/src/botan/src/lib/modes/cbc/cbc.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  | * CBC Mode  | 
3  |  | * (C) 1999-2007,2013,2017 Jack Lloyd  | 
4  |  | * (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity  | 
5  |  | * (C) 2018 Ribose Inc  | 
6  |  | *  | 
7  |  | * Botan is released under the Simplified BSD License (see license.txt)  | 
8  |  | */  | 
9  |  |  | 
10  |  | #include <botan/internal/cbc.h>  | 
11  |  |  | 
12  |  | #include <botan/internal/fmt.h>  | 
13  |  | #include <botan/internal/mode_pad.h>  | 
14  |  | #include <botan/internal/rounding.h>  | 
15  |  |  | 
16  |  | namespace Botan { | 
17  |  |  | 
18  |  | CBC_Mode::CBC_Mode(std::unique_ptr<BlockCipher> cipher, std::unique_ptr<BlockCipherModePaddingMethod> padding) :  | 
19  | 0  |       m_cipher(std::move(cipher)), m_padding(std::move(padding)), m_block_size(m_cipher->block_size()) { | 
20  | 0  |    if(m_padding && !m_padding->valid_blocksize(m_block_size)) { | 
21  | 0  |       throw Invalid_Argument(fmt("Padding {} cannot be used with {} in CBC mode", m_padding->name(), m_cipher->name())); | 
22  | 0  |    }  | 
23  | 0  | }  | 
24  |  |  | 
25  | 0  | void CBC_Mode::clear() { | 
26  | 0  |    m_cipher->clear();  | 
27  | 0  |    reset();  | 
28  | 0  | }  | 
29  |  |  | 
30  | 0  | void CBC_Mode::reset() { | 
31  | 0  |    m_state.clear();  | 
32  | 0  | }  | 
33  |  |  | 
34  | 0  | std::string CBC_Mode::name() const { | 
35  | 0  |    if(m_padding) { | 
36  | 0  |       return fmt("{}/CBC/{}", cipher().name(), padding().name()); | 
37  | 0  |    } else { | 
38  | 0  |       return fmt("{}/CBC/CTS", cipher().name()); | 
39  | 0  |    }  | 
40  | 0  | }  | 
41  |  |  | 
42  | 0  | size_t CBC_Mode::update_granularity() const { | 
43  | 0  |    return cipher().block_size();  | 
44  | 0  | }  | 
45  |  |  | 
46  | 0  | size_t CBC_Mode::ideal_granularity() const { | 
47  | 0  |    return cipher().parallel_bytes();  | 
48  | 0  | }  | 
49  |  |  | 
50  | 0  | Key_Length_Specification CBC_Mode::key_spec() const { | 
51  | 0  |    return cipher().key_spec();  | 
52  | 0  | }  | 
53  |  |  | 
54  | 0  | size_t CBC_Mode::default_nonce_length() const { | 
55  | 0  |    return block_size();  | 
56  | 0  | }  | 
57  |  |  | 
58  | 0  | bool CBC_Mode::valid_nonce_length(size_t n) const { | 
59  | 0  |    return (n == 0 || n == block_size());  | 
60  | 0  | }  | 
61  |  |  | 
62  | 0  | bool CBC_Mode::has_keying_material() const { | 
63  | 0  |    return m_cipher->has_keying_material();  | 
64  | 0  | }  | 
65  |  |  | 
66  | 0  | void CBC_Mode::key_schedule(std::span<const uint8_t> key) { | 
67  | 0  |    m_cipher->set_key(key);  | 
68  | 0  |    m_state.clear();  | 
69  | 0  | }  | 
70  |  |  | 
71  | 0  | void CBC_Mode::start_msg(const uint8_t nonce[], size_t nonce_len) { | 
72  | 0  |    if(!valid_nonce_length(nonce_len)) { | 
73  | 0  |       throw Invalid_IV_Length(name(), nonce_len);  | 
74  | 0  |    }  | 
75  |  |  | 
76  |  |    /*  | 
77  |  |    * A nonce of zero length means carry the last ciphertext value over  | 
78  |  |    * as the new IV, as unfortunately some protocols require this. If  | 
79  |  |    * this is the first message then we use an IV of all zeros.  | 
