/src/trezor-firmware/crypto/ripemd160.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * RIPE MD-160 implementation |
3 | | * |
4 | | * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved |
5 | | * SPDX-License-Identifier: Apache-2.0 |
6 | | * |
7 | | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | | * not use this file except in compliance with the License. |
9 | | * You may obtain a copy of the License at |
10 | | * |
11 | | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | | * |
13 | | * Unless required by applicable law or agreed to in writing, software |
14 | | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | | * See the License for the specific language governing permissions and |
17 | | * limitations under the License. |
18 | | * |
19 | | * This file is part of mbed TLS (https://tls.mbed.org) |
20 | | */ |
21 | | |
22 | | /* |
23 | | * The RIPEMD-160 algorithm was designed by RIPE in 1996 |
24 | | * http://homes.esat.kuleuven.be/~bosselae/ripemd160.html |
25 | | * http://ehash.iaik.tugraz.at/wiki/RIPEMD-160 |
26 | | */ |
27 | | |
28 | | #include <string.h> |
29 | | |
30 | | #include "ripemd160.h" |
31 | | #include "memzero.h" |
32 | | |
33 | | /* |
34 | | * 32-bit integer manipulation macros (little endian) |
35 | | */ |
36 | | #ifndef GET_UINT32_LE |
37 | 1.66M | #define GET_UINT32_LE(n,b,i) \ |
38 | 1.66M | { \ |
39 | 1.66M | (n) = ( (uint32_t) (b)[(i) ] ) \ |
40 | 1.66M | | ( (uint32_t) (b)[(i) + 1] << 8 ) \ |
41 | 1.66M | | ( (uint32_t) (b)[(i) + 2] << 16 ) \ |
42 | 1.66M | | ( (uint32_t) (b)[(i) + 3] << 24 ); \ |
43 | 1.66M | } |
44 | | #endif |
45 | | |
46 | | #ifndef PUT_UINT32_LE |
47 | 1.81k | #define PUT_UINT32_LE(n,b,i) \ |
48 | 1.81k | { \ |
49 | 1.81k | (b)[(i) ] = (uint8_t) ( ( (n) ) & 0xFF ); \ |
50 | 1.81k | (b)[(i) + 1] = (uint8_t) ( ( (n) >> 8 ) & 0xFF ); \ |
51 | 1.81k | (b)[(i) + 2] = (uint8_t) ( ( (n) >> 16 ) & 0xFF ); \ |
52 | 1.81k | (b)[(i) + 3] = (uint8_t) ( ( (n) >> 24 ) & 0xFF ); \ |
53 | 1.81k | } |
54 | | #endif |
55 | | |
56 | | /* |
57 | | * RIPEMD-160 context setup |
58 | | */ |
59 | | void ripemd160_Init(RIPEMD160_CTX *ctx) |
60 | 259 | { |
61 | 259 | memzero(ctx, sizeof(RIPEMD160_CTX)); |
62 | 259 | ctx->total[0] = 0; |
63 | 259 | ctx->total[1] = 0; |
64 | 259 | ctx->state[0] = 0x67452301; |
65 | 259 | ctx->state[1] = 0xEFCDAB89; |
66 | 259 | ctx->state[2] = 0x98BADCFE; |
67 | 259 | ctx->state[3] = 0x10325476; |
68 | 259 | ctx->state[4] = 0xC3D2E1F0; |
69 | 259 | } |
70 | | |
71 | | #if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT) |
72 | | /* |
73 | | * Process one block |
74 | | */ |
75 | | void ripemd160_process( RIPEMD160_CTX *ctx, const uint8_t data[RIPEMD160_BLOCK_LENGTH] ) |
