/src/boost/boost/json/detail/ryu/impl/d2s.ipp
Line | Count | Source |
1 | | // Copyright 2018 Ulf Adams |
2 | | // |
3 | | // The contents of this file may be used under the terms of the Apache License, |
4 | | // Version 2.0. |
5 | | // |
6 | | // (See accompanying file LICENSE-Apache or copy at |
7 | | // http://www.apache.org/licenses/LICENSE-2.0) |
8 | | // |
9 | | // Alternatively, the contents of this file may be used under the terms of |
10 | | // the Boost Software License, Version 1.0. |
11 | | // (See accompanying file LICENSE-Boost or copy at |
12 | | // https://www.boost.org/LICENSE_1_0.txt) |
13 | | // |
14 | | // Unless required by applicable law or agreed to in writing, this software |
15 | | // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
16 | | // KIND, either express or implied. |
17 | | |
18 | | // Runtime compiler options: |
19 | | // -DRYU_DEBUG Generate verbose debugging output to stdout. |
20 | | // |
21 | | // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower, |
22 | | // depending on your compiler. |
23 | | // |
24 | | // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every |
25 | | // required power of 5, only store every 26th entry, and compute |
26 | | // intermediate values with a multiplication. This reduces the lookup table |
27 | | // size by about 10x (only one case, and only double) at the cost of some |
28 | | // performance. Currently requires MSVC intrinsics. |
29 | | |
30 | | /* |
31 | | This is a derivative work |
32 | | */ |
33 | | |
34 | | #ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP |
35 | | #define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP |
36 | | |
37 | | #include <boost/json/detail/ryu/ryu.hpp> |
38 | | #include <cstdlib> |
39 | | #include <cstring> |
40 | | |
41 | | #ifdef RYU_DEBUG |
42 | | #include <stdio.h> |
43 | | #endif |
44 | | |
45 | | // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined. |
46 | | // Let's do the same for now. |
47 | | #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) |
48 | | #define BOOST_JSON_RYU_HAS_UINT128 |
49 | | #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) |
50 | | #define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS |
51 | | #endif |
52 | | |
53 | | #include <boost/json/detail/ryu/detail/common.hpp> |
54 | | #include <boost/json/detail/ryu/detail/digit_table.hpp> |
55 | | #include <boost/json/detail/ryu/detail/d2s.hpp> |
56 | | #include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp> |
57 | | |
58 | | namespace boost { |
59 | | namespace json { |
60 | | namespace detail { |
61 | | |
62 | | namespace ryu { |
63 | | namespace detail { |
64 | | |
65 | | // We need a 64x128-bit multiplication and a subsequent 128-bit shift. |
66 | | // Multiplication: |
67 | | // The 64-bit factor is variable and passed in, the 128-bit factor comes |
68 | | // from a lookup table. We know that the 64-bit factor only has 55 |
69 | | // significant bits (i.e., the 9 topmost bits are zeros). The 128-bit |
70 | | // factor only has 124 significant bits (i.e., the 4 topmost bits are |
71 | | // zeros). |
72 | | // Shift: |
73 | | // In principle, the multiplication result requires 55 + 124 = 179 bits to |
74 | | // represent. However, we then shift this value to the right by j, which is |
75 | | // at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64 |
76 | | // bits. This means that we only need the topmost 64 significant bits of |
77 | | // the 64x128-bit multiplication. |
78 | | // |
79 | | // There are several ways to do this: |
80 | | // 1. Best case: the compiler exposes a 128-bit type. |
81 | | // We perform two 64x64-bit multiplications, add the higher 64 bits of the |
82 | | // lower result to the higher result, and shift by j - 64 bits. |
83 | | // |
