Coverage Report

Created: 2023-06-07 07:11

/src/boringssl/ssl/d1_both.cc
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * DTLS implementation written by Nagendra Modadugu
3
 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
4
 */
5
/* ====================================================================
6
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 *
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 *
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in
17
 *    the documentation and/or other materials provided with the
18
 *    distribution.
19
 *
20
 * 3. All advertising materials mentioning features or use of this
21
 *    software must display the following acknowledgment:
22
 *    "This product includes software developed by the OpenSSL Project
23
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24
 *
25
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26
 *    endorse or promote products derived from this software without
27
 *    prior written permission. For written permission, please contact
28
 *    openssl-core@openssl.org.
29
 *
30
 * 5. Products derived from this software may not be called "OpenSSL"
31
 *    nor may "OpenSSL" appear in their names without prior written
32
 *    permission of the OpenSSL Project.
33
 *
34
 * 6. Redistributions of any form whatsoever must retain the following
35
 *    acknowledgment:
36
 *    "This product includes software developed by the OpenSSL Project
37
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38
 *
39
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50
 * OF THE POSSIBILITY OF SUCH DAMAGE.
51
 * ====================================================================
52
 *
53
 * This product includes cryptographic software written by Eric Young
54
 * (eay@cryptsoft.com).  This product includes software written by Tim
55
 * Hudson (tjh@cryptsoft.com).
56
 *
57
 */
58
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
59
 * All rights reserved.
60
 *
61
 * This package is an SSL implementation written
62
 * by Eric Young (eay@cryptsoft.com).
63
 * The implementation was written so as to conform with Netscapes SSL.
64
 *
65
 * This library is free for commercial and non-commercial use as long as
66
 * the following conditions are aheared to.  The following conditions
67
 * apply to all code found in this distribution, be it the RC4, RSA,
68
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
69
 * included with this distribution is covered by the same copyright terms
70
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
71
 *
72
 * Copyright remains Eric Young's, and as such any Copyright notices in
73
 * the code are not to be removed.
74
 * If this package is used in a product, Eric Young should be given attribution
75
 * as the author of the parts of the library used.
76
 * This can be in the form of a textual message at program startup or
77
 * in documentation (online or textual) provided with the package.
78
 *
79
 * Redistribution and use in source and binary forms, with or without
80
 * modification, are permitted provided that the following conditions
81
 * are met:
82
 * 1. Redistributions of source code must retain the copyright
83
 *    notice, this list of conditions and the following disclaimer.
84
 * 2. Redistributions in binary form must reproduce the above copyright
85
 *    notice, this list of conditions and the following disclaimer in the
86
 *    documentation and/or other materials provided with the distribution.
87
 * 3. All advertising materials mentioning features or use of this software
88
 *    must display the following acknowledgement:
89
 *    "This product includes cryptographic software written by
90
 *     Eric Young (eay@cryptsoft.com)"
91
 *    The word 'cryptographic' can be left out if the rouines from the library
92
 *    being used are not cryptographic related :-).
93
 * 4. If you include any Windows specific code (or a derivative thereof) from
94
 *    the apps directory (application code) you must include an acknowledgement:
95
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
96
 *
97
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107
 * SUCH DAMAGE.
108
 *
109
 * The licence and distribution terms for any publically available version or
110
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
111
 * copied and put under another distribution licence
112
 * [including the GNU Public Licence.] */
113
114
#include <openssl/ssl.h>
115
116
#include <assert.h>
117
#include <limits.h>
118
#include <string.h>
119
120
#include <openssl/err.h>
121
#include <openssl/evp.h>
122
#include <openssl/mem.h>
123
#include <openssl/rand.h>
124
125
#include "../crypto/internal.h"
126
#include "internal.h"
127
128
129
BSSL_NAMESPACE_BEGIN
130
131
// TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
132
// for these values? Notably, why is kMinMTU a function of the transport
133
// protocol's overhead rather than, say, what's needed to hold a minimally-sized
134
// handshake fragment plus protocol overhead.
135
136
// kMinMTU is the minimum acceptable MTU value.
