Coverage Report

Created: 2023-11-19 06:56

/src/boost/boost/json/detail/charconv/detail/fast_float/digit_comparison.hpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2020-2023 Daniel Lemire
2
// Copyright 2023 Matt Borland
3
// Distributed under the Boost Software License, Version 1.0.
4
// https://www.boost.org/LICENSE_1_0.txt
5
//
6
// Derivative of: https://github.com/fastfloat/fast_float
7
8
#ifndef BOOST_JSON_DETAIL_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP
9
#define BOOST_JSON_DETAIL_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP
10
11
#include <boost/json/detail/charconv/detail/fast_float/float_common.hpp>
12
#include <boost/json/detail/charconv/detail/fast_float/bigint.hpp>
13
#include <boost/json/detail/charconv/detail/fast_float/ascii_number.hpp>
14
#include <algorithm>
15
#include <cstdint>
16
#include <cstring>
17
#include <iterator>
18
19
namespace boost { namespace json { namespace detail { namespace charconv { namespace detail { namespace fast_float {
20
21
// 1e0 to 1e19
22
constexpr static uint64_t powers_of_ten_uint64[] = {
23
    1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
24
    1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
25
    100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
26
    1000000000000000000UL, 10000000000000000000UL};
27
28
// calculate the exponent, in scientific notation, of the number.
29
// this algorithm is not even close to optimized, but it has no practical
30
// effect on performance: in order to have a faster algorithm, we'd need
31
// to slow down performance for faster algorithms, and this is still fast.
32
template <typename UC>
33
BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
34
0
int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
35
0
  uint64_t mantissa = num.mantissa;
36
0
  int32_t exponent = int32_t(num.exponent);
37
0
  while (mantissa >= 10000) {
38
0
    mantissa /= 10000;
39
0
    exponent += 4;
40
0
  }
41
0
  while (mantissa >= 100) {
42
0
    mantissa /= 100;
43
0
    exponent += 2;
44
0
  }
45
0
  while (mantissa >= 10) {
46
0
    mantissa /= 10;
47
0
    exponent += 1;
48
0
  }
49
0
  return exponent;
50
0
}
51
52
// this converts a native floating-point number to an extended-precision float.
53
template <typename T>
54
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
55
0
adjusted_mantissa to_extended(T value) noexcept {
56
0
  using equiv_uint = typename binary_format<T>::equiv_uint;
57
0
  constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
58
0
  constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
59
0
  constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
60
61
0
  adjusted_mantissa am;
62
0
  int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
63
0
  equiv_uint bits;
64
#ifdef BOOST_JSON_HAS_BIT_CAST
65
  bits = std::bit_cast<equiv_uint>(value);
66
#else
67
0
  ::memcpy(&bits, &value, sizeof(T));
68
0
#endif
69
0
  if ((bits & exponent_mask) == 0) {
70
    // denormal
71
0
    am.power2 = 1 - bias;
72
0
    am.mantissa = bits & mantissa_mask;
73
0
  } else {
74
    // normal
75
0
    am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
76
0
    am.power2 -= bias;
77
0
    am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
78
0
  }
79
80
0
  return am;
81
0
}
82
83
// get the extended precision value of the halfway point between b and b+u.
84
// we are given a native float that represents b, so we need to adjust it
85
// halfway between b and b+u.
86
template <typename T>
87
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
88
0
adjusted_mantissa to_extended_halfway(T value) noexcept {
89
0
  adjusted_mantissa am = to_extended(value);
90
0
  am.mantissa <<= 1;
91
0
  am.mantissa += 1;
92
0
  am.power2 -= 1;
93
0
  return am;
94
0
}
95
96
// round an extended-precision float to the nearest machine float.
97
template <typename T, typename callback>
98
BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
99
0
void round(adjusted_mantissa& am, callback cb) noexcept {
100
0
  int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
101
0
  if (-am.power2 >= mantissa_shift) {
102
    // have a denormal float
103
0
    int32_t shift = -am.power2 + 1;
104
0
    cb(am, std::min<int32_t>(shift, 64));
105
    // check for round-up: if rounding-nearest carried us to the hidden bit.
106
0
    am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
107
0
    return;
108
0
  }
109
110
  // have a normal float, use the default shift.
