/src/botan/build/include/botan/internal/cpuid.h
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  | * Runtime CPU detection  | 
3  |  | * (C) 2009,2010,2013,2017,2023 Jack Lloyd  | 
4  |  | *  | 
5  |  | * Botan is released under the Simplified BSD License (see license.txt)  | 
6  |  | */  | 
7  |  |  | 
8  |  | #ifndef BOTAN_CPUID_H_  | 
9  |  | #define BOTAN_CPUID_H_  | 
10  |  |  | 
11  |  | #include <botan/types.h>  | 
12  |  | #include <iosfwd>  | 
13  |  | #include <string>  | 
14  |  | #include <vector>  | 
15  |  |  | 
16  |  | namespace Botan { | 
17  |  |  | 
18  |  | /**  | 
19  |  | * A class handling runtime CPU feature detection. It is limited to  | 
20  |  | * just the features necessary to implement CPU specific code in Botan,  | 
21  |  | * rather than being a general purpose utility.  | 
22  |  | *  | 
23  |  | * This class supports:  | 
24  |  | *  | 
25  |  | *  - x86 features using CPUID. x86 is also the only processor with  | 
26  |  | *    accurate cache line detection currently.  | 
27  |  | *  | 
28  |  | *  - PowerPC AltiVec detection on Linux, NetBSD, OpenBSD, and macOS  | 
29  |  | *  | 
30  |  | *  - ARM NEON and crypto extensions detection. On Linux and Android  | 
31  |  | *    systems which support getauxval, that is used to access CPU  | 
32  |  | *    feature information. Otherwise a relatively portable but  | 
33  |  | *    thread-unsafe mechanism involving executing probe functions which  | 
34  |  | *    catching SIGILL signal is used.  | 
35  |  | */  | 
36  |  | class BOTAN_TEST_API CPUID final { | 
37  |  |    public:  | 
38  |  |       /**  | 
39  |  |       * Probe the CPU and see what extensions are supported  | 
40  |  |       */  | 
41  |  |       static void initialize();  | 
42  |  |  | 
43  |  |       /**  | 
44  |  |       * Return true if a 4x32 SIMD instruction set is available  | 
45  |  |       * (SSE2, NEON, or Altivec/VMX)  | 
46  |  |       */  | 
47  |  |       static bool has_simd_32();  | 
48  |  |  | 
49  |  |       /**  | 
50  |  |       * Return a possibly empty string containing list of known CPU  | 
51  |  |       * extensions. Each name will be seperated by a space, and the ordering  | 
52  |  |       * will be arbitrary. This list only contains values that are useful to  | 
53  |  |       * Botan (for example FMA instructions are not checked).  | 
54  |  |       *  | 
55  |  |       * Example outputs "sse2 ssse3 rdtsc", "neon arm_aes", "altivec"  | 
56  |  |       */  | 
57  |  |       static std::string to_string();  | 
58  |  |  | 
59  | 0  |       static bool is_little_endian() { | 
60  | 0  | #if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)  | 
61  | 0  |          return true;  | 
62  |  | #elif defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)  | 
63  |  |          return false;  | 
64  |  | #else  | 
65  |  |          return !has_cpuid_bit(CPUID_IS_BIG_ENDIAN_BIT);  | 
66  |  | #endif  | 
67  | 0  |       }  | 
68  |  |  | 
69  | 0  |       static bool is_big_endian() { | 
70  | 0  | #if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)  | 
71  | 0  |          return true;  | 
72  | 0  | #elif defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)  | 
73  | 0  |          return false;  | 
74  | 0  | #else  | 