84 | | // We explicitly cast from 64-bit to 128-bit, so the compiler can tell |
85 | | // that these are only 64-bit inputs, and can map these to the best |
86 | | // possible sequence of assembly instructions. |
87 | | // x64 machines happen to have matching assembly instructions for |
88 | | // 64x64-bit multiplications and 128-bit shifts. |
89 | | // |
90 | | // 2. Second best case: the compiler exposes intrinsics for the x64 assembly |
91 | | // instructions mentioned in 1. |
92 | | // |
93 | | // 3. We only have 64x64 bit instructions that return the lower 64 bits of |
94 | | // the result, i.e., we have to use plain C. |
95 | | // Our inputs are less than the full width, so we have three options: |
96 | | // a. Ignore this fact and just implement the intrinsics manually. |
97 | | // b. Split both into 31-bit pieces, which guarantees no internal overflow, |
98 | | // but requires extra work upfront (unless we change the lookup table). |
99 | | // c. Split only the first factor into 31-bit pieces, which also guarantees |
100 | | // no internal overflow, but requires extra work since the intermediate |
101 | | // results are not perfectly aligned. |
102 | | #if defined(BOOST_JSON_RYU_HAS_UINT128) |
103 | | |
104 | | // Best case: use 128-bit type. |
105 | | inline |
106 | | std::uint64_t |
107 | | mulShift( |
108 | | const std::uint64_t m, |
109 | | const std::uint64_t* const mul, |
110 | | const std::int32_t j) noexcept |
111 | 14.5M | { |
112 | 14.5M | const uint128_t b0 = ((uint128_t) m) * mul[0]; |
113 | 14.5M | const uint128_t b2 = ((uint128_t) m) * mul[1]; |
114 | 14.5M | return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64)); |
115 | 14.5M | } |
116 | | |
117 | | inline |
118 | | uint64_t |
119 | | mulShiftAll( |
120 | | const std::uint64_t m, |
121 | | const std::uint64_t* const mul, |
122 | | std::int32_t const j, |
123 | | std::uint64_t* const vp, |
124 | | std::uint64_t* const vm, |
125 | | const std::uint32_t mmShift) noexcept |
126 | 4.83M | { |
127 | | // m <<= 2; |
128 | | // uint128_t b0 = ((uint128_t) m) * mul[0]; // 0 |
129 | | // uint128_t b2 = ((uint128_t) m) * mul[1]; // 64 |
130 | | // |
131 | | // uint128_t hi = (b0 >> 64) + b2; |
132 | | // uint128_t lo = b0 & 0xffffffffffffffffull; |
133 | | // uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0]; |
134 | | // uint128_t vpLo = lo + (factor << 1); |
135 | | // *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64)); |
136 | | // uint128_t vmLo = lo - (factor << mmShift); |
137 | | // *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64)); |
138 | | // return (std::uint64_t) (hi >> (j - 64)); |
139 | 4.83M | *vp = mulShift(4 * m + 2, mul, j); |
140 | 4.83M | *vm = mulShift(4 * m - 1 - mmShift, mul, j); |
141 | 4.83M | return mulShift(4 * m, mul, j); |
142 | 4.83M | } |
143 | | |
144 | | #elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS) |
145 | | |
146 | | inline |
147 | | std::uint64_t |
148 | | mulShift( |
149 | | const std::uint64_t m, |
150 | | const std::uint64_t* const mul, |
151 | | const std::int32_t j) noexcept |
152 | | { |
153 | | // m is maximum 55 bits |
154 | | std::uint64_t high1; // 128 |
155 | | std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64 |
156 | | std::uint64_t high0; // 64 |
157 | | umul128(m, mul[0], &high0); // 0 |
158 | | std::uint64_t const sum = high0 + low1; |
159 | | if (sum < high0) |
160 | | ++high1; // overflow into high1 |
161 | | return shiftright128(sum, high1, j - 64); |
162 | | } |
163 | | |
164 | | inline |
165 | | std::uint64_t |
166 | | mulShiftAll( |
167 | | const std::uint64_t m, |
168 | | const std::uint64_t* const mul, |
169 | | const std::int32_t j, |
170 | | std::uint64_t* const vp, |
171 | | std::uint64_t* const vm, |
172 | | const std::uint32_t mmShift) noexcept |
