/src/botan/src/lib/utils/ghash/ghash.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  | * GCM GHASH  | 
3  |  | * (C) 2013,2015,2017 Jack Lloyd  | 
4  |  | * (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity  | 
5  |  | *  | 
6  |  | * Botan is released under the Simplified BSD License (see license.txt)  | 
7  |  | */  | 
8  |  |  | 
9  |  | #include <botan/internal/ghash.h>  | 
10  |  |  | 
11  |  | #include <botan/exceptn.h>  | 
12  |  | #include <botan/internal/cpuid.h>  | 
13  |  | #include <botan/internal/ct_utils.h>  | 
14  |  | #include <botan/internal/loadstor.h>  | 
15  |  |  | 
16  |  | namespace Botan { | 
17  |  |  | 
18  | 0  | std::string GHASH::provider() const { | 
19  | 0  | #if defined(BOTAN_HAS_GHASH_CLMUL_CPU)  | 
20  | 0  |    if(CPUID::has_carryless_multiply()) { | 
21  | 0  |       return "clmul";  | 
22  | 0  |    }  | 
23  | 0  | #endif  | 
24  |  |  | 
25  | 0  | #if defined(BOTAN_HAS_GHASH_CLMUL_VPERM)  | 
26  | 0  |    if(CPUID::has_vperm()) { | 
27  | 0  |       return "vperm";  | 
28  | 0  |    }  | 
29  | 0  | #endif  | 
30  |  |  | 
31  | 0  |    return "base";  | 
32  | 0  | }  | 
33  |  |  | 
34  | 0  | void GHASH::ghash_multiply(secure_vector<uint8_t>& x, std::span<const uint8_t> input, size_t blocks) { | 
35  | 0  | #if defined(BOTAN_HAS_GHASH_CLMUL_CPU)  | 
36  | 0  |    if(CPUID::has_carryless_multiply()) { | 
37  | 0  |       BOTAN_ASSERT_NOMSG(!m_H_pow.empty());  | 
38  | 0  |       return ghash_multiply_cpu(x.data(), m_H_pow.data(), input.data(), blocks);  | 
39  | 0  |    }  | 
40  | 0  | #endif  | 
41  |  |  | 
42  | 0  | #if defined(BOTAN_HAS_GHASH_CLMUL_VPERM)  | 
43  | 0  |    if(CPUID::has_vperm()) { | 
44  | 0  |       return ghash_multiply_vperm(x.data(), m_HM.data(), input.data(), blocks);  | 
45  | 0  |    }  | 
46  | 0  | #endif  | 
47  |  |  | 
48  | 0  |    CT::poison(x.data(), x.size());  | 
49  |  | 
  | 
50  | 0  |    const uint64_t ALL_BITS = 0xFFFFFFFFFFFFFFFF;  | 
51  |  | 
  | 
52  | 0  |    uint64_t X[2] = {load_be<uint64_t>(x.data(), 0), load_be<uint64_t>(x.data(), 1)}; | 
53  |  | 
  | 
54  | 0  |    for(size_t b = 0; b != blocks; ++b) { | 
55  | 0  |       X[0] ^= load_be<uint64_t>(input.data(), 2 * b);  | 
56  | 0  |       X[1] ^= load_be<uint64_t>(input.data(), 2 * b + 1);  | 
57  |  | 
  | 
58  | 0  |       uint64_t Z[2] = {0, 0}; | 
59  |  | 
  | 
60  | 0  |       for(size_t i = 0; i != 64; ++i) { | 
61  | 0  |          const uint64_t X0MASK = (ALL_BITS + (X[0] >> 63)) ^ ALL_BITS;  | 
62  | 0  |          const uint64_t X1MASK = (ALL_BITS + (X[1] >> 63)) ^ ALL_BITS;  | 
63  |  | 
  | 
64  | 0  |          X[0] <<= 1;  | 
65  | 0  |          X[1] <<= 1;  | 
66  |  | 
  | 
67  | 0  |          Z[0] ^= m_HM[4 * i] & X0MASK;  | 
68  | 0  |          Z[1] ^= m_HM[4 * i + 1] & X0MASK;  | 
69  | 0  |          Z[0] ^= m_HM[4 * i + 2] & X1MASK;  | 
70  | 0  |          Z[1] ^= m_HM[4 * i + 3] & X1MASK;  | 
71  | 0  |       }  | 
72  |  | 
  | 
73  | 0  |       X[0] = Z[0];  | 
74  | 0  |       X[1] = Z[1];  | 
