Coverage Report

Created: 2022-08-24 06:07

/src/bloaty/third_party/abseil-cpp/absl/strings/charconv.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include "absl/strings/charconv.h"
16
17
#include <algorithm>
18
#include <cassert>
19
#include <cmath>
20
#include <cstring>
21
22
#include "absl/base/casts.h"
23
#include "absl/numeric/bits.h"
24
#include "absl/numeric/int128.h"
25
#include "absl/strings/internal/charconv_bigint.h"
26
#include "absl/strings/internal/charconv_parse.h"
27
28
// The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
29
// point numbers have the same endianness in memory as a bitfield struct
30
// containing the corresponding parts.
31
//
32
// When set, we replace calls to ldexp() with manual bit packing, which is
33
// faster and is unaffected by floating point environment.
34
#ifdef ABSL_BIT_PACK_FLOATS
35
#error ABSL_BIT_PACK_FLOATS cannot be directly set
36
#elif defined(__x86_64__) || defined(_M_X64)
37
#define ABSL_BIT_PACK_FLOATS 1
38
#endif
39
40
// A note about subnormals:
41
//
42
// The code below talks about "normals" and "subnormals".  A normal IEEE float
43
// has a fixed-width mantissa and power of two exponent.  For example, a normal
44
// `double` has a 53-bit mantissa.  Because the high bit is always 1, it is not
45
// stored in the representation.  The implicit bit buys an extra bit of
46
// resolution in the datatype.
47
//
48
// The downside of this scheme is that there is a large gap between DBL_MIN and
49
// zero.  (Large, at least, relative to the different between DBL_MIN and the
50
// next representable number).  This gap is softened by the "subnormal" numbers,
51
// which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
52
// bit.  An all-bits-zero exponent in the encoding represents subnormals.  (Zero
53
// is represented as a subnormal with an all-bits-zero mantissa.)
54
//
55
// The code below, in calculations, represents the mantissa as a uint64_t.  The
56
// end result normally has the 53rd bit set.  It represents subnormals by using
57
// narrower mantissas.
58
59
namespace absl {
60
ABSL_NAMESPACE_BEGIN
61
namespace {
62
63
template <typename FloatType>
64
struct FloatTraits;
65
66
template <>
67
struct FloatTraits<double> {
68
  // The number of mantissa bits in the given float type.  This includes the
69
  // implied high bit.
70
  static constexpr int kTargetMantissaBits = 53;
71
72
  // The largest supported IEEE exponent, in our integral mantissa
73
  // representation.
74
  //
75
  // If `m` is the largest possible int kTargetMantissaBits bits wide, then
76
  // m * 2**kMaxExponent is exactly equal to DBL_MAX.
77
  static constexpr int kMaxExponent = 971;
78
79
  // The smallest supported IEEE normal exponent, in our integral mantissa
80
  // representation.
81
  //
82
  // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
83
  // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
84
  static constexpr int kMinNormalExponent = -1074;
85
86
0
  static double MakeNan(const char* tagp) {
87
    // Support nan no matter which namespace it's in.  Some platforms
88
    // incorrectly don't put it in namespace std.
89
0
    using namespace std;  // NOLINT
90
0
    return nan(tagp);
91
0
  }
92
93
  // Builds a nonzero floating point number out of the provided parts.
94
  //
95
  // This is intended to do the same operation as ldexp(mantissa, exponent),
96
  // but using purely integer math, to avoid -ffastmath and floating
97
  // point environment issues.  Using type punning is also faster. We fall back
98
  // to ldexp on a per-platform basis for portability.
99
  //
100
  // `exponent` must be between kMinNormalExponent and kMaxExponent.
101
  //
102
  // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
103
  // a normal value is made, or it must be less narrow than that, in which case
104
  // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
105
  // made.
106
0
  static double Make(uint64_t mantissa, int exponent, bool sign) {
107
#ifndef ABSL_BIT_PACK_FLOATS
108
    // Support ldexp no matter which namespace it's in.  Some platforms
109
    // incorrectly don't put it in namespace std.
110
    using namespace std;  // NOLINT
111
    return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
112
#else
113
0
    constexpr uint64_t kMantissaMask =
114
0
        (uint64_t(1) << (kTargetMantissaBits - 1)) - 1;
115
0
    uint64_t dbl = static_cast<uint64_t>(sign) << 63;
116
0
    if (mantissa > kMantissaMask) {
117
      // Normal value.
118
      // Adjust by 1023 for the exponent representation bias, and an additional
119
      // 52 due to the implied decimal point in the IEEE mantissa represenation.
120
0
      dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52;
121
0
      mantissa &= kMantissaMask;
122
0
    } else {
123
      // subnormal value
124
0
      assert(exponent == kMinNormalExponent);
125
0
    }
126
0
    dbl += mantissa;
127
0
    return absl::bit_cast<double>(dbl);
128
0
#endif  // ABSL_BIT_PACK_FLOATS
129
0
  }
130
};
131
132
// Specialization of floating point traits for the `float` type.  See the
133
// FloatTraits<double> specialization above for meaning of each of the following
134
// members and methods.