173 | | { |
174 | | *vp = mulShift(4 * m + 2, mul, j); |
175 | | *vm = mulShift(4 * m - 1 - mmShift, mul, j); |
176 | | return mulShift(4 * m, mul, j); |
177 | | } |
178 | | |
179 | | #else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS) |
180 | | |
181 | | inline |
182 | | std::uint64_t |
183 | | mulShiftAll( |
184 | | std::uint64_t m, |
185 | | const std::uint64_t* const mul, |
186 | | const std::int32_t j, |
187 | | std::uint64_t* const vp, |
188 | | std::uint64_t* const vm, |
189 | | const std::uint32_t mmShift) |
190 | | { |
191 | | m <<= 1; |
192 | | // m is maximum 55 bits |
193 | | std::uint64_t tmp; |
194 | | std::uint64_t const lo = umul128(m, mul[0], &tmp); |
195 | | std::uint64_t hi; |
196 | | std::uint64_t const mid = tmp + umul128(m, mul[1], &hi); |
197 | | hi += mid < tmp; // overflow into hi |
198 | | |
199 | | const std::uint64_t lo2 = lo + mul[0]; |
200 | | const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo); |
201 | | const std::uint64_t hi2 = hi + (mid2 < mid); |
202 | | *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1)); |
203 | | |
204 | | if (mmShift == 1) |
205 | | { |
206 | | const std::uint64_t lo3 = lo - mul[0]; |
207 | | const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo); |
208 | | const std::uint64_t hi3 = hi - (mid3 > mid); |
209 | | *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1)); |
210 | | } |
211 | | else |
212 | | { |
213 | | const std::uint64_t lo3 = lo + lo; |
214 | | const std::uint64_t mid3 = mid + mid + (lo3 < lo); |
215 | | const std::uint64_t hi3 = hi + hi + (mid3 < mid); |
216 | | const std::uint64_t lo4 = lo3 - mul[0]; |
217 | | const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3); |
218 | | const std::uint64_t hi4 = hi3 - (mid4 > mid3); |
219 | | *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64)); |
220 | | } |
221 | | |
222 | | return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1)); |
223 | | } |
224 | | |
225 | | #endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS |
226 | | |
227 | | inline |
228 | | std::uint32_t |
229 | | decimalLength17( |
230 | | const std::uint64_t v) |
231 | 4.87M | { |
232 | | // This is slightly faster than a loop. |
233 | | // The average output length is 16.38 digits, so we check high-to-low. |
234 | | // Function precondition: v is not an 18, 19, or 20-digit number. |
235 | | // (17 digits are sufficient for round-tripping.) |
236 | 4.87M | BOOST_ASSERT(v < 100000000000000000L); |
237 | 4.87M | if (v >= 10000000000000000L) { return 17; } |
238 | 163k | if (v >= 1000000000000000L) { return 16; } |
239 | 118k | if (v >= 100000000000000L) { return 15; } |
240 | 118k | if (v >= 10000000000000L) { return 14; } |
241 | 117k | if (v >= 1000000000000L) { return 13; } |
242 | 115k | if (v >= 100000000000L) { return 12; } |
243 | 114k | if (v >= 10000000000L) { return 11; } |
244 | 114k | if (v >= 1000000000L) { return 10; } |
245 | 113k | if (v >= 100000000L) { return 9; } |
246 | 113k | if (v >= 10000000L) { return 8; } |
247 | 112k | if (v >= 1000000L) { return 7; } |
248 | 111k | if (v >= 100000L) { return 6; } |
249 | 110k | if (v >= 10000L) { return 5; } |
250 | 108k | if (v >= 1000L) { return 4; } |
251 | 106k | if (v >= 100L) { return 3; } |
252 | 103k | if (v >= 10L) { return 2; } |
253 | 87.9k | return 1; |
254 | 103k | } |
255 | | |
256 | | // A floating decimal representing m * 10^e. |
257 | | struct floating_decimal_64 |
258 | | { |
259 | | std::uint64_t mantissa; |
260 | | // Decimal exponent's range is -324 to 308 |
261 | | // inclusive, and can fit in a short if needed. |
262 | | std::int32_t exponent; |
263 | | }; |
264 | | |
265 | | inline |
266 | | floating_decimal_64 |
267 | | d2d( |
268 | | const std::uint64_t ieeeMantissa, |