76 | 104k | { |
77 | 104k | uint32_t A = 0, B = 0, C = 0, D = 0, E = 0, Ap = 0, Bp = 0, Cp = 0, Dp = 0, Ep = 0, X[16] = {0}; |
78 | | |
79 | 104k | GET_UINT32_LE( X[ 0], data, 0 ); |
80 | 104k | GET_UINT32_LE( X[ 1], data, 4 ); |
81 | 104k | GET_UINT32_LE( X[ 2], data, 8 ); |
82 | 104k | GET_UINT32_LE( X[ 3], data, 12 ); |
83 | 104k | GET_UINT32_LE( X[ 4], data, 16 ); |
84 | 104k | GET_UINT32_LE( X[ 5], data, 20 ); |
85 | 104k | GET_UINT32_LE( X[ 6], data, 24 ); |
86 | 104k | GET_UINT32_LE( X[ 7], data, 28 ); |
87 | 104k | GET_UINT32_LE( X[ 8], data, 32 ); |
88 | 104k | GET_UINT32_LE( X[ 9], data, 36 ); |
89 | 104k | GET_UINT32_LE( X[10], data, 40 ); |
90 | 104k | GET_UINT32_LE( X[11], data, 44 ); |
91 | 104k | GET_UINT32_LE( X[12], data, 48 ); |
92 | 104k | GET_UINT32_LE( X[13], data, 52 ); |
93 | 104k | GET_UINT32_LE( X[14], data, 56 ); |
94 | 104k | GET_UINT32_LE( X[15], data, 60 ); |
95 | | |
96 | 104k | A = Ap = ctx->state[0]; |
97 | 104k | B = Bp = ctx->state[1]; |
98 | 104k | C = Cp = ctx->state[2]; |
99 | 104k | D = Dp = ctx->state[3]; |
100 | 104k | E = Ep = ctx->state[4]; |
101 | | |
102 | 3.33M | #define F1( x, y, z ) ( x ^ y ^ z ) |
103 | 3.33M | #define F2( x, y, z ) ( ( x & y ) | ( ~x & z ) ) |
104 | 3.33M | #define F3( x, y, z ) ( ( x | ~y ) ^ z ) |
105 | 3.33M | #define F4( x, y, z ) ( ( x & z ) | ( y & ~z ) ) |
106 | 3.33M | #define F5( x, y, z ) ( x ^ ( y | ~z ) ) |
107 | | |
108 | 33.3M | #define S( x, n ) ( ( x << n ) | ( x >> (32 - n) ) ) |
109 | | |
110 | 104k | #define P( a, b, c, d, e, r, s, f, k ) \ |
111 | 16.6M | a += f( b, c, d ) + X[r] + k; \ |
112 | 16.6M | a = S( a, s ) + e; \ |
113 | 16.6M | c = S( c, 10 ); |
114 | | |
115 | 104k | #define P2( a, b, c, d, e, r, s, rp, sp ) \ |
116 | 8.33M | P( a, b, c, d, e, r, s, F, K ); \ |
117 | 8.33M | P( a ## p, b ## p, c ## p, d ## p, e ## p, rp, sp, Fp, Kp ); |
118 | | |
119 | 1.66M | #define F F1 |
120 | 104k | #define K 0x00000000 |
121 | 1.66M | #define Fp F5 |
122 | 104k | #define Kp 0x50A28BE6 |
123 | 104k | P2( A, B, C, D, E, 0, 11, 5, 8 ); |
124 | 104k | P2( E, A, B, C, D, 1, 14, 14, 9 ); |
125 | 104k | P2( D, E, A, B, C, 2, 15, 7, 9 ); |
126 | 104k | P2( C, D, E, A, B, 3, 12, 0, 11 ); |
127 | 104k | P2( B, C, D, E, A, 4, 5, 9, 13 ); |
128 | 104k | P2( A, B, C, D, E, 5, 8, 2, 15 ); |
129 | 104k | P2( E, A, B, C, D, 6, 7, 11, 15 ); |
130 | 104k | P2( D, E, A, B, C, 7, 9, 4, 5 ); |
131 | 104k | P2( C, D, E, A, B, 8, 11, 13, 7 ); |
132 | 104k | P2( B, C, D, E, A, 9, 13, 6, 7 ); |
133 | 104k | P2( A, B, C, D, E, 10, 14, 15, 8 ); |
134 | 104k | P2( E, A, B, C, D, 11, 15, 8, 11 ); |
135 | 104k | P2( D, E, A, B, C, 12, 6, 1, 14 ); |