135
template <>
136
struct FloatTraits<float> {
137
  static constexpr int kTargetMantissaBits = 24;
138
  static constexpr int kMaxExponent = 104;
139
  static constexpr int kMinNormalExponent = -149;
140
0
  static float MakeNan(const char* tagp) {
141
    // Support nanf no matter which namespace it's in.  Some platforms
142
    // incorrectly don't put it in namespace std.
143
0
    using namespace std;  // NOLINT
144
0
    return nanf(tagp);
145
0
  }
146
0
  static float Make(uint32_t mantissa, int exponent, bool sign) {
147
#ifndef ABSL_BIT_PACK_FLOATS
148
    // Support ldexpf no matter which namespace it's in.  Some platforms
149
    // incorrectly don't put it in namespace std.
150
    using namespace std;  // NOLINT
151
    return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
152
#else
153
0
    constexpr uint32_t kMantissaMask =
154
0
        (uint32_t(1) << (kTargetMantissaBits - 1)) - 1;
155
0
    uint32_t flt = static_cast<uint32_t>(sign) << 31;
156
0
    if (mantissa > kMantissaMask) {
157
      // Normal value.
158
      // Adjust by 127 for the exponent representation bias, and an additional
159
      // 23 due to the implied decimal point in the IEEE mantissa represenation.
160
0
      flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23;
161
0
      mantissa &= kMantissaMask;
162
0
    } else {
163
      // subnormal value
164
0
      assert(exponent == kMinNormalExponent);
165
0
    }
166
0
    flt += mantissa;
167
0
    return absl::bit_cast<float>(flt);
168
0
#endif  // ABSL_BIT_PACK_FLOATS
169
0
  }
170
};
171
172
// Decimal-to-binary conversions require coercing powers of 10 into a mantissa
173
// and a power of 2.  The two helper functions Power10Mantissa(n) and
174
// Power10Exponent(n) perform this task.  Together, these represent a hand-
175
// rolled floating point value which is equal to or just less than 10**n.
176
//
177
// The return values satisfy two range guarantees:
178
//
179
//   Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
180
//     < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
181
//
182
//   2**63 <= Power10Mantissa(n) < 2**64.
183
//
184
// Lookups into the power-of-10 table must first check the Power10Overflow() and
185
// Power10Underflow() functions, to avoid out-of-bounds table access.
186
//
187
// Indexes into these tables are biased by -kPower10TableMin, and the table has
188
// values in the range [kPower10TableMin, kPower10TableMax].
189
extern const uint64_t kPower10MantissaTable[];
190
extern const int16_t kPower10ExponentTable[];
191
192
// The smallest allowed value for use with the Power10Mantissa() and
193
// Power10Exponent() functions below.  (If a smaller exponent is needed in
194
// calculations, the end result is guaranteed to underflow.)
195
constexpr int kPower10TableMin = -342;
196
197
// The largest allowed value for use with the Power10Mantissa() and
198
// Power10Exponent() functions below.  (If a smaller exponent is needed in
199
// calculations, the end result is guaranteed to overflow.)
200
constexpr int kPower10TableMax = 308;
201
202
0
uint64_t Power10Mantissa(int n) {
203
0
  return kPower10MantissaTable[n - kPower10TableMin];
204
0
}
205
206
0
int Power10Exponent(int n) {
207
0
  return kPower10ExponentTable[n - kPower10TableMin];
208
0
}
209
210
// Returns true if n is large enough that 10**n always results in an IEEE
211
// overflow.
212
0
bool Power10Overflow(int n) { return n > kPower10TableMax; }
213
214
// Returns true if n is small enough that 10**n times a ParsedFloat mantissa
215
// always results in an IEEE underflow.
216
0
bool Power10Underflow(int n) { return n < kPower10TableMin; }
217
218
// Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
219
// to 10**n numerically.  Put another way, this returns true if there is no
220
// truncation error in Power10Mantissa(n).
221
0
bool Power10Exact(int n) { return n >= 0 && n <= 27; }
222
223
// Sentinel exponent values for representing numbers too large or too close to
224
// zero to represent in a double.
225
constexpr int kOverflow = 99999;
226
constexpr int kUnderflow = -99999;
227
228
// Struct representing the calculated conversion result of a positive (nonzero)
229
// floating point number.
230
//
231
// The calculated number is mantissa * 2**exponent (mantissa is treated as an
232
// integer.)  `mantissa` is chosen to be the correct width for the IEEE float
233
// representation being calculated.  (`mantissa` will always have the same bit
234
// width for normal values, and narrower bit widths for subnormals.)
235
//
236
// If the result of conversion was an underflow or overflow, exponent is set
237
// to kUnderflow or kOverflow.
238
struct CalculatedFloat {
239
  uint64_t mantissa = 0;
240
  int exponent = 0;
241
};
242
243
// Returns the bit width of the given uint128.  (Equivalently, returns 128
244
// minus the number of leading zero bits.)