269 | | const std::uint32_t ieeeExponent) |
270 | 4.83M | { |
271 | 4.83M | std::int32_t e2; |
272 | 4.83M | std::uint64_t m2; |
273 | 4.83M | if (ieeeExponent == 0) |
274 | 307 | { |
275 | | // We subtract 2 so that the bounds computation has 2 additional bits. |
276 | 307 | e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
277 | 307 | m2 = ieeeMantissa; |
278 | 307 | } |
279 | 4.83M | else |
280 | 4.83M | { |
281 | 4.83M | e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
282 | 4.83M | m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
283 | 4.83M | } |
284 | 4.83M | const bool even = (m2 & 1) == 0; |
285 | 4.83M | const bool acceptBounds = even; |
286 | | |
287 | | #ifdef RYU_DEBUG |
288 | | printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2); |
289 | | #endif |
290 | | |
291 | | // Step 2: Determine the interval of valid decimal representations. |
292 | 4.83M | const std::uint64_t mv = 4 * m2; |
293 | | // Implicit bool -> int conversion. True is 1, false is 0. |
294 | 4.83M | const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; |
295 | | // We would compute mp and mm like this: |
296 | | // uint64_t mp = 4 * m2 + 2; |
297 | | // uint64_t mm = mv - 1 - mmShift; |
298 | | |
299 | | // Step 3: Convert to a decimal power base using 128-bit arithmetic. |
300 | 4.83M | std::uint64_t vr, vp, vm; |
301 | 4.83M | std::int32_t e10; |
302 | 4.83M | bool vmIsTrailingZeros = false; |
303 | 4.83M | bool vrIsTrailingZeros = false; |
304 | 4.83M | if (e2 >= 0) { |
305 | | // I tried special-casing q == 0, but there was no effect on performance. |
306 | | // This expression is slightly faster than max(0, log10Pow2(e2) - 1). |
307 | 4.76M | const std::uint32_t q = log10Pow2(e2) - (e2 > 3); |
308 | 4.76M | e10 = (std::int32_t)q; |
309 | 4.76M | const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1; |
310 | 4.76M | const std::int32_t i = -e2 + (std::int32_t)q + k; |
311 | | #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE) |
312 | | uint64_t pow5[2]; |
313 | | double_computeInvPow5(q, pow5); |
314 | | vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift); |
315 | | #else |
316 | 4.76M | vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift); |
317 | 4.76M | #endif |
318 | | #ifdef RYU_DEBUG |
319 | | printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q); |
320 | | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
321 | | #endif |
322 | 4.76M | if (q <= 21) |
323 | 21.8k | { |
324 | | // This should use q <= 22, but I think 21 is also safe. Smaller values |
325 | | // may still be safe, but it's more difficult to reason about them. |
326 | | // Only one of mp, mv, and mm can be a multiple of 5, if any. |
327 | 21.8k | const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv)); |
328 | 21.8k | if (mvMod5 == 0) |
329 | 4.50k | { |
330 | 4.50k | vrIsTrailingZeros = multipleOfPowerOf5(mv, q); |
331 | 4.50k | } |
332 | 17.3k | else if (acceptBounds) |
333 | 12.9k | { |
334 | | // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q |
335 | | // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q |
336 | | // <=> true && pow5Factor(mm) >= q, since e2 >= q. |
337 | 12.9k | vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q); |
338 | 12.9k | } |
339 | 4.46k | else |
340 | 4.46k | { |
341 | | // Same as min(e2 + 1, pow5Factor(mp)) >= q. |
342 | 4.46k | vp -= multipleOfPowerOf5(mv + 2, q); |
343 | 4.46k | } |
344 | 21.8k | } |
345 | 4.76M | } |
346 | 68.6k | else |
347 | 68.6k | { |
348 | | // This expression is slightly faster than max(0, log10Pow5(-e2) - 1). |
349 | 68.6k | const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1); |
350 | 68.6k | e10 = (std::int32_t)q + e2; |
351 | 68.6k | const std::int32_t i = -e2 - (std::int32_t)q; |
352 | 68.6k | const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; |