137
static const unsigned int kMinMTU = 256 - 28;
138
139
// kDefaultMTU is the default MTU value to use if neither the user nor
140
// the underlying BIO supplies one.
141
static const unsigned int kDefaultMTU = 1500 - 28;
142
143
144
// Receiving handshake messages.
145
146
0
hm_fragment::~hm_fragment() {
147
0
  OPENSSL_free(data);
148
0
  OPENSSL_free(reassembly);
149
0
}
150
151
static UniquePtr<hm_fragment> dtls1_hm_fragment_new(
152
0
    const struct hm_header_st *msg_hdr) {
153
0
  ScopedCBB cbb;
154
0
  UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>();
155
0
  if (!frag) {
156
0
    return nullptr;
157
0
  }
158
0
  frag->type = msg_hdr->type;
159
0
  frag->seq = msg_hdr->seq;
160
0
  frag->msg_len = msg_hdr->msg_len;
161
162
  // Allocate space for the reassembled message and fill in the header.
163
0
  frag->data =
164
0
      (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
165
0
  if (frag->data == NULL) {
166
0
    return nullptr;
167
0
  }
168
169
0
  if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) ||
170
0
      !CBB_add_u8(cbb.get(), msg_hdr->type) ||
171
0
      !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
172
0
      !CBB_add_u16(cbb.get(), msg_hdr->seq) ||
173
0
      !CBB_add_u24(cbb.get(), 0 /* frag_off */) ||
174
0
      !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
175
0
      !CBB_finish(cbb.get(), NULL, NULL)) {
176
0
    return nullptr;
177
0
  }
178
179
  // If the handshake message is empty, |frag->reassembly| is NULL.
180
0
  if (msg_hdr->msg_len > 0) {
181
    // Initialize reassembly bitmask.
182
0
    if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
183
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
184
0
      return nullptr;
185
0
    }
186
0
    size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
187
0
    frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len);
188
0
    if (frag->reassembly == NULL) {
189
0
      return nullptr;
190
0
    }
191
0
    OPENSSL_memset(frag->reassembly, 0, bitmask_len);
192
0
  }
193
194
0
  return frag;
195
0
}
196
197
// bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
198
// exclusive, set.
199
0
static uint8_t bit_range(size_t start, size_t end) {
200
0
  return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
201
0
}
202
203
// dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
204
// as received in |frag|. If |frag| becomes complete, it clears
205
// |frag->reassembly|. The range must be within the bounds of |frag|'s message
206
// and |frag->reassembly| must not be NULL.
207
static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
208
0
                                   size_t end) {
209
0
  size_t msg_len = frag->msg_len;
210
211
0
  if (frag->reassembly == NULL || start > end || end > msg_len) {
212
0
    assert(0);
213
0
    return;
214
0
  }
215
  // A zero-length message will never have a pending reassembly.
216
0
  assert(msg_len > 0);
217
218
0
  if (start == end) {
219
0
    return;
220
0
  }
221
222
0
  if ((start >> 3) == (end >> 3)) {
223
0
    frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
224
0
  } else {
225
0
    frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
226
0
    for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
227
0
      frag->reassembly[i] = 0xff;
228
0
    }
229
0
    if ((end & 7) != 0) {
230
0
      frag->reassembly[end >> 3] |= bit_range(0, end & 7);
231
0
    }
232
0
  }
233
234
  // Check if the fragment is complete.
235
0
  for (size_t i = 0; i < (msg_len >> 3); i++) {
236
0
    if (frag->reassembly[i] != 0xff) {
237
0
      return;
238
0
    }
239
0
  }
240
0
  if ((msg_len & 7) != 0 &&
241
0
      frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
242
0
    return;
243
0
  }
244
245
0
  OPENSSL_free(frag->reassembly);
246
0
  frag->reassembly = NULL;
247
0
}
248
249
// dtls1_is_current_message_complete returns whether the current handshake
250
// message is complete.