245
0
unsigned BitWidth(uint128 value) {
246
0
  if (Uint128High64(value) == 0) {
247
0
    return static_cast<unsigned>(bit_width(Uint128Low64(value)));
248
0
  }
249
0
  return 128 - countl_zero(Uint128High64(value));
250
0
}
251
252
// Calculates how far to the right a mantissa needs to be shifted to create a
253
// properly adjusted mantissa for an IEEE floating point number.
254
//
255
// `mantissa_width` is the bit width of the mantissa to be shifted, and
256
// `binary_exponent` is the exponent of the number before the shift.
257
//
258
// This accounts for subnormal values, and will return a larger-than-normal
259
// shift if binary_exponent would otherwise be too low.
260
template <typename FloatType>
261
0
int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
262
0
  const int normal_shift =
263
0
      mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
264
0
  const int minimum_shift =
265
0
      FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
266
0
  return std::max(normal_shift, minimum_shift);
267
0
}
Unexecuted instantiation: charconv.cc:int absl::(anonymous namespace)::NormalizedShiftSize<double>(int, int)
Unexecuted instantiation: charconv.cc:int absl::(anonymous namespace)::NormalizedShiftSize<float>(int, int)
268
269
// Right shifts a uint128 so that it has the requested bit width.  (The
270
// resulting value will have 128 - bit_width leading zeroes.)  The initial
271
// `value` must be wider than the requested bit width.
272
//
273
// Returns the number of bits shifted.
274
0
int TruncateToBitWidth(int bit_width, uint128* value) {
275
0
  const int current_bit_width = BitWidth(*value);
276
0
  const int shift = current_bit_width - bit_width;
277
0
  *value >>= shift;
278
0
  return shift;
279
0
}
280
281
// Checks if the given ParsedFloat represents one of the edge cases that are
282
// not dependent on number base: zero, infinity, or NaN.  If so, sets *value
283
// the appropriate double, and returns true.
284
template <typename FloatType>
285
bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
286
0
                    FloatType* value) {
287
0
  if (input.type == strings_internal::FloatType::kNan) {
288
    // A bug in both clang and gcc would cause the compiler to optimize away the
289
    // buffer we are building below.  Declaring the buffer volatile avoids the
290
    // issue, and has no measurable performance impact in microbenchmarks.
291
    //
292
    // https://bugs.llvm.org/show_bug.cgi?id=37778
293
    // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
294
0
    constexpr ptrdiff_t kNanBufferSize = 128;
295
0
    volatile char n_char_sequence[kNanBufferSize];
296
0
    if (input.subrange_begin == nullptr) {
297
0
      n_char_sequence[0] = '\0';
298
0
    } else {
299
0
      ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
300
0
      nan_size = std::min(nan_size, kNanBufferSize - 1);
301
0
      std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
302
0
      n_char_sequence[nan_size] = '\0';
303
0
    }
304
0
    char* nan_argument = const_cast<char*>(n_char_sequence);
305
0
    *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
306
0
                      : FloatTraits<FloatType>::MakeNan(nan_argument);
307
0
    return true;
308
0
  }
309
0
  if (input.type == strings_internal::FloatType::kInfinity) {
310
0
    *value = negative ? -std::numeric_limits<FloatType>::infinity()
311
0
                      : std::numeric_limits<FloatType>::infinity();
312
0
    return true;
313
0
  }
314
0
  if (input.mantissa == 0) {
315
0
    *value = negative ? -0.0 : 0.0;
316
0
    return true;
317
0
  }
318
0
  return false;
319
0
}
Unexecuted instantiation: charconv.cc:bool absl::(anonymous namespace)::HandleEdgeCase<double>(absl::strings_internal::ParsedFloat const&, bool, double*)
Unexecuted instantiation: charconv.cc:bool absl::(anonymous namespace)::HandleEdgeCase<float>(absl::strings_internal::ParsedFloat const&, bool, float*)
320
321
// Given a CalculatedFloat result of a from_chars conversion, generate the
322
// correct output values.
323
//
324
// CalculatedFloat can represent an underflow or overflow, in which case the
325
// error code in *result is set.  Otherwise, the calculated floating point
326
// number is stored in *value.
327
template <typename FloatType>
328
void EncodeResult(const CalculatedFloat& calculated, bool negative,
329
0
                  absl::from_chars_result* result, FloatType* value) {
330
0
  if (calculated.exponent == kOverflow) {
331
0
    result->ec = std::errc::result_out_of_range;
332
0
    *value = negative ? -std::numeric_limits<FloatType>::max()
333
0
                      : std::numeric_limits<FloatType>::max();
334
0
    return;
335
0
  } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
336
0
    result->ec = std::errc::result_out_of_range;
337
0
    *value = negative ? -0.0 : 0.0;
338
0
    return;
339
0
  }
340
0
  *value = FloatTraits<FloatType>::Make(calculated.mantissa,
341
0
                                        calculated.exponent, negative);
342
0
}
Unexecuted instantiation: charconv.cc:void absl::(anonymous namespace)::EncodeResult<double>(absl::(anonymous namespace)::CalculatedFloat const&, bool, absl::from_chars_result*, double*)
Unexecuted instantiation: charconv.cc:void absl::(anonymous namespace)::EncodeResult<float>(absl::(anonymous namespace)::CalculatedFloat const&, bool, absl::from_chars_result*, float*)
343
344
// Returns the given uint128 shifted to the right by `shift` bits, and rounds
345
// the remaining bits using round_to_nearest logic.  The value is returned as a
346
// uint64_t, since this is the type used by this library for storing calculated
347
// floating point mantissas.