80  |  |    */  | 
81  | 0  |    if(nonce_len) { | 
82  | 0  |       m_state.assign(nonce, nonce + nonce_len);  | 
83  | 0  |    } else if(m_state.empty()) { | 
84  | 0  |       m_state.resize(m_cipher->block_size());  | 
85  | 0  |    }  | 
86  |  |    // else leave the state alone  | 
87  | 0  | }  | 
88  |  |  | 
89  | 0  | size_t CBC_Encryption::minimum_final_size() const { | 
90  | 0  |    return 0;  | 
91  | 0  | }  | 
92  |  |  | 
93  | 0  | size_t CBC_Encryption::output_length(size_t input_length) const { | 
94  | 0  |    if(input_length == 0) { | 
95  | 0  |       return block_size();  | 
96  | 0  |    } else { | 
97  | 0  |       return round_up(input_length, block_size());  | 
98  | 0  |    }  | 
99  | 0  | }  | 
100  |  |  | 
101  | 0  | size_t CBC_Encryption::process_msg(uint8_t buf[], size_t sz) { | 
102  | 0  |    BOTAN_STATE_CHECK(state().empty() == false);  | 
103  | 0  |    const size_t BS = block_size();  | 
104  |  | 
  | 
105  | 0  |    BOTAN_ARG_CHECK(sz % BS == 0, "CBC input is not full blocks");  | 
106  | 0  |    const size_t blocks = sz / BS;  | 
107  |  | 
  | 
108  | 0  |    if(blocks > 0) { | 
109  | 0  |       xor_buf(&buf[0], state_ptr(), BS);  | 
110  | 0  |       cipher().encrypt(&buf[0]);  | 
111  |  | 
  | 
112  | 0  |       for(size_t i = 1; i != blocks; ++i) { | 
113  | 0  |          xor_buf(&buf[BS * i], &buf[BS * (i - 1)], BS);  | 
114  | 0  |          cipher().encrypt(&buf[BS * i]);  | 
115  | 0  |       }  | 
116  |  | 
  | 
117  | 0  |       state().assign(&buf[BS * (blocks - 1)], &buf[BS * blocks]);  | 
118  | 0  |    }  | 
119  |  | 
  | 
120  | 0  |    return sz;  | 
121  | 0  | }  | 
122  |  |  | 
123  | 0  | void CBC_Encryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) { | 
124  | 0  |    BOTAN_STATE_CHECK(state().empty() == false);  | 
125  | 0  |    BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");  | 
126  |  | 
  | 
127  | 0  |    const size_t BS = block_size();  | 
128  |  | 
  | 
129  | 0  |    const size_t bytes_in_final_block = (buffer.size() - offset) % BS;  | 
130  |  | 
  | 
131  | 0  |    padding().add_padding(buffer, bytes_in_final_block, BS);  | 
132  |  | 
  | 
133  | 0  |    BOTAN_ASSERT_EQUAL(buffer.size() % BS, offset % BS, "Padded to block boundary");  | 
134  |  | 
  | 
135  | 0  |    update(buffer, offset);  | 
136  | 0  | }  | 
137  |  |  | 
138  | 0  | bool CTS_Encryption::valid_nonce_length(size_t n) const { | 
139  | 0  |    return (n == block_size());  | 
140  | 0  | }  | 
141  |  |  | 
142  | 0  | size_t CTS_Encryption::minimum_final_size() const { | 
143  | 0  |    return block_size() + 1;  | 
144  | 0  | }  | 
145  |  |  | 
146  | 0  | size_t CTS_Encryption::output_length(size_t input_length) const { | 
147  | 0  |    return input_length;  // no ciphertext expansion in CTS  | 
148  | 0  | }  | 
149  |  |  | 
150  | 0  | void CTS_Encryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) { | 
151  | 0  |    BOTAN_STATE_CHECK(state().empty() == false);  | 
152  | 0  |    BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");  | 
153  | 0  |    uint8_t* buf = buffer.data() + offset;  | 
154  | 0  |    const size_t sz = buffer.size() - offset;  | 