251
0
static bool dtls1_is_current_message_complete(const SSL *ssl) {
252
0
  size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
253
0
  hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
254
0
  return frag != NULL && frag->reassembly == NULL;
255
0
}
256
257
// dtls1_get_incoming_message returns the incoming message corresponding to
258
// |msg_hdr|. If none exists, it creates a new one and inserts it in the
259
// queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
260
// returns NULL on failure. The caller does not take ownership of the result.
261
static hm_fragment *dtls1_get_incoming_message(
262
0
    SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) {
263
0
  if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
264
0
      msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
265
0
    *out_alert = SSL_AD_INTERNAL_ERROR;
266
0
    return NULL;
267
0
  }
268
269
0
  size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
270
0
  hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
271
0
  if (frag != NULL) {
272
0
    assert(frag->seq == msg_hdr->seq);
273
    // The new fragment must be compatible with the previous fragments from this
274
    // message.
275
0
    if (frag->type != msg_hdr->type ||
276
0
        frag->msg_len != msg_hdr->msg_len) {
277
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
278
0
      *out_alert = SSL_AD_ILLEGAL_PARAMETER;
279
0
      return NULL;
280
0
    }
281
0
    return frag;
282
0
  }
283
284
  // This is the first fragment from this message.
285
0
  ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr);
286
0
  if (!ssl->d1->incoming_messages[idx]) {
287
0
    *out_alert = SSL_AD_INTERNAL_ERROR;
288
0
    return NULL;
289
0
  }
290
0
  return ssl->d1->incoming_messages[idx].get();
291
0
}
292
293
ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
294
0
                                       uint8_t *out_alert, Span<uint8_t> in) {
295
0
  uint8_t type;
296
0
  Span<uint8_t> record;
297
0
  auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in);
298
0
  if (ret != ssl_open_record_success) {
299
0
    return ret;
300
0
  }
301
302
0
  switch (type) {
303
0
    case SSL3_RT_APPLICATION_DATA:
304
      // Unencrypted application data records are always illegal.
305
0
      if (ssl->s3->aead_read_ctx->is_null_cipher()) {
306
0
        OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
307
0
        *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
308
0
        return ssl_open_record_error;
309
0
      }
310
311
      // Out-of-order application data may be received between ChangeCipherSpec
312
      // and finished. Discard it.
313
0
      return ssl_open_record_discard;
314
315
0
    case SSL3_RT_CHANGE_CIPHER_SPEC:
316
      // We do not support renegotiation, so encrypted ChangeCipherSpec records
317
      // are illegal.
318
0
      if (!ssl->s3->aead_read_ctx->is_null_cipher()) {
319
0
        OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
320
0
        *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
321
0
        return ssl_open_record_error;
322
0
      }
323
324
0
      if (record.size() != 1u || record[0] != SSL3_MT_CCS) {
325
0
        OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
326
0
        *out_alert = SSL_AD_ILLEGAL_PARAMETER;
327
0
        return ssl_open_record_error;
328
0
      }
329
330
      // Flag the ChangeCipherSpec for later.
331
0
      ssl->d1->has_change_cipher_spec = true;
332
0
      ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC,
333
0
                          record);
334
0
      return ssl_open_record_success;
335
336
0
    case SSL3_RT_HANDSHAKE:
337
      // Break out to main processing.
338
0
      break;
339
340
0
    default:
341
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
342
0
      *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
343
0
      return ssl_open_record_error;
344
0
  }
345
346
0
  CBS cbs;
347
0
  CBS_init(&cbs, record.data(), record.size());
348
0
  while (CBS_len(&cbs) > 0) {
349
    // Read a handshake fragment.
350
0
    struct hm_header_st msg_hdr;
351
0
    CBS body;
352
0
    if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
353
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
354
0
      *out_alert = SSL_AD_DECODE_ERROR;
355
0
      return ssl_open_record_error;
356
0
    }
357
358
0
    const size_t frag_off = msg_hdr.frag_off;
359
0
    const size_t frag_len = msg_hdr.frag_len;
360
0
    const size_t msg_len = msg_hdr.msg_len;
361
0
    if (frag_off > msg_len || frag_off + frag_len < frag_off ||
362
0
        frag_off + frag_len > msg_len ||
363
0
        msg_len > ssl_max_handshake_message_len(ssl)) {
364
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
365
0
      *out_alert = SSL_AD_ILLEGAL_PARAMETER;
366
0
      return ssl_open_record_error;
367
0
    }
368
369
    // The encrypted epoch in DTLS has only one handshake message.