353 | 68.6k | const std::int32_t j = (std::int32_t)q - k; |
354 | | #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE) |
355 | | std::uint64_t pow5[2]; |
356 | | double_computePow5(i, pow5); |
357 | | vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift); |
358 | | #else |
359 | 68.6k | vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift); |
360 | 68.6k | #endif |
361 | | #ifdef RYU_DEBUG |
362 | | printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q); |
363 | | printf("%u %d %d %d\n", q, i, k, j); |
364 | | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
365 | | #endif |
366 | 68.6k | if (q <= 1) |
367 | 2.77k | { |
368 | | // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. |
369 | | // mv = 4 * m2, so it always has at least two trailing 0 bits. |
370 | 2.77k | vrIsTrailingZeros = true; |
371 | 2.77k | if (acceptBounds) |
372 | 1.97k | { |
373 | | // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. |
374 | 1.97k | vmIsTrailingZeros = mmShift == 1; |
375 | 1.97k | } |
376 | 805 | else |
377 | 805 | { |
378 | | // mp = mv + 2, so it always has at least one trailing 0 bit. |
379 | 805 | --vp; |
380 | 805 | } |
381 | 2.77k | } |
382 | 65.8k | else if (q < 63) |
383 | 9.65k | { |
384 | | // TODO(ulfjack): Use a tighter bound here. |
385 | | // We want to know if the full product has at least q trailing zeros. |
386 | | // We need to compute min(p2(mv), p5(mv) - e2) >= q |
387 | | // <=> p2(mv) >= q && p5(mv) - e2 >= q |
388 | | // <=> p2(mv) >= q (because -e2 >= q) |
389 | 9.65k | vrIsTrailingZeros = multipleOfPowerOf2(mv, q); |
390 | | #ifdef RYU_DEBUG |
391 | | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
392 | | #endif |
393 | 9.65k | } |
394 | 68.6k | } |
395 | | #ifdef RYU_DEBUG |
396 | | printf("e10=%d\n", e10); |
397 | | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
398 | | printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false"); |
399 | | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
400 | | #endif |
401 | | |
402 | | // Step 4: Find the shortest decimal representation in the interval of valid representations. |
403 | 4.83M | std::int32_t removed = 0; |
404 | 4.83M | std::uint8_t lastRemovedDigit = 0; |
405 | 4.83M | std::uint64_t output; |
406 | | // On average, we remove ~2 digits. |
407 | 4.83M | if (vmIsTrailingZeros || vrIsTrailingZeros) |
408 | 5.54k | { |
409 | | // General case, which happens rarely (~0.7%). |
410 | 5.54k | for (;;) |
411 | 46.1k | { |
412 | 46.1k | const std::uint64_t vpDiv10 = div10(vp); |
413 | 46.1k | const std::uint64_t vmDiv10 = div10(vm); |
414 | 46.1k | if (vpDiv10 <= vmDiv10) |
415 | 5.54k | break; |
416 | 40.5k | const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10); |
417 | 40.5k | const std::uint64_t vrDiv10 = div10(vr); |
418 | 40.5k | const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10); |
419 | 40.5k | vmIsTrailingZeros &= vmMod10 == 0; |
420 | 40.5k | vrIsTrailingZeros &= lastRemovedDigit == 0; |
421 | 40.5k | lastRemovedDigit = (uint8_t)vrMod10; |
422 | 40.5k | vr = vrDiv10; |
423 | 40.5k | vp = vpDiv10; |
424 | 40.5k | vm = vmDiv10; |
425 | 40.5k | ++removed; |
426 | 40.5k | } |
427 | | #ifdef RYU_DEBUG |
428 | | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
429 | | printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false"); |
430 | | #endif |
431 | 5.54k | if (vmIsTrailingZeros) |
432 | 271 | { |
433 | 271 | for (;;) |
434 | 3.82k | { |
435 | 3.82k | const std::uint64_t vmDiv10 = div10(vm); |
436 | 3.82k | const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10); |
437 | 3.82k | if (vmMod10 != 0) |
438 | 271 | break; |
439 | 3.55k | const std::uint64_t vpDiv10 = div10(vp); |
440 | 3.55k | const std::uint64_t vrDiv10 = div10(vr); |