75  | 0  |          return has_cpuid_bit(CPUID_IS_BIG_ENDIAN_BIT);  | 
76  | 0  | #endif  | 
77  | 0  |       }  | 
78  |  |  | 
79  |  |       enum CPUID_bits : uint32_t { | 
80  |  | #if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)  | 
81  |  |          // These values have no relation to cpuid bitfields  | 
82  |  |  | 
83  |  |          // SIMD instruction sets  | 
84  |  |          CPUID_SSE2_BIT = (1U << 0),  | 
85  |  |          CPUID_SSSE3_BIT = (1U << 1),  | 
86  |  |          CPUID_AVX2_BIT = (1U << 2),  | 
87  |  |          CPUID_AVX512_BIT = (1U << 3),  | 
88  |  |  | 
89  |  |          // Misc useful instructions  | 
90  |  |          CPUID_RDTSC_BIT = (1U << 10),  | 
91  |  |          CPUID_ADX_BIT = (1U << 11),  | 
92  |  |          CPUID_BMI_BIT = (1U << 12),  | 
93  |  |  | 
94  |  |          // Crypto-specific ISAs  | 
95  |  |          CPUID_AESNI_BIT = (1U << 16),  | 
96  |  |          CPUID_CLMUL_BIT = (1U << 17),  | 
97  |  |          CPUID_RDRAND_BIT = (1U << 18),  | 
98  |  |          CPUID_RDSEED_BIT = (1U << 19),  | 
99  |  |          CPUID_SHA_BIT = (1U << 20),  | 
100  |  |          CPUID_AVX512_AES_BIT = (1U << 21),  | 
101  |  |          CPUID_AVX512_CLMUL_BIT = (1U << 22),  | 
102  |  | #endif  | 
103  |  |  | 
104  |  | #if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)  | 
105  |  |          CPUID_ALTIVEC_BIT = (1U << 0),  | 
106  |  |          CPUID_POWER_CRYPTO_BIT = (1U << 1),  | 
107  |  |          CPUID_DARN_BIT = (1U << 2),  | 
108  |  | #endif  | 
109  |  |  | 
110  |  | #if defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)  | 
111  |  |          CPUID_ARM_NEON_BIT = (1U << 0),  | 
112  |  |          CPUID_ARM_SVE_BIT = (1U << 1),  | 
113  |  |          CPUID_ARM_AES_BIT = (1U << 16),  | 
114  |  |          CPUID_ARM_PMULL_BIT = (1U << 17),  | 
115  |  |          CPUID_ARM_SHA1_BIT = (1U << 18),  | 
116  |  |          CPUID_ARM_SHA2_BIT = (1U << 19),  | 
117  |  |          CPUID_ARM_SHA3_BIT = (1U << 20),  | 
118  |  |          CPUID_ARM_SHA2_512_BIT = (1U << 21),  | 
119  |  |          CPUID_ARM_SM3_BIT = (1U << 22),  | 
120  |  |          CPUID_ARM_SM4_BIT = (1U << 23),  | 
121  |  | #endif  | 
122  |  |  | 
123  |  |          CPUID_IS_BIG_ENDIAN_BIT = (1U << 30),  | 
124  |  |          CPUID_INITIALIZED_BIT = (1U << 31)  | 
125  |  |       };  | 
126  |  |  | 
127  |  | #if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)  | 
128  |  |       /**  | 
129  |  |       * Check if the processor supports AltiVec/VMX  | 
130  |  |       */  | 
131  |  |       static bool has_altivec() { return has_cpuid_bit(CPUID_ALTIVEC_BIT); } | 
132  |  |  | 
133  |  |       /**  | 
134  |  |       * Check if the processor supports POWER8 crypto extensions  | 
135  |  |       */  | 
136  |  |       static bool has_power_crypto() { return has_altivec() && has_cpuid_bit(CPUID_POWER_CRYPTO_BIT); } | 
137  |  |  | 
138  |  |       /**  | 
139  |  |       * Check if the processor supports POWER9 DARN RNG  | 
140  |  |       */  | 
141  |  |       static bool has_darn_rng() { return has_cpuid_bit(CPUID_DARN_BIT); } | 
142  |  |  | 
143  |  | #endif  | 
144  |  |  | 
145  |  | #if defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)  | 
146  |  |       /**  | 
147  |  |       * Check if the processor supports NEON SIMD  | 