155  |  | 
  | 
156  | 0  |    const size_t BS = block_size();  | 
157  |  | 
  | 
158  | 0  |    if(sz < BS + 1) { | 
159  | 0  |       throw Encoding_Error(name() + ": insufficient data to encrypt");  | 
160  | 0  |    }  | 
161  |  |  | 
162  | 0  |    if(sz % BS == 0) { | 
163  | 0  |       update(buffer, offset);  | 
164  |  |  | 
165  |  |       // swap last two blocks  | 
166  | 0  |       for(size_t i = 0; i != BS; ++i) { | 
167  | 0  |          std::swap(buffer[buffer.size() - BS + i], buffer[buffer.size() - 2 * BS + i]);  | 
168  | 0  |       }  | 
169  | 0  |    } else { | 
170  | 0  |       const size_t full_blocks = ((sz / BS) - 1) * BS;  | 
171  | 0  |       const size_t final_bytes = sz - full_blocks;  | 
172  | 0  |       BOTAN_ASSERT(final_bytes > BS && final_bytes < 2 * BS, "Left over size in expected range");  | 
173  |  | 
  | 
174  | 0  |       secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);  | 
175  | 0  |       buffer.resize(full_blocks + offset);  | 
176  | 0  |       update(buffer, offset);  | 
177  |  | 
  | 
178  | 0  |       xor_buf(last.data(), state_ptr(), BS);  | 
179  | 0  |       cipher().encrypt(last.data());  | 
180  |  | 
  | 
181  | 0  |       for(size_t i = 0; i != final_bytes - BS; ++i) { | 
182  | 0  |          last[i] ^= last[i + BS];  | 
183  | 0  |          last[i + BS] ^= last[i];  | 
184  | 0  |       }  | 
185  |  | 
  | 
186  | 0  |       cipher().encrypt(last.data());  | 
187  |  | 
  | 
188  | 0  |       buffer += last;  | 
189  | 0  |    }  | 
190  | 0  | }  | 
191  |  |  | 
192  | 0  | size_t CBC_Decryption::output_length(size_t input_length) const { | 
193  | 0  |    return input_length;  // precise for CTS, worst case otherwise  | 
194  | 0  | }  | 
195  |  |  | 
196  | 0  | size_t CBC_Decryption::minimum_final_size() const { | 
197  | 0  |    return block_size();  | 
198  | 0  | }  | 
199  |  |  | 
200  | 0  | size_t CBC_Decryption::process_msg(uint8_t buf[], size_t sz) { | 
201  | 0  |    BOTAN_STATE_CHECK(state().empty() == false);  | 
202  |  | 
  | 
203  | 0  |    const size_t BS = block_size();  | 
204  |  | 
  | 
205  | 0  |    BOTAN_ARG_CHECK(sz % BS == 0, "Input is not full blocks");  | 
206  | 0  |    size_t blocks = sz / BS;  | 
207  |  | 
  | 
208  | 0  |    while(blocks) { | 
209  | 0  |       const size_t to_proc = std::min(BS * blocks, m_tempbuf.size());  | 
210  |  | 
  | 
211  | 0  |       cipher().decrypt_n(buf, m_tempbuf.data(), to_proc / BS);  | 
212  |  | 
  | 
213  | 0  |       xor_buf(m_tempbuf.data(), state_ptr(), BS);  | 
214  | 0  |       xor_buf(&m_tempbuf[BS], buf, to_proc - BS);  | 
215  | 0  |       copy_mem(state_ptr(), buf + (to_proc - BS), BS);  | 
216  |  | 
  | 
217  | 0  |       copy_mem(buf, m_tempbuf.data(), to_proc);  | 
218  |  | 
  | 
219  | 0  |       buf += to_proc;  | 
220  | 0  |       blocks -= to_proc / BS;  | 
221  | 0  |    }  | 
222  |  | 
  | 
223  | 0  |    return sz;  | 
224  | 0  | }  | 
225  |  |  | 
226  | 0  | void CBC_Decryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) { | 
227  | 0  |    BOTAN_STATE_CHECK(state().empty() == false);  | 
228  | 0  |    BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");  | 
