
    friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
211
    friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
212
    friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
213
    friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
214
    friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
215
    friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
216
217
    template <typename O> friend class Span;
218
};
219
220
// MakeSpan helps constructing a Span of the right type automatically.
221
/** MakeSpan for arrays: */
222
template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); }
223
/** MakeSpan for temporaries / rvalue references, only supporting const output. */
224
template <typename V> constexpr auto MakeSpan(V&& v SPAN_ATTR_LIFETIMEBOUND) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); }
225
/** MakeSpan for (lvalue) references, supporting mutable output. */
226
0
template <typename V> constexpr auto MakeSpan(V& v SPAN_ATTR_LIFETIMEBOUND) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; }
Unexecuted instantiation: Span<std::__1::remove_pointer<decltype (({parm#1}.data)())>::type> MakeSpan<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
Unexecuted instantiation: Span<std::__1::remove_pointer<decltype (({parm#1}.data)())>::type> MakeSpan<Span<char const> const>(Span<char const> const&)
227
228
/** Pop the last element off a span, and return a reference to that element. */
229
template <typename T>
230
T& SpanPopBack(Span<T>& span)
231
{
232
    size_t size = span.size();
233
    ASSERT_IF_DEBUG(size > 0);
234
    T& back = span[size - 1];
235
    span = Span<T>(span.data(), size - 1);
236
    return back;
237
}
238
239
// Helper functions to safely cast to unsigned char pointers.
240
0
inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; }
241
inline unsigned char* UCharCast(unsigned char* c) { return c; }
242
43.9k
inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; }
243
inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
244
245
// Helper function to safely convert a Span to a Span<[const] unsigned char>.
246
43.2k
template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
247
248
/** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
249
0
template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); }
Unexecuted instantiation: _Z13MakeUCharSpanIRKNSt3__112basic_stringIcNS0_11char_traitsIcEENS0_9allocatorIcEEEEEDTcl13UCharSpanCastcl8MakeSpanclsr3stdE7forwardIT_Efp_EEEEOS9_
Unexecuted instantiation: _Z13MakeUCharSpanIRK4SpanIKcEEDTcl13UCharSpanCastcl8MakeSpanclsr3stdE7forwardIT_Efp_EEEEOS5_
250
251
#endif