75  | 0  |    }  | 
76  |  | 
  | 
77  | 0  |    store_be<uint64_t>(x.data(), X[0], X[1]);  | 
78  | 0  |    CT::unpoison(x.data(), x.size());  | 
79  | 0  | }  | 
80  |  |  | 
81  | 0  | void GHASH::ghash_update(secure_vector<uint8_t>& ghash, std::span<const uint8_t> input) { | 
82  | 0  |    assert_key_material_set(!m_H.empty());  | 
83  |  |  | 
84  |  |    /*  | 
85  |  |    This assumes if less than block size input then we're just on the  | 
86  |  |    final block and should pad with zeros  | 
87  |  |    */  | 
88  |  | 
  | 
89  | 0  |    const size_t full_blocks = input.size() / GCM_BS;  | 
90  | 0  |    const size_t final_bytes = input.size() - (full_blocks * GCM_BS);  | 
91  |  | 
  | 
92  | 0  |    if(full_blocks > 0) { | 
93  | 0  |       ghash_multiply(ghash, input.first(full_blocks * GCM_BS), full_blocks);  | 
94  | 0  |    }  | 
95  |  | 
  | 
96  | 0  |    if(final_bytes) { | 
97  | 0  |       uint8_t last_block[GCM_BS] = {0}; | 
98  | 0  |       copy_mem(last_block, input.subspan(full_blocks * GCM_BS).data(), final_bytes);  | 
99  | 0  |       ghash_multiply(ghash, last_block, 1);  | 
100  | 0  |       secure_scrub_memory(last_block, final_bytes);  | 
101  | 0  |    }  | 
102  | 0  | }  | 
103  |  |  | 
104  | 0  | bool GHASH::has_keying_material() const { | 
105  | 0  |    return !m_ghash.empty();  | 
106  | 0  | }  | 
107  |  |  | 
108  | 0  | void GHASH::key_schedule(std::span<const uint8_t> key) { | 
109  | 0  |    m_H.assign(key.begin(), key.end());  // TODO: C++23 - std::vector<>::assign_range()  | 
110  | 0  |    m_H_ad.resize(GCM_BS);  | 
111  | 0  |    m_ad_len = 0;  | 
112  | 0  |    m_text_len = 0;  | 
113  |  | 
  | 
114  | 0  |    uint64_t H0 = load_be<uint64_t>(m_H.data(), 0);  | 
115  | 0  |    uint64_t H1 = load_be<uint64_t>(m_H.data(), 1);  | 
116  |  | 
  | 
117  | 0  |    const uint64_t R = 0xE100000000000000;  | 
118  |  | 
  | 
119  | 0  |    m_HM.resize(256);  | 
120  |  |  | 
121  |  |    // precompute the multiples of H  | 
122  | 0  |    for(size_t i = 0; i != 2; ++i) { | 
123  | 0  |       for(size_t j = 0; j != 64; ++j) { | 
124  |  |          /*  | 
125  |  |          we interleave H^1, H^65, H^2, H^66, H3, H67, H4, H68  | 
126  |  |          to make indexing nicer in the multiplication code  | 
127  |  |          */  | 
128  | 0  |          m_HM[4 * j + 2 * i] = H0;  | 
129  | 0  |          m_HM[4 * j + 2 * i + 1] = H1;  | 
130  |  |  | 
131  |  |          // GCM's bit ops are reversed so we carry out of the bottom  | 
132  | 0  |          const uint64_t carry = R * (H1 & 1);  | 
133  | 0  |          H1 = (H1 >> 1) | (H0 << 63);  | 
134  | 0  |          H0 = (H0 >> 1) ^ carry;  | 
135  | 0  |       }  | 
136  | 0  |    }  | 
137  |  | 
  | 
138  | 0  | #if defined(BOTAN_HAS_GHASH_CLMUL_CPU)  | 
139  | 0  |    if(CPUID::has_carryless_multiply()) { | 
140  | 0  |       m_H_pow.resize(8);  | 
141  | 0  |       ghash_precompute_cpu(m_H.data(), m_H_pow.data());  | 
142  | 0  |    }  | 
143  | 0  | #endif  | 
144  | 0  | }  | 
145  |  |  | 