136 | 104k | P2( C, D, E, A, B, 13, 7, 10, 14 ); |
137 | 104k | P2( B, C, D, E, A, 14, 9, 3, 12 ); |
138 | 104k | P2( A, B, C, D, E, 15, 8, 12, 6 ); |
139 | 104k | #undef F |
140 | 104k | #undef K |
141 | 104k | #undef Fp |
142 | 104k | #undef Kp |
143 | | |
144 | 1.66M | #define F F2 |
145 | 104k | #define K 0x5A827999 |
146 | 1.66M | #define Fp F4 |
147 | 104k | #define Kp 0x5C4DD124 |
148 | 104k | P2( E, A, B, C, D, 7, 7, 6, 9 ); |
149 | 104k | P2( D, E, A, B, C, 4, 6, 11, 13 ); |
150 | 104k | P2( C, D, E, A, B, 13, 8, 3, 15 ); |
151 | 104k | P2( B, C, D, E, A, 1, 13, 7, 7 ); |
152 | 104k | P2( A, B, C, D, E, 10, 11, 0, 12 ); |
153 | 104k | P2( E, A, B, C, D, 6, 9, 13, 8 ); |
154 | 104k | P2( D, E, A, B, C, 15, 7, 5, 9 ); |
155 | 104k | P2( C, D, E, A, B, 3, 15, 10, 11 ); |
156 | 104k | P2( B, C, D, E, A, 12, 7, 14, 7 ); |
157 | 104k | P2( A, B, C, D, E, 0, 12, 15, 7 ); |
158 | 104k | P2( E, A, B, C, D, 9, 15, 8, 12 ); |
159 | 104k | P2( D, E, A, B, C, 5, 9, 12, 7 ); |
160 | 104k | P2( C, D, E, A, B, 2, 11, 4, 6 ); |
161 | 104k | P2( B, C, D, E, A, 14, 7, 9, 15 ); |
162 | 104k | P2( A, B, C, D, E, 11, 13, 1, 13 ); |
163 | 104k | P2( E, A, B, C, D, 8, 12, 2, 11 ); |
164 | 104k | #undef F |
165 | 104k | #undef K |
166 | 104k | #undef Fp |
167 | 104k | #undef Kp |
168 | | |
169 | 1.66M | #define F F3 |
170 | 104k | #define K 0x6ED9EBA1 |
171 | 1.66M | #define Fp F3 |
172 | 104k | #define Kp 0x6D703EF3 |
173 | 104k | P2( D, E, A, B, C, 3, 11, 15, 9 ); |
174 | 104k | P2( C, D, E, A, B, 10, 13, 5, 7 ); |
175 | 104k | P2( B, C, D, E, A, 14, 6, 1, 15 ); |
176 | 104k | P2( A, B, C, D, E, 4, 7, 3, 11 ); |
177 | 104k | P2( E, A, B, C, D, 9, 14, 7, 8 ); |
178 | 104k | P2( D, E, A, B, C, 15, 9, 14, 6 ); |
179 | 104k | P2( C, D, E, A, B, 8, 13, 6, 6 ); |
180 | 104k | P2( B, C, D, E, A, 1, 15, 9, 14 ); |
181 | 104k | P2( A, B, C, D, E, 2, 14, 11, 12 ); |
182 | 104k | P2( E, A, B, C, D, 7, 8, 8, 13 ); |
183 | 104k | P2( D, E, A, B, C, 0, 13, 12, 5 ); |
184 | 104k | P2( C, D, E, A, B, 6, 6, 2, 14 ); |
185 | 104k | P2( B, C, D, E, A, 13, 5, 10, 13 ); |
186 | 104k | P2( A, B, C, D, E, 11, 12, 0, 13 ); |
187 | 104k | P2( E, A, B, C, D, 5, 7, 4, 7 ); |
188 | 104k | P2( D, E, A, B, C, 12, 5, 13, 5 ); |
189 | 104k | #undef F |
190 | 104k | #undef K |
191 | 104k | #undef Fp |
192 | 104k | #undef Kp |
193 | | |
194 | 1.66M | #define F F4 |
195 | 104k | #define K 0x8F1BBCDC |
196 | 1.66M | #define Fp F2 |
197 | 104k | #define Kp 0x7A6D76E9 |
198 | 104k | P2( C, D, E, A, B, 1, 11, 8, 15 ); |
199 | 104k | P2( B, C, D, E, A, 9, 12, 6, 5 ); |
200 | 104k | P2( A, B, C, D, E, 11, 14, 4, 8 ); |
201 | 104k | P2( E, A, B, C, D, 10, 15, 1, 11 ); |
