/src/botan/src/lib/block/noekeon/noekeon.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  | * Noekeon  | 
3  |  | * (C) 1999-2008 Jack Lloyd  | 
4  |  | *  | 
5  |  | * Botan is released under the Simplified BSD License (see license.txt)  | 
6  |  | */  | 
7  |  |  | 
8  |  | #include <botan/internal/noekeon.h>  | 
9  |  |  | 
10  |  | #include <botan/internal/cpuid.h>  | 
11  |  | #include <botan/internal/loadstor.h>  | 
12  |  | #include <botan/internal/rotate.h>  | 
13  |  |  | 
14  |  | namespace Botan { | 
15  |  |  | 
16  |  | namespace { | 
17  |  |  | 
18  |  | /*  | 
19  |  | * Noekeon's Theta Operation  | 
20  |  | */  | 
21  | 0  | inline void theta(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3, const uint32_t EK[4]) { | 
22  | 0  |    uint32_t T = A0 ^ A2;  | 
23  | 0  |    T ^= rotl<8>(T) ^ rotr<8>(T);  | 
24  | 0  |    A1 ^= T;  | 
25  | 0  |    A3 ^= T;  | 
26  |  | 
  | 
27  | 0  |    A0 ^= EK[0];  | 
28  | 0  |    A1 ^= EK[1];  | 
29  | 0  |    A2 ^= EK[2];  | 
30  | 0  |    A3 ^= EK[3];  | 
31  |  | 
  | 
32  | 0  |    T = A1 ^ A3;  | 
33  | 0  |    T ^= rotl<8>(T) ^ rotr<8>(T);  | 
34  | 0  |    A0 ^= T;  | 
35  | 0  |    A2 ^= T;  | 
36  | 0  | }  | 
37  |  |  | 
38  |  | /*  | 
39  |  | * Theta With Null Key  | 
40  |  | */  | 
41  | 0  | inline void theta(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3) { | 
42  | 0  |    uint32_t T = A0 ^ A2;  | 
43  | 0  |    T ^= rotl<8>(T) ^ rotr<8>(T);  | 
44  | 0  |    A1 ^= T;  | 
45  | 0  |    A3 ^= T;  | 
46  |  | 
  | 
47  | 0  |    T = A1 ^ A3;  | 
48  | 0  |    T ^= rotl<8>(T) ^ rotr<8>(T);  | 
49  | 0  |    A0 ^= T;  | 
50  | 0  |    A2 ^= T;  | 
51  | 0  | }  | 
52  |  |  | 
53  |  | /*  | 
54  |  | * Noekeon's Gamma S-Box Layer  | 
55  |  | */  | 
56  | 0  | inline void gamma(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3) { | 
57  | 0  |    A1 ^= ~(A2 | A3);  | 
58  | 0  |    A0 ^= A2 & A1;  | 
59  |  | 
  | 
60  | 0  |    uint32_t T = A3;  | 
61  | 0  |    A3 = A0;  | 
62  | 0  |    A0 = T;  | 
63  |  | 
  | 
64  | 0  |    A2 ^= A0 ^ A1 ^ A3;  | 
65  |  | 
  | 
66  | 0  |    A1 ^= ~(A2 | A3);  | 
67  | 0  |    A0 ^= A2 & A1;  | 
68  | 0  | }  | 
69  |  |  | 
70  |  | }  // namespace  | 
71  |  |  | 
72  | 0  | size_t Noekeon::parallelism() const { | 
73  | 0  | #if defined(BOTAN_HAS_NOEKEON_SIMD)  | 
74  | 0  |    if(CPUID::has_simd_32()) { | 
75  | 0  |       return 4;  | 
76  | 0  |    }  | 
77  | 0  | #endif  | 
78  |  |  | 
79  | 0  |    return 1;  | 
80  | 0  | }  | 
81  |  |  | 
82  | 0  | std::string Noekeon::provider() const { | 
83  | 0  | #if defined(BOTAN_HAS_NOEKEON_SIMD)  | 
84  | 0  |    if(CPUID::has_simd_32()) { | 
85  | 0  |       return "simd";  | 
86  | 0  |    }  | 
87  | 0  | #endif  | 
88  |  |  | 
89  | 0  |    return "base";  | 