348
//
349
// It is expected that the width of the input value shifted by `shift` will
350
// be the correct bit-width for the target mantissa, which is strictly narrower
351
// than a uint64_t.
352
//
353
// If `input_exact` is false, then a nonzero error epsilon is assumed.  For
354
// rounding purposes, the true value being rounded is strictly greater than the
355
// input value.  The error may represent a single lost carry bit.
356
//
357
// When input_exact, shifted bits of the form 1000000... represent a tie, which
358
// is broken by rounding to even -- the rounding direction is chosen so the low
359
// bit of the returned value is 0.
360
//
361
// When !input_exact, shifted bits of the form 10000000... represent a value
362
// strictly greater than one half (due to the error epsilon), and so ties are
363
// always broken by rounding up.
364
//
365
// When !input_exact, shifted bits of the form 01111111... are uncertain;
366
// the true value may or may not be greater than 10000000..., due to the
367
// possible lost carry bit.  The correct rounding direction is unknown.  In this
368
// case, the result is rounded down, and `output_exact` is set to false.
369
//
370
// Zero and negative values of `shift` are accepted, in which case the word is
371
// shifted left, as necessary.
372
uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
373
0
                            bool* output_exact) {
374
0
  if (shift <= 0) {
375
0
    *output_exact = input_exact;
376
0
    return static_cast<uint64_t>(value << -shift);
377
0
  }
378
0
  if (shift >= 128) {
379
    // Exponent is so small that we are shifting away all significant bits.
380
    // Answer will not be representable, even as a subnormal, so return a zero
381
    // mantissa (which represents underflow).
382
0
    *output_exact = true;
383
0
    return 0;
384
0
  }
385
386
0
  *output_exact = true;
387
0
  const uint128 shift_mask = (uint128(1) << shift) - 1;
388
0
  const uint128 halfway_point = uint128(1) << (shift - 1);
389
390
0
  const uint128 shifted_bits = value & shift_mask;
391
0
  value >>= shift;
392
0
  if (shifted_bits > halfway_point) {
393
    // Shifted bits greater than 10000... require rounding up.
394
0
    return static_cast<uint64_t>(value + 1);
395
0
  }
396
0
  if (shifted_bits == halfway_point) {
397
    // In exact mode, shifted bits of 10000... mean we're exactly halfway
398
    // between two numbers, and we must round to even.  So only round up if
399
    // the low bit of `value` is set.
400
    //
401
    // In inexact mode, the nonzero error means the actual value is greater
402
    // than the halfway point and we must alway round up.
403
0
    if ((value & 1) == 1 || !input_exact) {
404
0
      ++value;
405
0
    }
406
0
    return static_cast<uint64_t>(value);
407
0
  }
408
0
  if (!input_exact && shifted_bits == halfway_point - 1) {
409
    // Rounding direction is unclear, due to error.
410
0
    *output_exact = false;
411
0
  }
412
  // Otherwise, round down.
413
0
  return static_cast<uint64_t>(value);
414
0
}
415
416
// Checks if a floating point guess needs to be rounded up, using high precision
417
// math.
418
//
419
// `guess_mantissa` and `guess_exponent` represent a candidate guess for the
420
// number represented by `parsed_decimal`.
421
//
422
// The exact number represented by `parsed_decimal` must lie between the two
423
// numbers:
424
//   A = `guess_mantissa * 2**guess_exponent`
425
//   B = `(guess_mantissa + 1) * 2**guess_exponent`
426
//
427
// This function returns false if `A` is the better guess, and true if `B` is
428
// the better guess, with rounding ties broken by rounding to even.
429
bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
430
0
                 const strings_internal::ParsedFloat& parsed_decimal) {
431
  // 768 is the number of digits needed in the worst case.  We could determine a
432
  // better limit dynamically based on the value of parsed_decimal.exponent.
433
  // This would optimize pathological input cases only.  (Sane inputs won't have
434
  // hundreds of digits of mantissa.)
435
0
  absl::strings_internal::BigUnsigned<84> exact_mantissa;
436
0
  int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
437
438
  // Adjust the `guess` arguments to be halfway between A and B.
439
0
  guess_mantissa = guess_mantissa * 2 + 1;
440
0
  guess_exponent -= 1;
441
442
  // In our comparison:
443
  // lhs = exact = exact_mantissa * 10**exact_exponent
444
  //             = exact_mantissa * 5**exact_exponent * 2**exact_exponent
445
  // rhs = guess = guess_mantissa * 2**guess_exponent
446
  //
447
  // Because we are doing integer math, we can't directly deal with negative
448
  // exponents.  We instead move these to the other side of the inequality.
449
0
  absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
450
0
  int comparison;
451
0
  if (exact_exponent >= 0) {
452
0
    lhs.MultiplyByFiveToTheNth(exact_exponent);
453
0
    absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
454
    // There are powers of 2 on both sides of the inequality; reduce this to
455
    // a single bit-shift.