441 | 3.55k | const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10); |
442 | 3.55k | vrIsTrailingZeros &= lastRemovedDigit == 0; |
443 | 3.55k | lastRemovedDigit = (uint8_t)vrMod10; |
444 | 3.55k | vr = vrDiv10; |
445 | 3.55k | vp = vpDiv10; |
446 | 3.55k | vm = vmDiv10; |
447 | 3.55k | ++removed; |
448 | 3.55k | } |
449 | 271 | } |
450 | | #ifdef RYU_DEBUG |
451 | | printf("%" PRIu64 " %d\n", vr, lastRemovedDigit); |
452 | | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
453 | | #endif |
454 | 5.54k | if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) |
455 | 815 | { |
456 | | // Round even if the exact number is .....50..0. |
457 | 815 | lastRemovedDigit = 4; |
458 | 815 | } |
459 | | // We need to take vr + 1 if vr is outside bounds or we need to round up. |
460 | 5.54k | output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); |
461 | 5.54k | } |
462 | 4.82M | else |
463 | 4.82M | { |
464 | | // Specialized for the common case (~99.3%). Percentages below are relative to this. |
465 | 4.82M | bool roundUp = false; |
466 | 4.82M | const std::uint64_t vpDiv100 = div100(vp); |
467 | 4.82M | const std::uint64_t vmDiv100 = div100(vm); |
468 | 4.82M | if (vpDiv100 > vmDiv100) |
469 | 4.75M | { |
470 | | // Optimization: remove two digits at a time (~86.2%). |
471 | 4.75M | const std::uint64_t vrDiv100 = div100(vr); |
472 | 4.75M | const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100); |
473 | 4.75M | roundUp = vrMod100 >= 50; |
474 | 4.75M | vr = vrDiv100; |
475 | 4.75M | vp = vpDiv100; |
476 | 4.75M | vm = vmDiv100; |
477 | 4.75M | removed += 2; |
478 | 4.75M | } |
479 | | // Loop iterations below (approximately), without optimization above: |
480 | | // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% |
481 | | // Loop iterations below (approximately), with optimization above: |
482 | | // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% |
483 | 4.82M | for (;;) |
484 | 5.93M | { |
485 | 5.93M | const std::uint64_t vpDiv10 = div10(vp); |
486 | 5.93M | const std::uint64_t vmDiv10 = div10(vm); |
487 | 5.93M | if (vpDiv10 <= vmDiv10) |
488 | 4.82M | break; |
489 | 1.11M | const std::uint64_t vrDiv10 = div10(vr); |
490 | 1.11M | const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10); |
491 | 1.11M | roundUp = vrMod10 >= 5; |
492 | 1.11M | vr = vrDiv10; |
493 | 1.11M | vp = vpDiv10; |
494 | 1.11M | vm = vmDiv10; |
495 | 1.11M | ++removed; |
496 | 1.11M | } |
497 | | #ifdef RYU_DEBUG |
498 | | printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false"); |
499 | | printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
500 | | #endif |
501 | | // We need to take vr + 1 if vr is outside bounds or we need to round up. |
502 | 4.82M | output = vr + (vr == vm || roundUp); |
503 | 4.82M | } |
504 | 4.83M | const std::int32_t exp = e10 + removed; |
505 | | |
506 | | #ifdef RYU_DEBUG |
507 | | printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
508 | | printf("O=%" PRIu64 "\n", output); |
509 | | printf("EXP=%d\n", exp); |
510 | | #endif |
511 | | |
512 | 4.83M | floating_decimal_64 fd; |
513 | 4.83M | fd.exponent = exp; |
514 | 4.83M | fd.mantissa = output; |
515 | 4.83M | return fd; |
516 | 4.83M | } |
517 | | |
518 | | inline |
519 | | int |
520 | | to_chars( |
521 | | const floating_decimal_64 v, |
522 | | const bool sign, |
523 | | char* const result) |
524 | 4.87M | { |
525 | | // Step 5: Print the decimal representation. |
526 | 4.87M | int index = 0; |
527 | 4.87M | if (sign) |
528 | 4.84k | result[index++] = '-'; |
529 | | |
530 | 4.87M | std::uint64_t output = v.mantissa; |
531 | 4.87M | std::uint32_t const olength = decimalLength17(output); |
532 | | |
533 | | #ifdef RYU_DEBUG |
534 | | printf("DIGITS=%" PRIu64 "\n", v.mantissa); |