111
0
  cb(am, mantissa_shift);
112
113
  // check for carry
114
0
  if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
115
0
    am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
116
0
    am.power2++;
117
0
  }
118
119
  // check for infinite: we could have carried to an infinite power
120
0
  am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
121
0
  if (am.power2 >= binary_format<T>::infinite_power()) {
122
0
    am.power2 = binary_format<T>::infinite_power();
123
0
    am.mantissa = 0;
124
0
  }
125
0
}
Unexecuted instantiation: void boost::json::detail::charconv::detail::fast_float::round<double, boost::json::detail::charconv::detail::fast_float::positive_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#1}>(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, boost::json::detail::charconv::detail::fast_float::positive_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#1})
Unexecuted instantiation: void boost::json::detail::charconv::detail::fast_float::round<double, boost::json::detail::charconv::detail::fast_float::negative_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, boost::json::detail::charconv::detail::fast_float::adjusted_mantissa, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#1}>(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, boost::json::detail::charconv::detail::fast_float::negative_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, boost::json::detail::charconv::detail::fast_float::adjusted_mantissa, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#1})
Unexecuted instantiation: void boost::json::detail::charconv::detail::fast_float::round<double, boost::json::detail::charconv::detail::fast_float::negative_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, boost::json::detail::charconv::detail::fast_float::adjusted_mantissa, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#2}>(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, boost::json::detail::charconv::detail::fast_float::negative_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, boost::json::detail::charconv::detail::fast_float::adjusted_mantissa, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#2})
126
127
template <typename callback>
128
BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
129
0
void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
130
0
  const uint64_t mask
131
0
  = (shift == 64)
132
0
    ? UINT64_MAX
133
0
    : (uint64_t(1) << shift) - 1;
134
0
  const uint64_t halfway
135
0
  = (shift == 0)
136
0
    ? 0
137
0
    : uint64_t(1) << (shift - 1);
138
0
  uint64_t truncated_bits = am.mantissa & mask;
139
0
  bool is_above = truncated_bits > halfway;
140
0
  bool is_halfway = truncated_bits == halfway;
141
142
  // shift digits into position
143
0
  if (shift == 64) {
144
0
    am.mantissa = 0;
145
0
  } else {
146
0
    am.mantissa >>= shift;
147
0
  }
148
0
  am.power2 += shift;
149
150
0
  bool is_odd = (am.mantissa & 1) == 1;
151
0
  am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
152
0
}
Unexecuted instantiation: void boost::json::detail::charconv::detail::fast_float::round_nearest_tie_even<boost::json::detail::charconv::detail::fast_float::positive_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#1}::operator()(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int) const::{lambda(bool, bool, bool)#1}>(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int, boost::json::detail::charconv::detail::fast_float::positive_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#1}::operator()(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int) const::{lambda(bool, bool, bool)#1})
Unexecuted instantiation: void boost::json::detail::charconv::detail::fast_float::round_nearest_tie_even<boost::json::detail::charconv::detail::fast_float::negative_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, boost::json::detail::charconv::detail::fast_float::adjusted_mantissa, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#2}::operator()(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int) const::{lambda(bool, bool, bool)#1}>(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int, boost::json::detail::charconv::detail::fast_float::negative_digit_comp<double>(boost::json::detail::charconv::detail::fast_float::bigint&, boost::json::detail::charconv::detail::fast_float::adjusted_mantissa, int)::{lambda(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int)#2}::operator()(boost::json::detail::charconv::detail::fast_float::adjusted_mantissa&, int) const::{lambda(bool, bool, bool)#1})
153
154
BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
155
0
void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
156
0
  if (shift == 64) {
157
0
    am.mantissa = 0;
158
0
  } else {
159
0
    am.mantissa >>= shift;
160
0
  }
161
0
  am.power2 += shift;
162
0
}
163
template <typename UC>
164
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
165
0
void skip_zeros(UC const * & first, UC const * last) noexcept {
166
0
  uint64_t val;
167
0
  while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
168
0
    ::memcpy(&val, first, sizeof(uint64_t));
169
0
    if (val != int_cmp_zeros<UC>()) {
170
0
      break;
171
0
    }
172
0
    first += int_cmp_len<UC>();
173
0
  }
174
0
  while (first != last) {
175
0
    if (*first != UC('0')) {
176
0
      break;
177
0
    }
178
0
    first++;
179
0
  }
180
0
}
181
182
// determine if any non-zero digits were truncated.
183
// all characters must be valid digits.
184
template <typename UC>
185
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
186
0
bool is_truncated(UC const * first, UC const * last) noexcept {
187
  // do 8-bit optimizations, can just compare to 8 literal 0s.