370
0
    if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
371
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
372
0
      *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
373
0
      return ssl_open_record_error;
374
0
    }
375
376
0
    if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
377
0
        msg_hdr.seq >
378
0
            (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
379
      // Ignore fragments from the past, or ones too far in the future.
380
0
      continue;
381
0
    }
382
383
0
    hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr);
384
0
    if (frag == NULL) {
385
0
      return ssl_open_record_error;
386
0
    }
387
0
    assert(frag->msg_len == msg_len);
388
389
0
    if (frag->reassembly == NULL) {
390
      // The message is already assembled.
391
0
      continue;
392
0
    }
393
0
    assert(msg_len > 0);
394
395
    // Copy the body into the fragment.
396
0
    OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
397
0
                   CBS_data(&body), CBS_len(&body));
398
0
    dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
399
0
  }
400
401
0
  return ssl_open_record_success;
402
0
}
403
404
0
bool dtls1_get_message(const SSL *ssl, SSLMessage *out) {
405
0
  if (!dtls1_is_current_message_complete(ssl)) {
406
0
    return false;
407
0
  }
408
409
0
  size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
410
0
  hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
411
0
  out->type = frag->type;
412
0
  CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len);
413
0
  CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
414
0
  out->is_v2_hello = false;
415
0
  if (!ssl->s3->has_message) {
416
0
    ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw);
417
0
    ssl->s3->has_message = true;
418
0
  }
419
0
  return true;
420
0
}
421
422
0
void dtls1_next_message(SSL *ssl) {
423
0
  assert(ssl->s3->has_message);
424
0
  assert(dtls1_is_current_message_complete(ssl));
425
0
  size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
426
0
  ssl->d1->incoming_messages[index].reset();
427
0
  ssl->d1->handshake_read_seq++;
428
0
  ssl->s3->has_message = false;
429
  // If we previously sent a flight, mark it as having a reply, so
430
  // |on_handshake_complete| can manage post-handshake retransmission.
431
0
  if (ssl->d1->outgoing_messages_complete) {
432
0
    ssl->d1->flight_has_reply = true;
433
0
  }
434
0
}
435
436
0
bool dtls_has_unprocessed_handshake_data(const SSL *ssl) {
437
0
  size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
438
0
  for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
439
    // Skip the current message.
440
0
    if (ssl->s3->has_message && i == current) {
441
0
      assert(dtls1_is_current_message_complete(ssl));
442
0
      continue;
443
0
    }
444
0
    if (ssl->d1->incoming_messages[i] != nullptr) {
445
0
      return true;
446
0
    }
447
0
  }
448
0
  return false;
449
0
}
450
451
bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
452
0
                          CBS *out_body) {
453
0
  OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
454
455
0
  if (!CBS_get_u8(cbs, &out_hdr->type) ||
456
0
      !CBS_get_u24(cbs, &out_hdr->msg_len) ||
457
0
      !CBS_get_u16(cbs, &out_hdr->seq) ||
458
0
      !CBS_get_u24(cbs, &out_hdr->frag_off) ||
459
0
      !CBS_get_u24(cbs, &out_hdr->frag_len) ||
460
0
      !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
461
0
    return false;
462
0
  }
463
464
0
  return true;
465
0
}
466
467
ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
468
                                                uint8_t *out_alert,
469
0
                                                Span<uint8_t> in) {
470
0
  if (!ssl->d1->has_change_cipher_spec) {
471
    // dtls1_open_handshake processes both handshake and ChangeCipherSpec.
472
0
    auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in);
473
0
    if (ret != ssl_open_record_success) {
474
0
      return ret;
475
0
    }
476
0
  }
477
0
  if (ssl->d1->has_change_cipher_spec) {
478
0
    ssl->d1->has_change_cipher_spec = false;
479
0
    return ssl_open_record_success;
480
0
  }
481
0
  return ssl_open_record_discard;
482
0
}
483
484
485
// Sending handshake messages.