148  |  |       */  | 
149  |  |       static bool has_neon() { return has_cpuid_bit(CPUID_ARM_NEON_BIT); } | 
150  |  |  | 
151  |  |       /**  | 
152  |  |       * Check if the processor supports ARMv8 SVE  | 
153  |  |       */  | 
154  |  |       static bool has_arm_sve() { return has_cpuid_bit(CPUID_ARM_SVE_BIT); } | 
155  |  |  | 
156  |  |       /**  | 
157  |  |       * Check if the processor supports ARMv8 SHA1  | 
158  |  |       */  | 
159  |  |       static bool has_arm_sha1() { return has_neon() && has_cpuid_bit(CPUID_ARM_SHA1_BIT); } | 
160  |  |  | 
161  |  |       /**  | 
162  |  |       * Check if the processor supports ARMv8 SHA2  | 
163  |  |       */  | 
164  |  |       static bool has_arm_sha2() { return has_neon() && has_cpuid_bit(CPUID_ARM_SHA2_BIT); } | 
165  |  |  | 
166  |  |       /**  | 
167  |  |       * Check if the processor supports ARMv8 AES  | 
168  |  |       */  | 
169  |  |       static bool has_arm_aes() { return has_neon() && has_cpuid_bit(CPUID_ARM_AES_BIT); } | 
170  |  |  | 
171  |  |       /**  | 
172  |  |       * Check if the processor supports ARMv8 PMULL  | 
173  |  |       */  | 
174  |  |       static bool has_arm_pmull() { return has_neon() && has_cpuid_bit(CPUID_ARM_PMULL_BIT); } | 
175  |  |  | 
176  |  |       /**  | 
177  |  |       * Check if the processor supports ARMv8 SHA-512  | 
178  |  |       */  | 
179  |  |       static bool has_arm_sha2_512() { return has_neon() && has_cpuid_bit(CPUID_ARM_SHA2_512_BIT); } | 
180  |  |  | 
181  |  |       /**  | 
182  |  |       * Check if the processor supports ARMv8 SHA-3  | 
183  |  |       */  | 
184  |  |       static bool has_arm_sha3() { return has_neon() && has_cpuid_bit(CPUID_ARM_SHA3_BIT); } | 
185  |  |  | 
186  |  |       /**  | 
187  |  |       * Check if the processor supports ARMv8 SM3  | 
188  |  |       */  | 
189  |  |       static bool has_arm_sm3() { return has_neon() && has_cpuid_bit(CPUID_ARM_SM3_BIT); } | 
190  |  |  | 
191  |  |       /**  | 
192  |  |       * Check if the processor supports ARMv8 SM4  | 
193  |  |       */  | 
194  |  |       static bool has_arm_sm4() { return has_neon() && has_cpuid_bit(CPUID_ARM_SM4_BIT); } | 
195  |  |  | 
196  |  | #endif  | 
197  |  |  | 
198  |  | #if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)  | 
199  |  |  | 
200  |  |       /**  | 
201  |  |       * Check if the processor supports RDTSC  | 
202  |  |       */  | 
203  | 0  |       static bool has_rdtsc() { return has_cpuid_bit(CPUID_RDTSC_BIT); } | 
204  |  |  | 
205  |  |       /**  | 
206  |  |       * Check if the processor supports SSE2  | 
207  |  |       */  | 
208  | 97.8k  |       static bool has_sse2() { return has_cpuid_bit(CPUID_SSE2_BIT); } | 
209  |  |  | 
210  |  |       /**  | 
211  |  |       * Check if the processor supports SSSE3  | 
212  |  |       */  | 
213  | 0  |       static bool has_ssse3() { return has_sse2() && has_cpuid_bit(CPUID_SSSE3_BIT); } | 
214  |  |  | 
215  |  |       /**  | 
216  |  |       * Check if the processor supports AVX2  | 
217  |  |       */  | 
218  | 0  |       static bool has_avx2() { return has_cpuid_bit(CPUID_AVX2_BIT); } | 
219  |  |  | 
220  |  |       /**  | 
221  |  |       * Check if the processor supports our AVX-512 minimum profile  | 