456
0
    if (exact_exponent > guess_exponent) {
457
0
      lhs.ShiftLeft(exact_exponent - guess_exponent);
458
0
    } else {
459
0
      rhs.ShiftLeft(guess_exponent - exact_exponent);
460
0
    }
461
0
    comparison = Compare(lhs, rhs);
462
0
  } else {
463
    // Move the power of 5 to the other side of the equation, giving us:
464
    // lhs = exact_mantissa * 2**exact_exponent
465
    // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
466
0
    absl::strings_internal::BigUnsigned<84> rhs =
467
0
        absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
468
0
    rhs.MultiplyBy(guess_mantissa);
469
0
    if (exact_exponent > guess_exponent) {
470
0
      lhs.ShiftLeft(exact_exponent - guess_exponent);
471
0
    } else {
472
0
      rhs.ShiftLeft(guess_exponent - exact_exponent);
473
0
    }
474
0
    comparison = Compare(lhs, rhs);
475
0
  }
476
0
  if (comparison < 0) {
477
0
    return false;
478
0
  } else if (comparison > 0) {
479
0
    return true;
480
0
  } else {
481
    // When lhs == rhs, the decimal input is exactly between A and B.
482
    // Round towards even -- round up only if the low bit of the initial
483
    // `guess_mantissa` was a 1.  We shifted guess_mantissa left 1 bit at
484
    // the beginning of this function, so test the 2nd bit here.
485
0
    return (guess_mantissa & 2) == 2;
486
0
  }
487
0
}
488
489
// Constructs a CalculatedFloat from a given mantissa and exponent, but
490
// with the following normalizations applied:
491
//
492
// If rounding has caused mantissa to increase just past the allowed bit
493
// width, shift and adjust exponent.
494
//
495
// If exponent is too high, sets kOverflow.
496
//
497
// If mantissa is zero (representing a non-zero value not representable, even
498
// as a subnormal), sets kUnderflow.
499
template <typename FloatType>
500
0
CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
501
0
  CalculatedFloat result;
502
0
  if (mantissa == uint64_t(1) << FloatTraits<FloatType>::kTargetMantissaBits) {
503
0
    mantissa >>= 1;
504
0
    exponent += 1;
505
0
  }
506
0
  if (exponent > FloatTraits<FloatType>::kMaxExponent) {
507
0
    result.exponent = kOverflow;
508
0
  } else if (mantissa == 0) {
509
0
    result.exponent = kUnderflow;
510
0
  } else {
511
0
    result.exponent = exponent;
512
0
    result.mantissa = mantissa;
513
0
  }
514
0
  return result;
515
0
}
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculatedFloatFromRawValues<double>(unsigned long, int)
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculatedFloatFromRawValues<float>(unsigned long, int)
516
517
template <typename FloatType>
518
CalculatedFloat CalculateFromParsedHexadecimal(
519
0
    const strings_internal::ParsedFloat& parsed_hex) {
520
0
  uint64_t mantissa = parsed_hex.mantissa;
521
0
  int exponent = parsed_hex.exponent;
522
0
  auto mantissa_width = static_cast<unsigned>(bit_width(mantissa));
523
0
  const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
524
0
  bool result_exact;
525
0
  exponent += shift;
526
0
  mantissa = ShiftRightAndRound(mantissa, shift,
527
0
                                /* input exact= */ true, &result_exact);
528
  // ParseFloat handles rounding in the hexadecimal case, so we don't have to
529
  // check `result_exact` here.
530
0
  return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
531
0
}
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedHexadecimal<double>(absl::strings_internal::ParsedFloat const&)
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedHexadecimal<float>(absl::strings_internal::ParsedFloat const&)
532
533
template <typename FloatType>
534
CalculatedFloat CalculateFromParsedDecimal(
535
0
    const strings_internal::ParsedFloat& parsed_decimal) {
536
0
  CalculatedFloat result;
537
538
  // Large or small enough decimal exponents will always result in overflow
539
  // or underflow.
540
0
  if (Power10Underflow(parsed_decimal.exponent)) {
541
0
    result.exponent = kUnderflow;
542
0
    return result;
543
0
  } else if (Power10Overflow(parsed_decimal.exponent)) {
544
0
    result.exponent = kOverflow;
545
0
    return result;
546
0
  }
547
548
  // Otherwise convert our power of 10 into a power of 2 times an integer
549
  // mantissa, and multiply this by our parsed decimal mantissa.
550
0
  uint128 wide_binary_mantissa = parsed_decimal.mantissa;
551
0
  wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
552
0
  int binary_exponent = Power10Exponent(parsed_decimal.exponent);
553
554
  // Discard bits that are inaccurate due to truncation error.  The magic
555
  // `mantissa_width` constants below are justified in
556
  // https://abseil.io/about/design/charconv. They represent the number of bits
557
  // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
558
  // propagation.
