Coverage Report

Created: 2025-01-26 06:54

/src/boost/boost/range/concepts.hpp
Line
Count
Source (jump to first uncovered line)
1
// Boost.Range library concept checks
2
//
3
//  Copyright Neil Groves 2009. Use, modification and distribution
4
//  are subject to the Boost Software License, Version 1.0. (See
5
//  accompanying file LICENSE_1_0.txt or copy at
6
//  http://www.boost.org/LICENSE_1_0.txt)
7
//
8
//  Copyright Daniel Walker 2006. Use, modification and distribution
9
//  are subject to the Boost Software License, Version 1.0. (See
10
//  accompanying file LICENSE_1_0.txt or copy at
11
//  http://www.boost.org/LICENSE_1_0.txt)
12
//
13
// For more information, see http://www.boost.org/libs/range/
14
//
15
16
#ifndef BOOST_RANGE_CONCEPTS_HPP
17
#define BOOST_RANGE_CONCEPTS_HPP
18
19
#include <boost/concept_check.hpp>
20
#include <boost/iterator/iterator_concepts.hpp>
21
#include <boost/range/begin.hpp>
22
#include <boost/range/end.hpp>
23
#include <boost/range/iterator.hpp>
24
#include <boost/range/value_type.hpp>
25
#include <boost/range/detail/misc_concept.hpp>
26
#include <boost/type_traits/remove_reference.hpp>
27
28
#include <iterator>
29
30
/*!
31
 * \file
32
 * \brief Concept checks for the Boost Range library.
33
 *
34
 * The structures in this file may be used in conjunction with the
35
 * Boost Concept Check library to insure that the type of a function
36
 * parameter is compatible with a range concept. If not, a meaningful
37
 * compile time error is generated. Checks are provided for the range
38
 * concepts related to iterator traversal categories. For example, the
39
 * following line checks that the type T models the ForwardRange
40
 * concept.
41
 *
42
 * \code
43
 * BOOST_CONCEPT_ASSERT((ForwardRangeConcept<T>));
44
 * \endcode
45
 *
46
 * A different concept check is required to ensure writeable value
47
 * access. For example to check for a ForwardRange that can be written
48
 * to, the following code is required.
49
 *
50
 * \code
51
 * BOOST_CONCEPT_ASSERT((WriteableForwardRangeConcept<T>));
52
 * \endcode
53
 *
54
 * \see http://www.boost.org/libs/range/doc/range.html for details
55
 * about range concepts.
56
 * \see http://www.boost.org/libs/iterator/doc/iterator_concepts.html
57
 * for details about iterator concepts.
58
 * \see http://www.boost.org/libs/concept_check/concept_check.htm for
59
 * details about concept checks.
60
 */
61
62
namespace boost {
63
64
    namespace range_detail {
65
66
#ifndef BOOST_RANGE_ENABLE_CONCEPT_ASSERT
67
68
// List broken compiler versions here:
69
#ifndef __clang__
70
    #ifdef __GNUC__
71
        // GNUC 4.2 has strange issues correctly detecting compliance with the Concepts
72
        // hence the least disruptive approach is to turn-off the concept checking for
73
        // this version of the compiler.
74
        #if __GNUC__ == 4 && __GNUC_MINOR__ == 2
75
            #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
76
        #endif
77
    #endif
78
79
    #ifdef __GCCXML__
80
        // GCC XML, unsurprisingly, has the same issues
81
        #if __GCCXML_GNUC__ == 4 && __GCCXML_GNUC_MINOR__ == 2
82
            #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
83
        #endif
84
    #endif
85
#endif
86
87
    #ifdef BOOST_BORLANDC
88
        #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
89
    #endif
90
91
    #ifdef __PATHCC__
92
        #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
93
    #endif
94
95
// Default to using the concept asserts unless we have defined it off
96
// during the search for black listed compilers.
97
    #ifndef BOOST_RANGE_ENABLE_CONCEPT_ASSERT
98
        #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 1
99
    #endif
100
101
#endif
102
103
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
104
0
    #define BOOST_RANGE_CONCEPT_ASSERT( x ) BOOST_CONCEPT_ASSERT( x )
105
#else
106
    #define BOOST_RANGE_CONCEPT_ASSERT( x )
107
#endif
108
109
        // Rationale for the inclusion of redefined iterator concept
110
        // classes:
111
        //
112
        // The Range algorithms often do not require that the iterators are
113
        // Assignable or default constructable, but the correct standard
114
        // conformant iterators do require the iterators to be a model of the
115
        // Assignable concept.
116
        // Iterators that contains a functor that is not assignable therefore
117
        // are not correct models of the standard iterator concepts,
118
        // despite being adequate for most algorithms. An example of this
119
        // use case is the combination of the boost::adaptors::filtered
120
        // class with a boost::lambda::bind generated functor.
121
        // Ultimately modeling the range concepts using composition
122
        // with the Boost.Iterator concepts would render the library
123
        // incompatible with many common Boost.Lambda expressions.