90  | 0  | }  | 
91  |  |  | 
92  |  | /*  | 
93  |  | * Noekeon Round Constants  | 
94  |  | */  | 
95  |  | const uint8_t Noekeon::RC[] = { | 
96  |  |    0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4};  | 
97  |  |  | 
98  |  | /*  | 
99  |  | * Noekeon Encryption  | 
100  |  | */  | 
101  | 0  | void Noekeon::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { | 
102  | 0  |    assert_key_material_set();  | 
103  |  | 
  | 
104  | 0  | #if defined(BOTAN_HAS_NOEKEON_SIMD)  | 
105  | 0  |    if(CPUID::has_simd_32()) { | 
106  | 0  |       while(blocks >= 4) { | 
107  | 0  |          simd_encrypt_4(in, out);  | 
108  | 0  |          in += 4 * BLOCK_SIZE;  | 
109  | 0  |          out += 4 * BLOCK_SIZE;  | 
110  | 0  |          blocks -= 4;  | 
111  | 0  |       }  | 
112  | 0  |    }  | 
113  | 0  | #endif  | 
114  |  | 
  | 
115  | 0  |    for(size_t i = 0; i != blocks; ++i) { | 
116  | 0  |       uint32_t A0 = load_be<uint32_t>(in, 0);  | 
117  | 0  |       uint32_t A1 = load_be<uint32_t>(in, 1);  | 
118  | 0  |       uint32_t A2 = load_be<uint32_t>(in, 2);  | 
119  | 0  |       uint32_t A3 = load_be<uint32_t>(in, 3);  | 
120  |  | 
  | 
121  | 0  |       for(size_t j = 0; j != 16; ++j) { | 
122  | 0  |          A0 ^= RC[j];  | 
123  | 0  |          theta(A0, A1, A2, A3, m_EK.data());  | 
124  |  | 
  | 
125  | 0  |          A1 = rotl<1>(A1);  | 
126  | 0  |          A2 = rotl<5>(A2);  | 
127  | 0  |          A3 = rotl<2>(A3);  | 
128  |  | 
  | 
129  | 0  |          gamma(A0, A1, A2, A3);  | 
130  |  | 
  | 
131  | 0  |          A1 = rotr<1>(A1);  | 
132  | 0  |          A2 = rotr<5>(A2);  | 
133  | 0  |          A3 = rotr<2>(A3);  | 
134  | 0  |       }  | 
135  |  | 
  | 
136  | 0  |       A0 ^= RC[16];  | 
137  | 0  |       theta(A0, A1, A2, A3, m_EK.data());  | 
138  |  | 
  | 
139  | 0  |       store_be(out, A0, A1, A2, A3);  | 
140  |  | 
  | 
141  | 0  |       in += BLOCK_SIZE;  | 
142  | 0  |       out += BLOCK_SIZE;  | 
143  | 0  |    }  | 
144  | 0  | }  | 
145  |  |  | 
146  |  | /*  | 
147  |  | * Noekeon Encryption  | 
148  |  | */  | 
149  | 0  | void Noekeon::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { | 
150  | 0  |    assert_key_material_set();  | 
151  |  | 
  | 
152  | 0  | #if defined(BOTAN_HAS_NOEKEON_SIMD)  | 
153  | 0  |    if(CPUID::has_simd_32()) { | 
154  | 0  |       while(blocks >= 4) { | 
155  | 0  |          simd_decrypt_4(in, out);  | 
156  | 0  |          in += 4 * BLOCK_SIZE;  | 
157  | 0  |          out += 4 * BLOCK_SIZE;  | 
158  | 0  |          blocks -= 4;  | 
159  | 0  |       }  | 
160  | 0  |    }  | 
161  | 0  | #endif  | 
162  |  | 
  | 
163  | 0  |    for(size_t i = 0; i != blocks; ++i) { | 
164  | 0  |       uint32_t A0 = load_be<uint32_t>(in, 0);  | 
165  | 0  |       uint32_t A1 = load_be<uint32_t>(in, 1);  | 