535 | | printf("OLEN=%u\n", olength); |
536 | | printf("EXP=%u\n", v.exponent + olength); |
537 | | #endif |
538 | | |
539 | | // Print the decimal digits. |
540 | | // The following code is equivalent to: |
541 | | // for (uint32_t i = 0; i < olength - 1; ++i) { |
542 | | // const uint32_t c = output % 10; output /= 10; |
543 | | // result[index + olength - i] = (char) ('0' + c); |
544 | | // } |
545 | | // result[index] = '0' + output % 10; |
546 | | |
547 | 4.87M | std::uint32_t i = 0; |
548 | | // We prefer 32-bit operations, even on 64-bit platforms. |
549 | | // We have at most 17 digits, and uint32_t can store 9 digits. |
550 | | // If output doesn't fit into uint32_t, we cut off 8 digits, |
551 | | // so the rest will fit into uint32_t. |
552 | 4.87M | if ((output >> 32) != 0) |
553 | 4.76M | { |
554 | | // Expensive 64-bit division. |
555 | 4.76M | std::uint64_t const q = div1e8(output); |
556 | 4.76M | std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q); |
557 | 4.76M | output = q; |
558 | | |
559 | 4.76M | const std::uint32_t c = output2 % 10000; |
560 | 4.76M | output2 /= 10000; |
561 | 4.76M | const std::uint32_t d = output2 % 10000; |
562 | 4.76M | const std::uint32_t c0 = (c % 100) << 1; |
563 | 4.76M | const std::uint32_t c1 = (c / 100) << 1; |
564 | 4.76M | const std::uint32_t d0 = (d % 100) << 1; |
565 | 4.76M | const std::uint32_t d1 = (d / 100) << 1; |
566 | 4.76M | std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2); |
567 | 4.76M | std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2); |
568 | 4.76M | std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2); |
569 | 4.76M | std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2); |
570 | 4.76M | i += 8; |
571 | 4.76M | } |
572 | 4.87M | uint32_t output2 = (std::uint32_t)output; |
573 | 14.3M | while (output2 >= 10000) |
574 | 9.47M | { |
575 | 9.47M | #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 |
576 | 9.47M | const uint32_t c = output2 - 10000 * (output2 / 10000); |
577 | | #else |
578 | | const uint32_t c = output2 % 10000; |
579 | | #endif |
580 | 9.47M | output2 /= 10000; |
581 | 9.47M | const uint32_t c0 = (c % 100) << 1; |
582 | 9.47M | const uint32_t c1 = (c / 100) << 1; |
583 | 9.47M | memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2); |
584 | 9.47M | memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2); |
585 | 9.47M | i += 4; |
586 | 9.47M | } |
587 | 4.87M | if (output2 >= 100) { |
588 | 52.2k | const uint32_t c = (output2 % 100) << 1; |
589 | 52.2k | output2 /= 100; |
590 | 52.2k | memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2); |
591 | 52.2k | i += 2; |
592 | 52.2k | } |
593 | 4.87M | if (output2 >= 10) { |
594 | 66.0k | const uint32_t c = output2 << 1; |
595 | | // We can't use memcpy here: the decimal dot goes between these two digits. |
596 | 66.0k | result[index + olength - i] = DIGIT_TABLE()[c + 1]; |
597 | 66.0k | result[index] = DIGIT_TABLE()[c]; |
598 | 66.0k | } |
599 | 4.80M | else { |
600 | 4.80M | result[index] = (char)('0' + output2); |
601 | 4.80M | } |
602 | | |
603 | | // Print decimal point if needed. |
604 | 4.87M | if (olength > 1) { |
605 | 4.78M | result[index + 1] = '.'; |
606 | 4.78M | index += olength + 1; |
607 | 4.78M | } |
608 | 87.9k | else { |
609 | 87.9k | ++index; |
610 | 87.9k | } |
611 | | |
612 | | // Print the exponent. |
613 | 4.87M | result[index++] = 'E'; |
614 | 4.87M | int32_t exp = v.exponent + (int32_t)olength - 1; |
615 | 4.87M | if (exp < 0) { |
616 | 58.3k | result[index++] = '-'; |
617 | 58.3k | exp = -exp; |
618 | 58.3k | } |
619 | | |
620 | 4.87M | if (exp >= 100) { |
621 | 2.70k | const int32_t c = exp % 10; |
622 | 2.70k | memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2); |
623 | 2.70k | result[index + 2] = (char)('0' + c); |