559
0
  bool mantissa_exact;
560
0
  int mantissa_width;
561
0
  if (parsed_decimal.subrange_begin) {
562
    // Truncated mantissa
563
0
    mantissa_width = 58;
564
0
    mantissa_exact = false;
565
0
    binary_exponent +=
566
0
        TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
567
0
  } else if (!Power10Exact(parsed_decimal.exponent)) {
568
    // Exact mantissa, truncated power of ten
569
0
    mantissa_width = 63;
570
0
    mantissa_exact = false;
571
0
    binary_exponent +=
572
0
        TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
573
0
  } else {
574
    // Product is exact
575
0
    mantissa_width = BitWidth(wide_binary_mantissa);
576
0
    mantissa_exact = true;
577
0
  }
578
579
  // Shift into an FloatType-sized mantissa, and round to nearest.
580
0
  const int shift =
581
0
      NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
582
0
  bool result_exact;
583
0
  binary_exponent += shift;
584
0
  uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
585
0
                                                mantissa_exact, &result_exact);
586
0
  if (!result_exact) {
587
    // We could not determine the rounding direction using int128 math.  Use
588
    // full resolution math instead.
589
0
    if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
590
0
      binary_mantissa += 1;
591
0
    }
592
0
  }
593
594
0
  return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
595
0
                                                 binary_exponent);
596
0
}
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedDecimal<double>(absl::strings_internal::ParsedFloat const&)
Unexecuted instantiation: charconv.cc:absl::(anonymous namespace)::CalculatedFloat absl::(anonymous namespace)::CalculateFromParsedDecimal<float>(absl::strings_internal::ParsedFloat const&)
597
598
template <typename FloatType>
599
from_chars_result FromCharsImpl(const char* first, const char* last,
600
0
                                FloatType& value, chars_format fmt_flags) {
601
0
  from_chars_result result;
602
0
  result.ptr = first;  // overwritten on successful parse
603
0
  result.ec = std::errc();
604
605
0
  bool negative = false;
606
0
  if (first != last && *first == '-') {
607
0
    ++first;
608
0
    negative = true;
609
0
  }
610
  // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
611
  // to parse a hexadecimal float.
612
0
  if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
613
0
      *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
614
0
    const char* hex_first = first + 2;
615
0
    strings_internal::ParsedFloat hex_parse =
616
0
        strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
617
0
    if (hex_parse.end == nullptr ||
618
0
        hex_parse.type != strings_internal::FloatType::kNumber) {
619
      // Either we failed to parse a hex float after the "0x", or we read
620
      // "0xinf" or "0xnan" which we don't want to match.
621
      //
622
      // However, a string that begins with "0x" also begins with "0", which
623
      // is normally a valid match for the number zero.  So we want these
624
      // strings to match zero unless fmt_flags is `scientific`.  (This flag
625
      // means an exponent is required, which the string "0" does not have.)
626
0
      if (fmt_flags == chars_format::scientific) {
627
0
        result.ec = std::errc::invalid_argument;
628
0
      } else {
629
0
        result.ptr = first + 1;
630
0
        value = negative ? -0.0 : 0.0;
631
0
      }
632
0
      return result;
633
0
    }
634
    // We matched a value.
635
0
    result.ptr = hex_parse.end;
636
0
    if (HandleEdgeCase(hex_parse, negative, &value)) {
637
0
      return result;
638
0
    }
639
0
    CalculatedFloat calculated =
640
0
        CalculateFromParsedHexadecimal<FloatType>(hex_parse);
641
0
    EncodeResult(calculated, negative, &result, &value);
642
0
    return result;
643
0
  }
644
  // Otherwise, we choose the number base based on the flags.
645
0
  if ((fmt_flags & chars_format::hex) == chars_format::hex) {
646
0
    strings_internal::ParsedFloat hex_parse =
647
0
        strings_internal::ParseFloat<16>(first, last, fmt_flags);
648
0
    if (hex_parse.end == nullptr) {
649
0
      result.ec = std::errc::invalid_argument;
650
0
      return result;
651
0
    }
652
0
    result.ptr = hex_parse.end;
653
0
    if (HandleEdgeCase(hex_parse, negative, &value)) {
654
0
      return result;
655
0
    }
656
0
    CalculatedFloat calculated =
657
0
        CalculateFromParsedHexadecimal<FloatType>(hex_parse);
658
0
    EncodeResult(calculated, negative, &result, &value);
659
0
    return result;
660
0
  } else {
661
0
    strings_internal::ParsedFloat decimal_parse =
662
0
        strings_internal::ParseFloat<10>(first, last, fmt_flags);
663
0
    if (decimal_parse.end == nullptr) {
664
0
      result.ec = std::errc::invalid_argument;
665
0
      return result;
666
0
    }
667
0
    result.ptr = decimal_parse.end;
668
0
    if (HandleEdgeCase(decimal_parse, negative, &value)) {
669
0
      return result;
670
0
    }
671
0
    CalculatedFloat calculated =
672
0
        CalculateFromParsedDecimal<FloatType>(decimal_parse);
673
0
    EncodeResult(calculated, negative, &result, &value);
674
0
    return result;
675
0
  }
676
0
}
Unexecuted instantiation: charconv.cc:absl::from_chars_result absl::(anonymous namespace)::FromCharsImpl<double>(char const*, char const*, double&, absl::chars_format)
Unexecuted instantiation: charconv.cc:absl::from_chars_result absl::(anonymous namespace)::FromCharsImpl<float>(char const*, char const*, float&, absl::chars_format)
677
}  // namespace
678
679
from_chars_result from_chars(const char* first, const char* last, double& value,
680
0
                             chars_format fmt) {
681
0
  return FromCharsImpl(first, last, value, fmt);
682
0
}
683
684
from_chars_result from_chars(const char* first, const char* last, float& value,
685
0
                             chars_format fmt) {
686
0
  return FromCharsImpl(first, last, value, fmt);
687
0
}
688
689
namespace {
690
691
// Table of powers of 10, from kPower10TableMin to kPower10TableMax.