166  | 0  |       uint32_t A2 = load_be<uint32_t>(in, 2);  | 
167  | 0  |       uint32_t A3 = load_be<uint32_t>(in, 3);  | 
168  |  | 
  | 
169  | 0  |       for(size_t j = 16; j != 0; --j) { | 
170  | 0  |          theta(A0, A1, A2, A3, m_DK.data());  | 
171  | 0  |          A0 ^= RC[j];  | 
172  |  | 
  | 
173  | 0  |          A1 = rotl<1>(A1);  | 
174  | 0  |          A2 = rotl<5>(A2);  | 
175  | 0  |          A3 = rotl<2>(A3);  | 
176  |  | 
  | 
177  | 0  |          gamma(A0, A1, A2, A3);  | 
178  |  | 
  | 
179  | 0  |          A1 = rotr<1>(A1);  | 
180  | 0  |          A2 = rotr<5>(A2);  | 
181  | 0  |          A3 = rotr<2>(A3);  | 
182  | 0  |       }  | 
183  |  | 
  | 
184  | 0  |       theta(A0, A1, A2, A3, m_DK.data());  | 
185  | 0  |       A0 ^= RC[0];  | 
186  |  | 
  | 
187  | 0  |       store_be(out, A0, A1, A2, A3);  | 
188  |  | 
  | 
189  | 0  |       in += BLOCK_SIZE;  | 
190  | 0  |       out += BLOCK_SIZE;  | 
191  | 0  |    }  | 
192  | 0  | }  | 
193  |  |  | 
194  | 0  | bool Noekeon::has_keying_material() const { | 
195  | 0  |    return !m_EK.empty();  | 
196  | 0  | }  | 
197  |  |  | 
198  |  | /*  | 
199  |  | * Noekeon Key Schedule  | 
200  |  | */  | 
201  | 0  | void Noekeon::key_schedule(std::span<const uint8_t> key) { | 
202  | 0  |    uint32_t A0 = load_be<uint32_t>(key.data(), 0);  | 
203  | 0  |    uint32_t A1 = load_be<uint32_t>(key.data(), 1);  | 
204  | 0  |    uint32_t A2 = load_be<uint32_t>(key.data(), 2);  | 
205  | 0  |    uint32_t A3 = load_be<uint32_t>(key.data(), 3);  | 
206  |  | 
  | 
207  | 0  |    for(size_t i = 0; i != 16; ++i) { | 
208  | 0  |       A0 ^= RC[i];  | 
209  | 0  |       theta(A0, A1, A2, A3);  | 
210  |  | 
  | 
211  | 0  |       A1 = rotl<1>(A1);  | 
212  | 0  |       A2 = rotl<5>(A2);  | 
213  | 0  |       A3 = rotl<2>(A3);  | 
214  |  | 
  | 
215  | 0  |       gamma(A0, A1, A2, A3);  | 
216  |  | 
  | 
217  | 0  |       A1 = rotr<1>(A1);  | 
218  | 0  |       A2 = rotr<5>(A2);  | 
219  | 0  |       A3 = rotr<2>(A3);  | 
220  | 0  |    }  | 
221  |  | 
  | 
222  | 0  |    A0 ^= RC[16];  | 
223  |  | 
  | 
224  | 0  |    m_DK.resize(4);  | 
225  | 0  |    m_DK[0] = A0;  | 
226  | 0  |    m_DK[1] = A1;  | 
227  | 0  |    m_DK[2] = A2;  | 
228  | 0  |    m_DK[3] = A3;  | 
229  |  | 
  | 
230  | 0  |    theta(A0, A1, A2, A3);  | 
231  |  | 
  | 
232  | 0  |    m_EK.resize(4);  | 
233  | 0  |    m_EK[0] = A0;  | 
234  | 0  |    m_EK[1] = A1;  | 
235  | 0  |    m_EK[2] = A2;  | 
236  | 0  |    m_EK[3] = A3;  | 
237  | 0  | }  | 
238  |  |  | 
239  |  | /*  | 
240  |  | * Clear memory of sensitive data  | 
241  |  | */  | 
242  | 0  | void Noekeon::clear() { | 
243  | 0  |    zap(m_EK);  | 
244  | 0  |    zap(m_DK);  | 
245  | 0  | }  | 
246  |  |  | 
247  |  | }  // namespace Botan  |