188
0
  uint64_t val;
189
0
  while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
190
0
    ::memcpy(&val, first, sizeof(uint64_t));
191
0
    if (val != int_cmp_zeros<UC>()) {
192
0
      return true;
193
0
    }
194
0
    first += int_cmp_len<UC>();
195
0
  }
196
0
  while (first != last) {
197
0
    if (*first != UC('0')) {
198
0
      return true;
199
0
    }
200
0
    ++first;
201
0
  }
202
0
  return false;
203
0
}
204
template <typename UC>
205
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
206
0
bool is_truncated(span<const UC> s) noexcept {
207
0
  return is_truncated(s.ptr, s.ptr + s.len());
208
0
}
209
210
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
211
0
void parse_eight_digits(const char16_t*& , limb& , size_t& , size_t& ) noexcept {
212
0
  // currently unused
213
0
}
214
215
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
216
0
void parse_eight_digits(const char32_t*& , limb& , size_t& , size_t& ) noexcept {
217
0
  // currently unused
218
0
}
219
220
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
221
0
void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
222
0
  value = value * 100000000 + parse_eight_digits_unrolled(p);
223
0
  p += 8;
224
0
  counter += 8;
225
0
  count += 8;
226
0
}
227
228
template <typename UC>
229
BOOST_FORCEINLINE BOOST_JSON_CXX14_CONSTEXPR_NO_INLINE
230
0
void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept {
231
0
  value = value * 10 + limb(*p - UC('0'));
232
0
  p++;
233
0
  counter++;
234
0
  count++;
235
0
}
236
237
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
238
0
void add_native(bigint& big, limb power, limb value) noexcept {
239
0
  big.mul(power);
240
0
  big.add(value);
241
0
}
242
243
BOOST_FORCEINLINE BOOST_JSON_FASTFLOAT_CONSTEXPR20
244
0
void round_up_bigint(bigint& big, size_t& count) noexcept {
245
  // need to round-up the digits, but need to avoid rounding
246
  // ....9999 to ...10000, which could cause a false halfway point.
247
0
  add_native(big, 10, 1);
248
0
  count++;
249
0
}
250
251
// parse the significant digits into a big integer
252
template <typename UC>
253
inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
254
0
void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept {
255
  // try to minimize the number of big integer and scalar multiplication.
256
  // therefore, try to parse 8 digits at a time, and multiply by the largest
257
  // scalar value (9 or 19 digits) for each step.
258
0
  size_t counter = 0;
259
0
  digits = 0;
260
0
  limb value = 0;
261
0
#ifdef BOOST_JSON_FASTFLOAT_64BIT_LIMB
262
0
  constexpr size_t step = 19;
263
#else
264
  constexpr size_t step = 9;
265
#endif
266
267
  // process all integer digits.
268
0
  UC const * p = num.integer.ptr;
269
0
  UC const * pend = p + num.integer.len();
270
0
  skip_zeros(p, pend);
271
  // process all digits, in increments of step per loop
272
0
  while (p != pend) {
273
0
    if (std::is_same<UC,char>::value) {
274
0
      while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
275
0
        parse_eight_digits(p, value, counter, digits);
276
0
      }
277
0
    }
278
0
    while (counter < step && p != pend && digits < max_digits) {
279
0
      parse_one_digit(p, value, counter, digits);
280
0
    }
281
0
    if (digits == max_digits) {
282
      // add the temporary value, then check if we've truncated any digits
283
0
      add_native(result, limb(powers_of_ten_uint64[counter]), value);
284
0
      bool truncated = is_truncated(p, pend);
285
0
      if (num.fraction.ptr != nullptr) {
286
0
        truncated |= is_truncated(num.fraction);
287
0
      }
288
0
      if (truncated) {
289
0
        round_up_bigint(result, digits);
290
0
      }
291
0
      return;
292
0
    } else {
293
0
      add_native(result, limb(powers_of_ten_uint64[counter]), value);
294
0
      counter = 0;
295
0
      value = 0;
296
0
    }
297
0
  }
298
299
  // add our fraction digits, if they're available.