124
        template<class Iterator>
125
        struct IncrementableIteratorConcept : CopyConstructible<Iterator>
126
        {
127
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
128
            typedef BOOST_DEDUCED_TYPENAME iterator_traversal<Iterator>::type traversal_category;
129
130
            BOOST_RANGE_CONCEPT_ASSERT((
131
                Convertible<
132
                    traversal_category,
133
                    incrementable_traversal_tag
134
                >));
135
136
            BOOST_CONCEPT_USAGE(IncrementableIteratorConcept)
137
            {
138
                ++i;
139
                (void)i++;
140
            }
141
        private:
142
            Iterator i;
143
#endif
144
        };
145
146
        template<class Iterator>
147
        struct SinglePassIteratorConcept
148
            : IncrementableIteratorConcept<Iterator>
149
            , EqualityComparable<Iterator>
150
        {
151
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
152
            BOOST_RANGE_CONCEPT_ASSERT((
153
                Convertible<
154
                    BOOST_DEDUCED_TYPENAME SinglePassIteratorConcept::traversal_category,
155
                    single_pass_traversal_tag
156
                >));
157
158
            BOOST_CONCEPT_USAGE(SinglePassIteratorConcept)
159
            {
160
                Iterator i2(++i);
161
                boost::ignore_unused_variable_warning(i2);
162
163
                // deliberately we are loose with the postfix version for the single pass
164
                // iterator due to the commonly poor adherence to the specification means that
165
                // many algorithms would be unusable, whereas actually without the check they
166
                // work
167
                (void)(i++);
168
169
                BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::reference r1(*i);
170
                boost::ignore_unused_variable_warning(r1);
171
172
                BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::reference r2(*(++i));
173
                boost::ignore_unused_variable_warning(r2);
174
            }
175
        private:
176
            Iterator i;
177
#endif
178
        };
179
180
        template<class Iterator>
181
        struct ForwardIteratorConcept
182
            : SinglePassIteratorConcept<Iterator>
183
            , DefaultConstructible<Iterator>
184
        {
185
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
186
            typedef BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::difference_type difference_type;
187
188
            BOOST_MPL_ASSERT((is_integral<difference_type>));
189
            BOOST_MPL_ASSERT_RELATION(std::numeric_limits<difference_type>::is_signed, ==, true);
190
191
            BOOST_RANGE_CONCEPT_ASSERT((
192
                Convertible<
193
                    BOOST_DEDUCED_TYPENAME ForwardIteratorConcept::traversal_category,
194
                    forward_traversal_tag
195
                >));
196
197
            BOOST_CONCEPT_USAGE(ForwardIteratorConcept)
198
            {
199
                // See the above note in the SinglePassIteratorConcept about the handling of the
200
                // postfix increment. Since with forward and better iterators there is no need
201
                // for a proxy, we can sensibly require that the dereference result
202
                // is convertible to reference.
203
                Iterator i2(i++);
204
                boost::ignore_unused_variable_warning(i2);
205
                BOOST_DEDUCED_TYPENAME std::iterator_traits<Iterator>::reference r(*(i++));
206
                boost::ignore_unused_variable_warning(r);
207
            }
208
        private:
209
            Iterator i;
210
#endif
211
         };
212
213
         template<class Iterator>
214
         struct BidirectionalIteratorConcept
215
             : ForwardIteratorConcept<Iterator>
216
         {
217
 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
218
             BOOST_RANGE_CONCEPT_ASSERT((
219
                 Convertible<
220
                     BOOST_DEDUCED_TYPENAME BidirectionalIteratorConcept::traversal_category,
221
                     bidirectional_traversal_tag
222
                 >));
223
224
             BOOST_CONCEPT_USAGE(BidirectionalIteratorConcept)
225
             {
226
                 --i;
227
                 (void)i--;
228
             }
229
         private:
230
             Iterator i;
231
 #endif
232
         };
233
234
         template<class Iterator>
235
         struct RandomAccessIteratorConcept
236
             : BidirectionalIteratorConcept<Iterator>
237
         {
238
 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
239
             BOOST_RANGE_CONCEPT_ASSERT((
240
                 Convertible<
241
                     BOOST_DEDUCED_TYPENAME RandomAccessIteratorConcept::traversal_category,
242
                     random_access_traversal_tag
243
                 >));
244
245
             BOOST_CONCEPT_USAGE(RandomAccessIteratorConcept)
246
             {
247
                 i += n;
248
                 i = i + n;
249
                 i = n + i;
250
                 i -= n;
251
                 i = i - n;
252
                 n = i - j;
253
             }
254
         private:
255
             BOOST_DEDUCED_TYPENAME BidirectionalIteratorConcept<Iterator>::difference_type n;
256
             Iterator i;
257
             Iterator j;
258
 #endif
259
         };
260
261
    } // namespace range_detail
262
263
    //! Check if a type T models the SinglePassRange range concept.
264
    template<class T>
265
    struct SinglePassRangeConcept
266
    {
267
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
268
        // A few compilers don't like the rvalue reference T types so just
269
        // remove it.