624 | 2.70k | index += 3; |
625 | 2.70k | } |
626 | 4.87M | else if (exp >= 10) { |
627 | 4.82M | memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2); |
628 | 4.82M | index += 2; |
629 | 4.82M | } |
630 | 48.6k | else { |
631 | 48.6k | result[index++] = (char)('0' + exp); |
632 | 48.6k | } |
633 | | |
634 | 4.87M | return index; |
635 | 4.87M | } |
636 | | |
637 | | static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, |
638 | 4.87M | floating_decimal_64* const v) { |
639 | 4.87M | const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
640 | 4.87M | const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
641 | | |
642 | 4.87M | if (e2 > 0) { |
643 | | // f = m2 * 2^e2 >= 2^53 is an integer. |
644 | | // Ignore this case for now. |
645 | 4.76M | return false; |
646 | 4.76M | } |
647 | | |
648 | 107k | if (e2 < -52) { |
649 | | // f < 1. |
650 | 58.3k | return false; |
651 | 58.3k | } |
652 | | |
653 | | // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53. |
654 | | // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0. |
655 | 49.2k | const uint64_t mask = (1ull << -e2) - 1; |
656 | 49.2k | const uint64_t fraction = m2 & mask; |
657 | 49.2k | if (fraction != 0) { |
658 | 8.35k | return false; |
659 | 8.35k | } |
660 | | |
661 | | // f is an integer in the range [1, 2^53). |
662 | | // Note: mantissa might contain trailing (decimal) 0's. |
663 | | // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17(). |
664 | 40.9k | v->mantissa = m2 >> -e2; |
665 | 40.9k | v->exponent = 0; |
666 | 40.9k | return true; |
667 | 49.2k | } |
668 | | |
669 | | } // detail |
670 | | |
671 | | int |
672 | | d2s_buffered_n( |
673 | | double f, |
674 | | char* result) noexcept |
675 | 4.91M | { |
676 | 4.91M | using namespace detail; |
677 | | // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. |
678 | 4.91M | std::uint64_t const bits = double_to_bits(f); |
679 | | |
680 | | #ifdef RYU_DEBUG |
681 | | printf("IN="); |
682 | | for (std::int32_t bit = 63; bit >= 0; --bit) { |
683 | | printf("%d", (int)((bits >> bit) & 1)); |
684 | | } |
685 | | printf("\n"); |
686 | | #endif |
687 | | |
688 | | // Decode bits into sign, mantissa, and exponent. |
689 | 4.91M | const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; |
690 | 4.91M | const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); |
691 | 4.91M | const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); |
692 | | // Case distinction; exit early for the easy cases. |
693 | 4.91M | if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) { |
694 | 45.6k | return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0); |
695 | 45.6k | } |
696 | | |
697 | 4.87M | floating_decimal_64 v; |
698 | 4.87M | const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v); |
699 | 4.87M | if (isSmallInt) { |
700 | | // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros. |
701 | | // For scientific notation we need to move these zeros into the exponent. |
702 | | // (This is not needed for fixed-point notation, so it might be beneficial to trim |
703 | | // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.) |
704 | 351k | for (;;) { |
705 | 351k | std::uint64_t const q = div10(v.mantissa); |
706 | 351k | std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q); |
707 | 351k | if (r != 0) |
708 | 40.9k | break; |
709 | 310k | v.mantissa = q; |
710 | 310k | ++v.exponent; |
711 | 310k | } |
712 | 40.9k | } |
713 | 4.83M | else { |
714 | 4.83M | v = d2d(ieeeMantissa, ieeeExponent); |
715 | 4.83M | } |
716 | | |
717 | 4.87M | return to_chars(v, ieeeSign, result); |
718 | 4.91M | } |
719 | | |
720 | | } // ryu |
721 | | |
722 | | } // detail |
723 | | } // namespace json |
724 | | } // namespace boost |
725 | | |
726 | | #endif |