229  | 0  |    const size_t sz = buffer.size() - offset;  | 
230  |  | 
  | 
231  | 0  |    const size_t BS = block_size();  | 
232  |  | 
  | 
233  | 0  |    if(sz == 0 || sz % BS) { | 
234  | 0  |       throw Decoding_Error(name() + ": Ciphertext not a multiple of block size");  | 
235  | 0  |    }  | 
236  |  |  | 
237  | 0  |    update(buffer, offset);  | 
238  |  | 
  | 
239  | 0  |    const size_t pad_bytes = BS - padding().unpad(&buffer[buffer.size() - BS], BS);  | 
240  | 0  |    buffer.resize(buffer.size() - pad_bytes);  // remove padding  | 
241  | 0  |    if(pad_bytes == 0 && padding().name() != "NoPadding") { | 
242  | 0  |       throw Decoding_Error("Invalid CBC padding"); | 
243  | 0  |    }  | 
244  | 0  | }  | 
245  |  |  | 
246  | 0  | void CBC_Decryption::reset() { | 
247  | 0  |    CBC_Mode::reset();  | 
248  | 0  |    zeroise(m_tempbuf);  | 
249  | 0  | }  | 
250  |  |  | 
251  | 0  | bool CTS_Decryption::valid_nonce_length(size_t n) const { | 
252  | 0  |    return (n == block_size());  | 
253  | 0  | }  | 
254  |  |  | 
255  | 0  | size_t CTS_Decryption::minimum_final_size() const { | 
256  | 0  |    return block_size() + 1;  | 
257  | 0  | }  | 
258  |  |  | 
259  | 0  | void CTS_Decryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) { | 
260  | 0  |    BOTAN_STATE_CHECK(state().empty() == false);  | 
261  | 0  |    BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");  | 
262  | 0  |    const size_t sz = buffer.size() - offset;  | 
263  | 0  |    uint8_t* buf = buffer.data() + offset;  | 
264  |  | 
  | 
265  | 0  |    const size_t BS = block_size();  | 
266  |  | 
  | 
267  | 0  |    if(sz < BS + 1) { | 
268  | 0  |       throw Encoding_Error(name() + ": insufficient data to decrypt");  | 
269  | 0  |    }  | 
270  |  |  | 
271  | 0  |    if(sz % BS == 0) { | 
272  |  |       // swap last two blocks  | 
273  |  | 
  | 
274  | 0  |       for(size_t i = 0; i != BS; ++i) { | 
275  | 0  |          std::swap(buffer[buffer.size() - BS + i], buffer[buffer.size() - 2 * BS + i]);  | 
276  | 0  |       }  | 
277  |  | 
  | 
278  | 0  |       update(buffer, offset);  | 
279  | 0  |    } else { | 
280  | 0  |       const size_t full_blocks = ((sz / BS) - 1) * BS;  | 
281  | 0  |       const size_t final_bytes = sz - full_blocks;  | 
282  | 0  |       BOTAN_ASSERT(final_bytes > BS && final_bytes < 2 * BS, "Left over size in expected range");  | 
283  |  | 
  | 
284  | 0  |       secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);  | 
285  | 0  |       buffer.resize(full_blocks + offset);  | 
286  | 0  |       update(buffer, offset);  | 
287  |  | 
  | 
288  | 0  |       cipher().decrypt(last.data());  | 
289  |  | 
  | 
290  | 0  |       xor_buf(last.data(), &last[BS], final_bytes - BS);  | 
291  |  | 
  | 
292  | 0  |       for(size_t i = 0; i != final_bytes - BS; ++i) { | 
293  | 0  |          std::swap(last[i], last[i + BS]);  | 
294  | 0  |       }  | 
295  |  | 
  | 
296  | 0  |       cipher().decrypt(last.data());  | 
297  | 0  |       xor_buf(last.data(), state_ptr(), BS);  | 
298  |  | 
  | 
299  | 0  |       buffer += last;  | 
300  | 0  |    }  | 
301  | 0  | }  | 
302  |  |  | 
303  |  | }  // namespace Botan  |