692
//
693
// kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high
694
// bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the
695
// power-of-two exponent.  For a given number i, this gives the unique mantissa
696
// and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) *
697
// 2**exponent.
698
699
const uint64_t kPower10MantissaTable[] = {
700
    0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
701
    0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
702
    0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
703
    0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
704
    0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
705
    0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
706
    0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
707
    0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
708
    0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
709
    0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
710
    0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
711
    0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
712
    0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
713
    0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
714
    0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
715
    0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
716
    0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
717
    0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
718
    0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
719
    0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
720
    0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
721
    0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
722
    0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
723
    0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
724
    0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
725
    0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
726
    0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
727
    0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
728
    0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
729
    0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
730
    0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
731
    0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
732
    0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
733
    0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
734
    0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
735
    0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
736
    0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
737
    0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
738
    0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
739
    0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
740
    0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
741
    0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
742
    0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
743
    0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
744
    0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
745
    0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
746
    0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
747
    0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
748
    0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
749
    0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
750
    0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
751
    0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
752
    0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
753
    0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
754
    0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
755
    0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
756
    0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
757
    0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
758
    0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
759
    0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
760
    0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
761
    0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
762
    0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
763
    0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
764
    0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
765
    0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
766
    0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
767
    0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
768
    0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
769
    0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
770
    0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
771
    0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
772
    0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
773
    0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
774
    0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
775
    0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
776
    0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
777
    0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
778
    0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
779
    0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
780
    0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
781
    0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
782
    0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
783
    0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
784
    0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
785
    0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
786
    0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
787
    0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
788
    0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
789
    0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
790
    0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
791
    0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
792
    0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
793
    0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
794
    0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
795
    0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
796
    0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
797
    0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
798
    0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
799
    0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
800
    0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
801
    0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
802
    0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
803
    0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
804
    0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
805
    0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
806
    0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
807
    0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
808
    0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
809
    0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
810
    0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
811
    0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
812
    0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
813
    0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
814
    0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
815
    0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
816
    0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
817
    0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
818
    0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
819
    0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
820
    0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
821
    0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
822
    0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
823
    0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
824
    0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
825
    0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
826
    0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
827
    0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
828
    0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
829
    0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
830
    0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
831
    0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
832
    0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
833
    0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
834
    0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
835
    0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
836
    0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
837
    0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
838
    0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
839
    0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
840
    0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
841
    0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
842
    0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
843
    0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
844
    0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
845