270
        typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type Rng;
271
272
        typedef BOOST_DEDUCED_TYPENAME range_iterator<
273
            Rng const
274
        >::type const_iterator;
275
276
        typedef BOOST_DEDUCED_TYPENAME range_iterator<Rng>::type iterator;
277
278
        BOOST_RANGE_CONCEPT_ASSERT((
279
                range_detail::SinglePassIteratorConcept<iterator>));
280
281
        BOOST_RANGE_CONCEPT_ASSERT((
282
                range_detail::SinglePassIteratorConcept<const_iterator>));
283
284
        BOOST_CONCEPT_USAGE(SinglePassRangeConcept)
285
        {
286
            // This has been modified from assigning to this->i
287
            // (where i was a member variable) to improve
288
            // compatibility with Boost.Lambda
289
            iterator i1 = boost::begin(*m_range);
290
            iterator i2 = boost::end(*m_range);
291
292
            boost::ignore_unused_variable_warning(i1);
293
            boost::ignore_unused_variable_warning(i2);
294
295
            const_constraints(*m_range);
296
        }
297
298
    private:
299
        void const_constraints(const Rng& const_range)
300
0
        {
301
0
            const_iterator ci1 = boost::begin(const_range);
302
0
            const_iterator ci2 = boost::end(const_range);
303
0
304
0
            boost::ignore_unused_variable_warning(ci1);
305
0
            boost::ignore_unused_variable_warning(ci2);
306
0
        }
307
308
       // Rationale:
309
       // The type of m_range is T* rather than T because it allows
310
       // T to be an abstract class. The other obvious alternative of
311
       // T& produces a warning on some compilers.
312
       Rng* m_range;
313
#endif
314
    };
315
316
    //! Check if a type T models the ForwardRange range concept.
317
    template<class T>
318
    struct ForwardRangeConcept : SinglePassRangeConcept<T>
319
    {
320
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
321
        BOOST_RANGE_CONCEPT_ASSERT((range_detail::ForwardIteratorConcept<BOOST_DEDUCED_TYPENAME ForwardRangeConcept::iterator>));
322
        BOOST_RANGE_CONCEPT_ASSERT((range_detail::ForwardIteratorConcept<BOOST_DEDUCED_TYPENAME ForwardRangeConcept::const_iterator>));
323
#endif
324
    };
325
326
    template<class T>
327
    struct WriteableRangeConcept
328
    {
329
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
330
        typedef BOOST_DEDUCED_TYPENAME range_iterator<T>::type iterator;
331
332
        BOOST_CONCEPT_USAGE(WriteableRangeConcept)
333
        {
334
            *i = v;
335
        }
336
    private:
337
        iterator i;
338
        BOOST_DEDUCED_TYPENAME range_value<T>::type v;
339
#endif
340
    };
341
342
    //! Check if a type T models the WriteableForwardRange range concept.
343
    template<class T>
344
    struct WriteableForwardRangeConcept
345
        : ForwardRangeConcept<T>
346
        , WriteableRangeConcept<T>
347
    {
348
    };
349
350
    //! Check if a type T models the BidirectionalRange range concept.
351
    template<class T>
352
    struct BidirectionalRangeConcept : ForwardRangeConcept<T>
353
    {
354
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
355
        BOOST_RANGE_CONCEPT_ASSERT((range_detail::BidirectionalIteratorConcept<BOOST_DEDUCED_TYPENAME BidirectionalRangeConcept::iterator>));
356
        BOOST_RANGE_CONCEPT_ASSERT((range_detail::BidirectionalIteratorConcept<BOOST_DEDUCED_TYPENAME BidirectionalRangeConcept::const_iterator>));
357
#endif
358
    };
359
360
    //! Check if a type T models the WriteableBidirectionalRange range concept.
361
    template<class T>
362
    struct WriteableBidirectionalRangeConcept
363
        : BidirectionalRangeConcept<T>
364
        , WriteableRangeConcept<T>
365
    {
366
    };
367
368
    //! Check if a type T models the RandomAccessRange range concept.
369
    template<class T>
370
    struct RandomAccessRangeConcept : BidirectionalRangeConcept<T>
371
    {
372
#if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
373
        BOOST_RANGE_CONCEPT_ASSERT((range_detail::RandomAccessIteratorConcept<BOOST_DEDUCED_TYPENAME RandomAccessRangeConcept::iterator>));
374
        BOOST_RANGE_CONCEPT_ASSERT((range_detail::RandomAccessIteratorConcept<BOOST_DEDUCED_TYPENAME RandomAccessRangeConcept::const_iterator>));
375
#endif
376
    };
377
378
    //! Check if a type T models the WriteableRandomAccessRange range concept.
379
    template<class T>
380
    struct WriteableRandomAccessRangeConcept
381
        : RandomAccessRangeConcept<T>
382
        , WriteableRangeConcept<T>
383
    {
384
    };
385
386
} // namespace boost
387
388
#endif // BOOST_RANGE_CONCEPTS_HPP