222  |  |       *  | 
223  |  |       * Namely AVX-512 F, DQ, BW, VL, IFMA, VBMI, VBMI2, BITALG  | 
224  |  |       */  | 
225  | 0  |       static bool has_avx512() { return has_cpuid_bit(CPUID_AVX512_BIT); } | 
226  |  |  | 
227  |  |       /**  | 
228  |  |       * Check if the processor supports AVX-512 AES (VAES)  | 
229  |  |       */  | 
230  | 0  |       static bool has_avx512_aes() { return has_avx512() && has_cpuid_bit(CPUID_AVX512_AES_BIT); } | 
231  |  |  | 
232  |  |       /**  | 
233  |  |       * Check if the processor supports AVX-512 VPCLMULQDQ  | 
234  |  |       */  | 
235  | 0  |       static bool has_avx512_clmul() { return has_avx512() && has_cpuid_bit(CPUID_AVX512_CLMUL_BIT); } | 
236  |  |  | 
237  |  |       /**  | 
238  |  |       * Check if the processor supports BMI2 (and BMI1)  | 
239  |  |       */  | 
240  | 97.8k  |       static bool has_bmi2() { return has_cpuid_bit(CPUID_BMI_BIT); } | 
241  |  |  | 
242  |  |       /**  | 
243  |  |       * Check if the processor supports AES-NI  | 
244  |  |       */  | 
245  | 0  |       static bool has_aes_ni() { return has_ssse3() && has_cpuid_bit(CPUID_AESNI_BIT); } | 
246  |  |  | 
247  |  |       /**  | 
248  |  |       * Check if the processor supports CLMUL  | 
249  |  |       */  | 
250  | 0  |       static bool has_clmul() { return has_ssse3() && has_cpuid_bit(CPUID_CLMUL_BIT); } | 
251  |  |  | 
252  |  |       /**  | 
253  |  |       * Check if the processor supports Intel SHA extension  | 
254  |  |       */  | 
255  | 97.8k  |       static bool has_intel_sha() { return has_sse2() && has_cpuid_bit(CPUID_SHA_BIT); } | 
256  |  |  | 
257  |  |       /**  | 
258  |  |       * Check if the processor supports ADX extension  | 
259  |  |       */  | 
260  | 0  |       static bool has_adx() { return has_cpuid_bit(CPUID_ADX_BIT); } | 
261  |  |  | 
262  |  |       /**  | 
263  |  |       * Check if the processor supports RDRAND  | 
264  |  |       */  | 
265  | 0  |       static bool has_rdrand() { return has_cpuid_bit(CPUID_RDRAND_BIT); } | 
266  |  |  | 
267  |  |       /**  | 
268  |  |       * Check if the processor supports RDSEED  | 
269  |  |       */  | 
270  | 0  |       static bool has_rdseed() { return has_cpuid_bit(CPUID_RDSEED_BIT); } | 
271  |  | #endif  | 
272  |  |  | 
273  |  |       /**  | 
274  |  |       * Check if the processor supports byte-level vector permutes  | 
275  |  |       * (SSSE3, NEON, Altivec)  | 
276  |  |       */  | 
277  | 0  |       static bool has_vperm() { | 
278  | 0  | #if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)  | 
279  | 0  |          return has_ssse3();  | 
280  |  | #elif defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)  | 
281  |  |          return has_neon();  | 
282  |  | #elif defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)  | 
283  |  |          return has_altivec();  | 
284  |  | #else  | 
285  |  |          return false;  | 
286  |  | #endif  | 
287  | 0  |       }  | 
288  |  |  | 
289  |  |       /**  | 
290  |  |       * Check if the processor supports hardware AES instructions  | 
291  |  |       */  | 
292  | 0  |       static bool has_hw_aes() { | 
293  | 0  | #if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)  | 
294  | 0  |          return has_aes_ni();  | 