486
487
0
void DTLS_OUTGOING_MESSAGE::Clear() { data.Reset(); }
488
489
0
void dtls_clear_outgoing_messages(SSL *ssl) {
490
0
  for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
491
0
    ssl->d1->outgoing_messages[i].Clear();
492
0
  }
493
0
  ssl->d1->outgoing_messages_len = 0;
494
0
  ssl->d1->outgoing_written = 0;
495
0
  ssl->d1->outgoing_offset = 0;
496
0
  ssl->d1->outgoing_messages_complete = false;
497
0
  ssl->d1->flight_has_reply = false;
498
0
}
499
500
0
bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
501
  // Pick a modest size hint to save most of the |realloc| calls.
502
0
  if (!CBB_init(cbb, 64) ||
503
0
      !CBB_add_u8(cbb, type) ||
504
0
      !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
505
0
      !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
506
0
      !CBB_add_u24(cbb, 0 /* offset */) ||
507
0
      !CBB_add_u24_length_prefixed(cbb, body)) {
508
0
    return false;
509
0
  }
510
511
0
  return true;
512
0
}
513
514
0
bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) {
515
0
  if (!CBBFinishArray(cbb, out_msg) ||
516
0
      out_msg->size() < DTLS1_HM_HEADER_LENGTH) {
517
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
518
0
    return false;
519
0
  }
520
521
  // Fix up the header. Copy the fragment length into the total message
522
  // length.
523
0
  OPENSSL_memcpy(out_msg->data() + 1,
524
0
                 out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3);
525
0
  return true;
526
0
}
527
528
// ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a
529
// 32-bit value. The obvious thing doesn't work because, in some 32-bit build
530
// configurations, the compiler warns that the test is always false and breaks
531
// the build.
532
0
static bool ssl_size_t_greater_than_32_bits(size_t v) {
533
0
#if defined(OPENSSL_64_BIT)
534
0
  return v > 0xffffffff;
535
#elif defined(OPENSSL_32_BIT)
536
  return false;
537
#else
538
#error "Building for neither 32- nor 64-bits."
539
#endif
540
0
}
541
542
// add_outgoing adds a new handshake message or ChangeCipherSpec to the current
543
// outgoing flight. It returns true on success and false on error.
544
0
static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) {
545
0
  if (ssl->d1->outgoing_messages_complete) {
546
    // If we've begun writing a new flight, we received the peer flight. Discard
547
    // the timer and the our flight.
548
0
    dtls1_stop_timer(ssl);
549
0
    dtls_clear_outgoing_messages(ssl);
550
0
  }
551
552
0
  static_assert(SSL_MAX_HANDSHAKE_FLIGHT <
553
0
                    (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
554
0
                "outgoing_messages_len is too small");
555
0
  if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT ||
556
0
      ssl_size_t_greater_than_32_bits(data.size())) {
557
0
    assert(false);
558
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
559
0
    return false;
560
0
  }
561
562
0
  if (!is_ccs) {
563
    // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript
564
    // on hs.
565
0
    if (ssl->s3->hs != NULL &&
566
0
        !ssl->s3->hs->transcript.Update(data)) {
567
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
568
0
      return false;
569
0
    }
570
0
    ssl->d1->handshake_write_seq++;
571
0
  }
572
573
0
  DTLS_OUTGOING_MESSAGE *msg =
574
0
      &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
575
0
  msg->data = std::move(data);
576
0
  msg->epoch = ssl->d1->w_epoch;
577
0
  msg->is_ccs = is_ccs;
578
579
0
  ssl->d1->outgoing_messages_len++;
580
0
  return true;
581
0
}
582
583
0
bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) {
584
0
  return add_outgoing(ssl, false /* handshake */, std::move(data));
585
0
}
586
587
0
bool dtls1_add_change_cipher_spec(SSL *ssl) {
588
0
  return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>());
589
0
}
590
591
// dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
592
// the minimum.