202 | 104k | P2( D, E, A, B, C, 0, 14, 3, 14 ); |
203 | 104k | P2( C, D, E, A, B, 8, 15, 11, 14 ); |
204 | 104k | P2( B, C, D, E, A, 12, 9, 15, 6 ); |
205 | 104k | P2( A, B, C, D, E, 4, 8, 0, 14 ); |
206 | 104k | P2( E, A, B, C, D, 13, 9, 5, 6 ); |
207 | 104k | P2( D, E, A, B, C, 3, 14, 12, 9 ); |
208 | 104k | P2( C, D, E, A, B, 7, 5, 2, 12 ); |
209 | 104k | P2( B, C, D, E, A, 15, 6, 13, 9 ); |
210 | 104k | P2( A, B, C, D, E, 14, 8, 9, 12 ); |
211 | 104k | P2( E, A, B, C, D, 5, 6, 7, 5 ); |
212 | 104k | P2( D, E, A, B, C, 6, 5, 10, 15 ); |
213 | 104k | P2( C, D, E, A, B, 2, 12, 14, 8 ); |
214 | 104k | #undef F |
215 | 104k | #undef K |
216 | 104k | #undef Fp |
217 | 104k | #undef Kp |
218 | | |
219 | 1.66M | #define F F5 |
220 | 104k | #define K 0xA953FD4E |
221 | 1.66M | #define Fp F1 |
222 | 104k | #define Kp 0x00000000 |
223 | 104k | P2( B, C, D, E, A, 4, 9, 12, 8 ); |
224 | 104k | P2( A, B, C, D, E, 0, 15, 15, 5 ); |
225 | 104k | P2( E, A, B, C, D, 5, 5, 10, 12 ); |
226 | 104k | P2( D, E, A, B, C, 9, 11, 4, 9 ); |
227 | 104k | P2( C, D, E, A, B, 7, 6, 1, 12 ); |
228 | 104k | P2( B, C, D, E, A, 12, 8, 5, 5 ); |
229 | 104k | P2( A, B, C, D, E, 2, 13, 8, 14 ); |
230 | 104k | P2( E, A, B, C, D, 10, 12, 7, 6 ); |
231 | 104k | P2( D, E, A, B, C, 14, 5, 6, 8 ); |
232 | 104k | P2( C, D, E, A, B, 1, 12, 2, 13 ); |
233 | 104k | P2( B, C, D, E, A, 3, 13, 13, 6 ); |
234 | 104k | P2( A, B, C, D, E, 8, 14, 14, 5 ); |
235 | 104k | P2( E, A, B, C, D, 11, 11, 0, 15 ); |
236 | 104k | P2( D, E, A, B, C, 6, 8, 3, 13 ); |
237 | 104k | P2( C, D, E, A, B, 15, 5, 9, 11 ); |
238 | 104k | P2( B, C, D, E, A, 13, 6, 11, 11 ); |
239 | 104k | #undef F |
240 | 104k | #undef K |
241 | 104k | #undef Fp |
242 | 104k | #undef Kp |
243 | | |
244 | 104k | C = ctx->state[1] + C + Dp; |
245 | 104k | ctx->state[1] = ctx->state[2] + D + Ep; |
246 | 104k | ctx->state[2] = ctx->state[3] + E + Ap; |
247 | 104k | ctx->state[3] = ctx->state[4] + A + Bp; |
248 | 104k | ctx->state[4] = ctx->state[0] + B + Cp; |
249 | 104k | ctx->state[0] = C; |
250 | 104k | } |
251 | | #endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */ |
252 | | |
253 | | /* |
254 | | * RIPEMD-160 process buffer |
255 | | */ |
256 | | void ripemd160_Update( RIPEMD160_CTX *ctx, const uint8_t *input, uint32_t ilen ) |
257 | 37.4k | { |
258 | 37.4k | uint32_t fill = 0; |
259 | 37.4k | uint32_t left = 0; |
260 | | |
261 | 37.4k | if( ilen == 0 ) |
262 | 35.1k | return; |
263 | | |
264 | 2.29k | left = ctx->total[0] & 0x3F; |
265 | 2.29k | fill = RIPEMD160_BLOCK_LENGTH - left; |
266 | | |
267 | 2.29k | ctx->total[0] += (uint32_t) ilen; |
268 | 2.29k | ctx->total[0] &= 0xFFFFFFFF; |
269 | | |
270 | 2.29k | if( ctx->total[0] < (uint32_t) ilen ) |