300
0
  if (num.fraction.ptr != nullptr) {
301
0
    p = num.fraction.ptr;
302
0
    pend = p + num.fraction.len();
303
0
    if (digits == 0) {
304
0
      skip_zeros(p, pend);
305
0
    }
306
    // process all digits, in increments of step per loop
307
0
    while (p != pend) {
308
0
      if (std::is_same<UC,char>::value) {
309
0
        while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
310
0
          parse_eight_digits(p, value, counter, digits);
311
0
        }
312
0
      }
313
0
      while (counter < step && p != pend && digits < max_digits) {
314
0
        parse_one_digit(p, value, counter, digits);
315
0
      }
316
0
      if (digits == max_digits) {
317
        // add the temporary value, then check if we've truncated any digits
318
0
        add_native(result, limb(powers_of_ten_uint64[counter]), value);
319
0
        bool truncated = is_truncated(p, pend);
320
0
        if (truncated) {
321
0
          round_up_bigint(result, digits);
322
0
        }
323
0
        return;
324
0
      } else {
325
0
        add_native(result, limb(powers_of_ten_uint64[counter]), value);
326
0
        counter = 0;
327
0
        value = 0;
328
0
      }
329
0
    }
330
0
  }
331
332
0
  if (counter != 0) {
333
0
    add_native(result, limb(powers_of_ten_uint64[counter]), value);
334
0
  }
335
0
}
336
337
template <typename T>
338
inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
339
0
adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
340
0
  bigmant.pow10(uint32_t(exponent));
341
0
  adjusted_mantissa answer;
342
0
  bool truncated;
343
0
  answer.mantissa = bigmant.hi64(truncated);
344
0
  int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
345
0
  answer.power2 = bigmant.bit_length() - 64 + bias;
346
347
0
  round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
348
0
    round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
349
0
      return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
350
0
    });
351
0
  });
352
353
0
  return answer;
354
0
}
355
356
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
357
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
358
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
359
// we then need to scale by `2^(f- e)`, and then the two significant digits
360
// are of the same magnitude.
361
template <typename T>
362
inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
363
0
adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
364
0
  bigint& real_digits = bigmant;
365
0
  int32_t real_exp = exponent;
366
367
  // get the value of `b`, rounded down, and get a bigint representation of b+h
368
0
  adjusted_mantissa am_b = am;
369
  // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
370
0
  round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
371
0
  T b;
372
0
  to_float(false, am_b, b);
373
0
  adjusted_mantissa theor = to_extended_halfway(b);
374
0
  bigint theor_digits(theor.mantissa);
375
0
  int32_t theor_exp = theor.power2;
376
377
  // scale real digits and theor digits to be same power.
378
0
  int32_t pow2_exp = theor_exp - real_exp;
379
0
  uint32_t pow5_exp = uint32_t(-real_exp);
380
0
  if (pow5_exp != 0) {
381
0
    theor_digits.pow5(pow5_exp);
382
0
  }
383
0
  if (pow2_exp > 0) {
384
0
    theor_digits.pow2(uint32_t(pow2_exp));
385
0
  } else if (pow2_exp < 0) {
386
0
    real_digits.pow2(uint32_t(-pow2_exp));
387
0
  }
388
389
  // compare digits, and use it to director rounding
390
0
  int ord = real_digits.compare(theor_digits);
391
0
  adjusted_mantissa answer = am;
392
0
  round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
393
0
    round_nearest_tie_even(a, shift, [ord](bool is_odd, bool, bool) -> bool {
394
0
      if (ord > 0) {
395
0
        return true;
396
0
      } else if (ord < 0) {
397
0
        return false;
398
0
      } else {
399
0
        return is_odd;
400
0
      }
401
0
    });
402
0
  });
403
404
0
  return answer;
405
0
}
406
407
// parse the significant digits as a big integer to unambiguously round
408
// the significant digits. here, we are trying to determine how to round
409
// an extended float representation close to `b+h`, halfway between `b`
410
// (the float rounded-down) and `b+u`, the next positive float. this
411
// algorithm is always correct, and uses one of two approaches. when
412
// the exponent is positive relative to the significant digits (such as
413
// 1234), we create a big-integer representation, get the high 64-bits,
414
// determine if any lower bits are truncated, and use that to direct
415
// rounding. in case of a negative exponent relative to the significant
416
// digits (such as 1.2345), we create a theoretical representation of
417
// `b` as a big-integer type, scaled to the same binary exponent as
418
// the actual digits. we then compare the big integer representations
419
// of both, and use that to direct rounding.
420
template <typename T, typename UC>
421
inline BOOST_JSON_FASTFLOAT_CONSTEXPR20
422
0
adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept {
423
  // remove the invalid exponent bias
424
0
  am.power2 -= invalid_am_bias;
425
426
0
  int32_t sci_exp = scientific_exponent(num);
427
0
  size_t max_digits = binary_format<T>::max_digits();
428
0
  size_t digits = 0;
429
0
  bigint bigmant;
430
0
  parse_mantissa(bigmant, num, max_digits, digits);
431
  // can't underflow, since digits is at most max_digits.
432
0
  int32_t exponent = sci_exp + 1 - int32_t(digits);
433
0
  if (exponent >= 0) {
434
0
    return positive_digit_comp<T>(bigmant, exponent);
435
0
  } else {
436
0
    return negative_digit_comp<T>(bigmant, am, exponent);
437
0
  }
438
0
}
439
440
}}}}}} // namespace fast_float
441
442
#endif