    0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
846
    0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
847
    0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
848
    0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
849
    0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
850
    0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
851
    0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
852
    0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
853
    0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
854
    0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
855
    0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
856
    0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
857
    0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
858
    0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
859
    0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
860
    0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
861
    0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
862
    0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
863
    0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
864
    0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
865
    0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
866
    0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
867
    0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
868
    0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
869
    0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
870
    0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
871
    0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
872
    0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
873
    0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
874
    0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
875
    0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
876
    0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
877
    0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
878
    0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
879
    0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
880
    0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
881
    0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
882
    0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
883
    0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
884
    0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
885
    0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
886
    0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
887
    0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
888
    0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
889
    0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
890
    0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
891
    0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
892
    0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
893
    0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
894
    0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
895
    0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
896
    0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
897
    0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
898
    0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
899
    0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
900
    0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
901
    0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
902
    0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
903
    0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
904
    0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
905
    0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
906
    0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
907
    0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
908
    0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
909
    0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
910
    0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
911
    0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
912
    0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
913
    0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
914
    0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
915
    0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
916
    0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
917
};
918
919
const int16_t kPower10ExponentTable[] = {
920
    -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166,
921
    -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130,
922
    -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093,
923
    -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057,
924
    -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020,
925
    -1017, -1014, -1010, -1007, -1004, -1000, -997,  -994,  -990,  -987,  -984,
926
    -980,  -977,  -974,  -970,  -967,  -964,  -960,  -957,  -954,  -950,  -947,
927
    -944,  -940,  -937,  -934,  -931,  -927,  -924,  -921,  -917,  -914,  -911,
928
    -907,  -904,  -901,  -897,  -894,  -891,  -887,  -884,  -881,  -877,  -874,
929
    -871,  -867,  -864,  -861,  -857,  -854,  -851,  -847,  -844,  -841,  -838,
930
    -834,  -831,  -828,  -824,  -821,  -818,  -814,  -811,  -808,  -804,  -801,
931
    -798,  -794,  -791,  -788,  -784,  -781,  -778,  -774,  -771,  -768,  -764,
932
    -761,  -758,  -754,  -751,  -748,  -744,  -741,  -738,  -735,  -731,  -728,
933
    -725,  -721,  -718,  -715,  -711,  -708,  -705,  -701,  -698,  -695,  -691,
934
    -688,  -685,  -681,  -678,  -675,  -671,  -668,  -665,  -661,  -658,  -655,
935
    -651,  -648,  -645,  -642,  -638,  -635,  -632,  -628,  -625,  -622,  -618,
936
    -615,  -612,  -608,  -605,  -602,  -598,  -595,  -592,  -588,  -585,  -582,
937
    -578,  -575,  -572,  -568,  -565,  -562,  -558,  -555,  -552,  -549,  -545,
938
    -542,  -539,  -535,  -532,  -529,  -525,  -522,  -519,  -515,  -512,  -509,
939
    -505,  -502,  -499,  -495,  -492,  -489,  -485,  -482,  -479,  -475,  -472,
940
    -469,  -465,  -462,  -459,  -455,  -452,  -449,  -446,  -442,  -439,  -436,
941
    -432,  -429,  -426,  -422,  -419,  -416,  -412,  -409,  -406,  -402,  -399,
942
    -396,  -392,  -389,  -386,  -382,  -379,  -376,  -372,  -369,  -366,  -362,
943
    -359,  -356,  -353,  -349,  -346,  -343,  -339,  -336,  -333,  -329,  -326,
944
    -323,  -319,  -316,  -313,  -309,  -306,  -303,  -299,  -296,  -293,  -289,
945
    -286,  -283,  -279,  -276,  -273,  -269,  -266,  -263,  -259,  -256,  -253,
946
    -250,  -246,  -243,  -240,  -236,  -233,  -230,  -226,  -223,  -220,  -216,
947
    -213,  -210,  -206,  -203,  -200,  -196,  -193,  -190,  -186,  -183,  -180,
948
    -176,  -173,  -170,  -166,  -163,  -160,  -157,  -153,  -150,  -147,  -143,
949
    -140,  -137,  -133,  -130,  -127,  -123,  -120,  -117,  -113,  -110,  -107,
950
    -103,  -100,  -97,   -93,   -90,   -87,   -83,   -80,   -77,   -73,   -70,
951
    -67,   -63,   -60,   -57,   -54,   -50,   -47,   -44,   -40,   -37,   -34,
952
    -30,   -27,   -24,   -20,   -17,   -14,   -10,   -7,    -4,    0,     3,
953
    6,     10,    13,    16,    20,    23,    26,    30,    33,    36,    39,
954
    43,    46,    49,    53,    56,    59,    63,    66,    69,    73,    76,
955
    79,    83,    86,    89,    93,    96,    99,    103,   106,   109,   113,
956
    116,   119,   123,   126,   129,   132,   136,   139,   142,   146,   149,
957
    152,   156,   159,   162,   166,   169,   172,   176,   179,   182,   186,
958
    189,   192,   196,   199,   202,   206,   209,   212,   216,   219,   222,
959
    226,   229,   232,   235,   239,   242,   245,   249,   252,   255,   259,
960
    262,   265,   269,   272,   275,   279,   282,   285,   289,   292,   295,
961
    299,   302,   305,   309,   312,   315,   319,   322,   325,   328,   332,
962
    335,   338,   342,   345,   348,   352,   355,   358,   362,   365,   368,
963
    372,   375,   378,   382,   385,   388,   392,   395,   398,   402,   405,
964
    408,   412,   415,   418,   422,   425,   428,   431,   435,   438,   441,
965
    445,   448,   451,   455,   458,   461,   465,   468,   471,   475,   478,
966
    481,   485,   488,   491,   495,   498,   501,   505,   508,   511,   515,
967
    518,   521,   524,   528,   531,   534,   538,   541,   544,   548,   551,
968
    554,   558,   561,   564,   568,   571,   574,   578,   581,   584,   588,
969
    591,   594,   598,   601,   604,   608,   611,   614,   617,   621,   624,
970
    627,   631,   634,   637,   641,   644,   647,   651,   654,   657,   661,
971
    664,   667,   671,   674,   677,   681,   684,   687,   691,   694,   697,
972
    701,   704,   707,   711,   714,   717,   720,   724,   727,   730,   734,
973
    737,   740,   744,   747,   750,   754,   757,   760,   764,   767,   770,
974
    774,   777,   780,   784,   787,   790,   794,   797,   800,   804,   807,
975
    810,   813,   817,   820,   823,   827,   830,   833,   837,   840,   843,
976
    847,   850,   853,   857,   860,   863,   867,   870,   873,   877,   880,
977
    883,   887,   890,   893,   897,   900,   903,   907,   910,   913,   916,
978
    920,   923,   926,   930,   933,   936,   940,   943,   946,   950,   953,
979
    956,   960,
980
};
981
982
}  // namespace
983
ABSL_NAMESPACE_END
984
}  // namespace absl