146  | 0  | void GHASH::start(std::span<const uint8_t> nonce) { | 
147  | 0  |    BOTAN_ARG_CHECK(nonce.size() == 16, "GHASH requires a 128-bit nonce");  | 
148  | 0  |    m_nonce.assign(nonce.begin(), nonce.end());  // TODO: C++23: assign_range  | 
149  | 0  |    m_ghash = m_H_ad;  | 
150  | 0  | }  | 
151  |  |  | 
152  | 0  | void GHASH::set_associated_data(std::span<const uint8_t> input) { | 
153  | 0  |    if(m_ghash.empty() == false) { | 
154  | 0  |       throw Invalid_State("Too late to set AD in GHASH"); | 
155  | 0  |    }  | 
156  |  |  | 
157  | 0  |    zeroise(m_H_ad);  | 
158  |  | 
  | 
159  | 0  |    ghash_update(m_H_ad, input);  | 
160  | 0  |    m_ad_len = input.size();  | 
161  | 0  | }  | 
162  |  |  | 
163  | 0  | void GHASH::update_associated_data(std::span<const uint8_t> ad) { | 
164  | 0  |    assert_key_material_set();  | 
165  | 0  |    m_ad_len += ad.size();  | 
166  | 0  |    ghash_update(m_ghash, ad);  | 
167  | 0  | }  | 
168  |  |  | 
169  | 0  | void GHASH::update(std::span<const uint8_t> input) { | 
170  | 0  |    assert_key_material_set();  | 
171  | 0  |    m_text_len += input.size();  | 
172  | 0  |    ghash_update(m_ghash, input);  | 
173  | 0  | }  | 
174  |  |  | 
175  | 0  | void GHASH::add_final_block(secure_vector<uint8_t>& hash, size_t ad_len, size_t text_len) { | 
176  |  |    /*  | 
177  |  |    * stack buffer is fine here since the text len is public  | 
178  |  |    * and the length of the AD is probably not sensitive either.  | 
179  |  |    */  | 
180  | 0  |    uint8_t final_block[GCM_BS];  | 
181  | 0  |    store_be<uint64_t>(final_block, 8 * ad_len, 8 * text_len);  | 
182  | 0  |    ghash_update(hash, {final_block, GCM_BS}); | 
183  | 0  | }  | 
184  |  |  | 
185  | 0  | void GHASH::final(std::span<uint8_t> mac) { | 
186  | 0  |    BOTAN_ARG_CHECK(!mac.empty() && mac.size() <= 16, "GHASH output length");  | 
187  |  | 
  | 
188  | 0  |    assert_key_material_set();  | 
189  | 0  |    add_final_block(m_ghash, m_ad_len, m_text_len);  | 
190  |  | 
  | 
191  | 0  |    for(size_t i = 0; i != mac.size(); ++i) { | 
192  | 0  |       mac[i] = m_ghash[i] ^ m_nonce[i];  | 
193  | 0  |    }  | 
194  |  | 
  | 
195  | 0  |    m_ghash.clear();  | 
196  | 0  |    m_text_len = 0;  | 
197  | 0  | }  | 
198  |  |  | 
199  | 0  | void GHASH::nonce_hash(secure_vector<uint8_t>& y0, std::span<const uint8_t> nonce) { | 
200  | 0  |    BOTAN_ASSERT(m_ghash.empty(), "nonce_hash called during wrong time");  | 
201  |  | 
  | 
202  | 0  |    ghash_update(y0, nonce);  | 
203  | 0  |    add_final_block(y0, 0, nonce.size());  | 
204  | 0  | }  | 
205  |  |  | 
206  | 0  | void GHASH::clear() { | 
207  | 0  |    zap(m_H);  | 
208  | 0  |    zap(m_HM);  | 
209  | 0  |    reset();  | 
210  | 0  | }  | 
211  |  |  | 
212  | 0  | void GHASH::reset() { | 
213  | 0  |    zeroise(m_H_ad);  | 
214  | 0  |    m_ghash.clear();  | 
215  | 0  |    m_nonce.clear();  | 
216  | 0  |    m_text_len = m_ad_len = 0;  | 
217  | 0  | }  | 
218  |  |  | 
219  |  | }  // namespace Botan  |