295  |  | #elif defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)  | 
296  |  |          return has_arm_aes();  | 
297  |  | #elif defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)  | 
298  |  |          return has_power_crypto();  | 
299  |  | #else  | 
300  |  |          return false;  | 
301  |  | #endif  | 
302  | 0  |       }  | 
303  |  |  | 
304  |  |       /**  | 
305  |  |       * Check if the processor supports carryless multiply  | 
306  |  |       * (CLMUL, PMULL)  | 
307  |  |       */  | 
308  | 0  |       static bool has_carryless_multiply() { | 
309  | 0  | #if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)  | 
310  | 0  |          return has_clmul();  | 
311  |  | #elif defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)  | 
312  |  |          return has_arm_pmull();  | 
313  |  | #elif defined(BOTAN_TARGET_ARCH_IS_PPC64)  | 
314  |  |          return has_power_crypto();  | 
315  |  | #else  | 
316  |  |          return false;  | 
317  |  | #endif  | 
318  | 0  |       }  | 
319  |  |  | 
320  |  |       /*  | 
321  |  |       * Clear a CPUID bit  | 
322  |  |       * Call CPUID::initialize to reset  | 
323  |  |       *  | 
324  |  |       * This is only exposed for testing, don't use unless you know  | 
325  |  |       * what you are doing.  | 
326  |  |       */  | 
327  | 0  |       static void clear_cpuid_bit(CPUID_bits bit) { state().clear_cpuid_bit(static_cast<uint32_t>(bit)); } | 
328  |  |  | 
329  |  |       /*  | 
330  |  |       * Don't call this function, use CPUID::has_xxx above  | 
331  |  |       * It is only exposed for the tests.  | 
332  |  |       */  | 
333  | 293k  |       static bool has_cpuid_bit(CPUID_bits elem) { | 
334  | 293k  |          const uint32_t elem32 = static_cast<uint32_t>(elem);  | 
335  | 293k  |          return state().has_bit(elem32);  | 
336  | 293k  |       }  | 
337  |  |  | 
338  |  |       static std::vector<CPUID::CPUID_bits> bit_from_string(std::string_view tok);  | 
339  |  |  | 
340  |  |    private:  | 
341  |  |       struct CPUID_Data { | 
342  |  |          public:  | 
343  |  |             CPUID_Data();  | 
344  |  |  | 
345  |  |             CPUID_Data(const CPUID_Data& other) = default;  | 
346  |  |             CPUID_Data& operator=(const CPUID_Data& other) = default;  | 
347  |  |  | 
348  | 0  |             void clear_cpuid_bit(uint32_t bit) { m_processor_features &= ~bit; } | 
349  |  |  | 
350  | 293k  |             bool has_bit(uint32_t bit) const { return (m_processor_features & bit) == bit; } | 
351  |  |  | 
352  |  |          private:  | 
353  |  | #if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY) || defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY) || \  | 
354  |  |    defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)  | 
355  |  |  | 
356  |  |             static uint32_t detect_cpu_features();  | 
357  |  |  | 
358  |  | #endif  | 
359  |  |             uint32_t m_processor_features;  | 
360  |  |       };  | 
361  |  |  | 
362  | 293k  |       static CPUID_Data& state() { | 
363  | 293k  |          static CPUID::CPUID_Data g_cpuid;  | 
364  | 293k  |          return g_cpuid;  | 
365  | 293k  |       }  | 
366  |  | };  | 
367  |  |  | 
368  |  | }  // namespace Botan  | 
369  |  |  | 
370  |  | #endif  |