271 | 0 | ctx->total[1]++; |
272 | | |
273 | 2.29k | if( left && ilen >= fill ) |
274 | 1.01k | { |
275 | 1.01k | memcpy( (void *) (ctx->buffer + left), input, fill ); |
276 | 1.01k | ripemd160_process( ctx, ctx->buffer ); |
277 | 1.01k | input += fill; |
278 | 1.01k | ilen -= fill; |
279 | 1.01k | left = 0; |
280 | 1.01k | } |
281 | | |
282 | 105k | while( ilen >= RIPEMD160_BLOCK_LENGTH ) |
283 | 103k | { |
284 | 103k | ripemd160_process( ctx, input ); |
285 | 103k | input += RIPEMD160_BLOCK_LENGTH; |
286 | 103k | ilen -= RIPEMD160_BLOCK_LENGTH; |
287 | 103k | } |
288 | | |
289 | 2.29k | if( ilen > 0 ) |
290 | 1.98k | { |
291 | 1.98k | memcpy( (void *) (ctx->buffer + left), input, ilen ); |
292 | 1.98k | } |
293 | 2.29k | } |
294 | | |
295 | | static const uint8_t ripemd160_padding[RIPEMD160_BLOCK_LENGTH] = |
296 | | { |
297 | | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
298 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
299 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
300 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
301 | | }; |
302 | | |
303 | | /* |
304 | | * RIPEMD-160 final digest |
305 | | */ |
306 | | void ripemd160_Final( RIPEMD160_CTX *ctx, uint8_t output[RIPEMD160_DIGEST_LENGTH] ) |
307 | 259 | { |
308 | 259 | uint32_t last = 0; uint32_t padn = 0; |
309 | 259 | uint32_t high = 0; uint32_t low = 0; |
310 | 259 | uint8_t msglen[8] = {0}; |
311 | | |
312 | 259 | high = ( ctx->total[0] >> 29 ) |
313 | 259 | | ( ctx->total[1] << 3 ); |
314 | 259 | low = ( ctx->total[0] << 3 ); |
315 | | |
316 | 259 | PUT_UINT32_LE( low, msglen, 0 ); |
317 | 259 | PUT_UINT32_LE( high, msglen, 4 ); |
318 | | |
319 | 259 | last = ctx->total[0] & 0x3F; |
320 | 259 | padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); |
321 | | |
322 | 259 | ripemd160_Update( ctx, ripemd160_padding, padn ); |
323 | 259 | ripemd160_Update( ctx, msglen, 8 ); |
324 | | |
325 | 259 | PUT_UINT32_LE( ctx->state[0], output, 0 ); |
326 | 259 | PUT_UINT32_LE( ctx->state[1], output, 4 ); |
327 | 259 | PUT_UINT32_LE( ctx->state[2], output, 8 ); |
328 | 259 | PUT_UINT32_LE( ctx->state[3], output, 12 ); |
329 | 259 | PUT_UINT32_LE( ctx->state[4], output, 16 ); |
330 | | |
331 | 259 | memzero(ctx, sizeof(RIPEMD160_CTX)); |
332 | 259 | } |
333 | | |
334 | | /* |
335 | | * output = RIPEMD-160( input buffer ) |
336 | | */ |
337 | | void ripemd160(const uint8_t *msg, uint32_t msg_len, uint8_t hash[RIPEMD160_DIGEST_LENGTH]) |
338 | 0 | { |
339 | 0 | RIPEMD160_CTX ctx = {0}; |
340 | 0 | ripemd160_Init( &ctx ); |
341 | 0 | ripemd160_Update( &ctx, msg, msg_len ); |
342 | 0 | ripemd160_Final( &ctx, hash ); |
343 | 0 | } |