593
0
static void dtls1_update_mtu(SSL *ssl) {
594
  // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
595
  // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
596
  // |SSL_set_mtu|. Does this need to be so complex?
597
0
  if (ssl->d1->mtu < dtls1_min_mtu() &&
598
0
      !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
599
0
    long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
600
0
    if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
601
0
      ssl->d1->mtu = (unsigned)mtu;
602
0
    } else {
603
0
      ssl->d1->mtu = kDefaultMTU;
604
0
      BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
605
0
    }
606
0
  }
607
608
  // The MTU should be above the minimum now.
609
0
  assert(ssl->d1->mtu >= dtls1_min_mtu());
610
0
}
611
612
enum seal_result_t {
613
  seal_error,
614
  seal_no_progress,
615
  seal_partial,
616
  seal_success,
617
};
618
619
// seal_next_message seals |msg|, which must be the next message, to |out|. If
620
// progress was made, it returns |seal_partial| or |seal_success| and sets
621
// |*out_len| to the number of bytes written.
622
static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
623
                                            size_t *out_len, size_t max_out,
624
0
                                            const DTLS_OUTGOING_MESSAGE *msg) {
625
0
  assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
626
0
  assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
627
628
0
  enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
629
0
  if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) {
630
0
    use_epoch = dtls1_use_previous_epoch;
631
0
  } else if (msg->epoch != ssl->d1->w_epoch) {
632
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
633
0
    return seal_error;
634
0
  }
635
636
0
  size_t overhead = dtls_max_seal_overhead(ssl, use_epoch);
637
0
  size_t prefix = dtls_seal_prefix_len(ssl, use_epoch);
638
639
0
  if (msg->is_ccs) {
640
    // Check there is room for the ChangeCipherSpec.
641
0
    static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
642
0
    if (max_out < sizeof(kChangeCipherSpec) + overhead) {
643
0
      return seal_no_progress;
644
0
    }
645
646
0
    if (!dtls_seal_record(ssl, out, out_len, max_out,
647
0
                          SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
648
0
                          sizeof(kChangeCipherSpec), use_epoch)) {
649
0
      return seal_error;
650
0
    }
651
652
0
    ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
653
0
                        kChangeCipherSpec);
654
0
    return seal_success;
655
0
  }
656
657
  // DTLS messages are serialized as a single fragment in |msg|.
658
0
  CBS cbs, body;
659
0
  struct hm_header_st hdr;
660
0
  CBS_init(&cbs, msg->data.data(), msg->data.size());
661
0
  if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
662
0
      hdr.frag_off != 0 ||
663
0
      hdr.frag_len != CBS_len(&body) ||
664
0
      hdr.msg_len != CBS_len(&body) ||
665
0
      !CBS_skip(&body, ssl->d1->outgoing_offset) ||
666
0
      CBS_len(&cbs) != 0) {
667
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
668
0
    return seal_error;
669
0
  }
670
671
  // Determine how much progress can be made.
672
0
  if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
673
0
    return seal_no_progress;
674
0
  }
675
0
  size_t todo = CBS_len(&body);
676
0
  if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
677
0
    todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
678
0
  }
679
680
  // Assemble a fragment, to be sealed in-place.
681
0
  ScopedCBB cbb;
682
0
  CBB child;
683
0
  uint8_t *frag = out + prefix;
684
0
  size_t max_frag = max_out - prefix, frag_len;
685
0
  if (!CBB_init_fixed(cbb.get(), frag, max_frag) ||
686
0
      !CBB_add_u8(cbb.get(), hdr.type) ||
687
0
      !CBB_add_u24(cbb.get(), hdr.msg_len) ||
688
0
      !CBB_add_u16(cbb.get(), hdr.seq) ||
689
0
      !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) ||
690
0
      !CBB_add_u24_length_prefixed(cbb.get(), &child) ||
691
0
      !CBB_add_bytes(&child, CBS_data(&body), todo) ||
692
0
      !CBB_finish(cbb.get(), NULL, &frag_len)) {
693
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
694
0
    return seal_error;
695
0
  }
696
697
0
  ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE,
698
0
                      MakeSpan(frag, frag_len));
699
700
0
  if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
701
0
                        out + prefix, frag_len, use_epoch)) {
702
0
    return seal_error;
703
0
  }
704
705
0
  if (todo == CBS_len(&body)) {
706
    // The next message is complete.
707
0
    ssl->d1->outgoing_offset = 0;
708
0
    return seal_success;
709
0
  }
710
711
0
  ssl->d1->outgoing_offset += todo;
712
0
  return seal_partial;
713
0
}
714
715
// seal_next_packet writes as much of the next flight as possible to |out| and
716
// advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
717
// appropriate.
718
static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
719
0
                             size_t max_out) {
720
0
  bool made_progress = false;
721
0
  size_t total = 0;
722
0
  assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
723
0
  for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
724
0
       ssl->d1->outgoing_written++) {
725
0
    const DTLS_OUTGOING_MESSAGE *msg =
726
0
        &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
727
0
    size_t len;
728
0
    enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
729
0
    switch (ret) {
730
0
      case seal_error:
731
0
        return false;
732
733
0
      case seal_no_progress:
734
0
        goto packet_full;
735
736
0
      case seal_partial:
737
0
      case seal_success:
738
0
        out += len;
739
0
        max_out -= len;
740
0
        total += len;
741
0
        made_progress = true;
742
743
0
        if (ret == seal_partial) {
744
0
          goto packet_full;
745
0
        }
746
0
        break;
747
0
    }
748
0
  }
749
750
0
packet_full:
751
  // The MTU was too small to make any progress.
752
0
  if (!made_progress) {
753
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
754
0
    return false;
755
0
  }
756
757
0
  *out_len = total;
758
0
  return true;
759
0
}
760
761
0
static int send_flight(SSL *ssl) {
762
0
  if (ssl->s3->write_shutdown != ssl_shutdown_none) {
763
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
764
0
    return -1;
765
0
  }
766
767
0
  if (ssl->wbio == nullptr) {
768
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET);
769
0
    return -1;
770
0
  }
771
772
0
  dtls1_update_mtu(ssl);
773
774
0
  Array<uint8_t> packet;
775
0
  if (!packet.Init(ssl->d1->mtu)) {
776
0
    return -1;
777
0
  }
778
779
0
  while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
780
0
    uint8_t old_written = ssl->d1->outgoing_written;
781
0
    uint32_t old_offset = ssl->d1->outgoing_offset;
782
783
0
    size_t packet_len;
784
0
    if (!seal_next_packet(ssl, packet.data(), &packet_len, packet.size())) {
785
0
      return -1;
786
0
    }
787
788
0
    int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len);
789
0
    if (bio_ret <= 0) {
790
      // Retry this packet the next time around.
791
0
      ssl->d1->outgoing_written = old_written;
792
0
      ssl->d1->outgoing_offset = old_offset;
793
0
      ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
794
0
      return bio_ret;
795
0
    }
796
0
  }
797
798
0
  if (BIO_flush(ssl->wbio.get()) <= 0) {
799
0
    ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
800
0
    return -1;
801
0
  }
802
803
0
  return 1;
804
0
}
805
806
0
int dtls1_flush_flight(SSL *ssl) {
807
0
  ssl->d1->outgoing_messages_complete = true;
808
  // Start the retransmission timer for the next flight (if any).
809
0
  dtls1_start_timer(ssl);
810
0
  return send_flight(ssl);
811
0
}
812
813
0
int dtls1_retransmit_outgoing_messages(SSL *ssl) {
814
  // Rewind to the start of the flight and write it again.
815
  //
816
  // TODO(davidben): This does not allow retransmits to be resumed on
817
  // non-blocking write.
818
0
  ssl->d1->outgoing_written = 0;
819
0
  ssl->d1->outgoing_offset = 0;
820
821
0
  return send_flight(ssl);
822
0
}
823
824
0
unsigned int dtls1_min_mtu(void) {
825
0
  return kMinMTU;
826
0
}
827
828
BSSL_NAMESPACE_END