Coverage Report

Created: 2023-06-07 07:11

/src/boringssl/ssl/ssl_cert.cc
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.]
56
 */
57
/* ====================================================================
58
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59
 *
60
 * Redistribution and use in source and binary forms, with or without
61
 * modification, are permitted provided that the following conditions
62
 * are met:
63
 *
64
 * 1. Redistributions of source code must retain the above copyright
65
 *    notice, this list of conditions and the following disclaimer.
66
 *
67
 * 2. Redistributions in binary form must reproduce the above copyright
68
 *    notice, this list of conditions and the following disclaimer in
69
 *    the documentation and/or other materials provided with the
70
 *    distribution.
71
 *
72
 * 3. All advertising materials mentioning features or use of this
73
 *    software must display the following acknowledgment:
74
 *    "This product includes software developed by the OpenSSL Project
75
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76
 *
77
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78
 *    endorse or promote products derived from this software without
79
 *    prior written permission. For written permission, please contact
80
 *    openssl-core@openssl.org.
81
 *
82
 * 5. Products derived from this software may not be called "OpenSSL"
83
 *    nor may "OpenSSL" appear in their names without prior written
84
 *    permission of the OpenSSL Project.
85
 *
86
 * 6. Redistributions of any form whatsoever must retain the following
87
 *    acknowledgment:
88
 *    "This product includes software developed by the OpenSSL Project
89
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90
 *
91
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102
 * OF THE POSSIBILITY OF SUCH DAMAGE.
103
 * ====================================================================
104
 *
105
 * This product includes cryptographic software written by Eric Young
106
 * (eay@cryptsoft.com).  This product includes software written by Tim
107
 * Hudson (tjh@cryptsoft.com).
108
 *
109
 */
110
/* ====================================================================
111
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112
 * ECC cipher suite support in OpenSSL originally developed by
113
 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */
114
115
#include <openssl/ssl.h>
116
117
#include <assert.h>
118
#include <limits.h>
119
#include <string.h>
120
121
#include <utility>
122
123
#include <openssl/bn.h>
124
#include <openssl/bytestring.h>
125
#include <openssl/ec_key.h>
126
#include <openssl/err.h>
127
#include <openssl/mem.h>
128
#include <openssl/sha.h>
129
#include <openssl/x509.h>
130
131
#include "../crypto/internal.h"
132
#include "internal.h"
133
134
135
BSSL_NAMESPACE_BEGIN
136
137
CERT::CERT(const SSL_X509_METHOD *x509_method_arg)
138
20.1k
    : x509_method(x509_method_arg) {}
139
140
20.0k
CERT::~CERT() {
141
20.0k
  ssl_cert_clear_certs(this);
142
20.0k
  x509_method->cert_free(this);
143
20.0k
}
144
145
20.0k
static CRYPTO_BUFFER *buffer_up_ref(const CRYPTO_BUFFER *buffer) {
146
20.0k
  CRYPTO_BUFFER_up_ref(const_cast<CRYPTO_BUFFER *>(buffer));
147
20.0k
  return const_cast<CRYPTO_BUFFER *>(buffer);
148
20.0k
}
149
150
20.0k
UniquePtr<CERT> ssl_cert_dup(CERT *cert) {
151
20.0k
  UniquePtr<CERT> ret = MakeUnique<CERT>(cert->x509_method);
152
20.0k
  if (!ret) {
153
0
    return nullptr;
154
0
  }
155
156
20.0k
  if (cert->chain) {
157
20.0k
    ret->chain.reset(sk_CRYPTO_BUFFER_deep_copy(
158
20.0k
        cert->chain.get(), buffer_up_ref, CRYPTO_BUFFER_free));
159
20.0k
    if (!ret->chain) {
160
0
      return nullptr;
161
0
    }
162
20.0k
  }
163
164
20.0k
  ret->privatekey = UpRef(cert->privatekey);
165
20.0k
  ret->key_method = cert->key_method;
166
167
20.0k
  if (!ret->sigalgs.CopyFrom(cert->sigalgs)) {
168
0
    return nullptr;
169
0
  }
170
171
20.0k
  ret->cert_cb = cert->cert_cb;
172
20.0k
  ret->cert_cb_arg = cert->cert_cb_arg;
173
174
20.0k
  ret->x509_method->cert_dup(ret.get(), cert);
175
176
20.0k
  ret->signed_cert_timestamp_list = UpRef(cert->signed_cert_timestamp_list);
177
20.0k
  ret->ocsp_response = UpRef(cert->ocsp_response);
178
179
20.0k
  ret->sid_ctx_length = cert->sid_ctx_length;
180
20.0k
  OPENSSL_memcpy(ret->sid_ctx, cert->sid_ctx, sizeof(ret->sid_ctx));
181
182
20.0k
  if (cert->dc) {
183
0
    ret->dc = cert->dc->Dup();
184
0
    if (!ret->dc) {
185
0
       return nullptr;
186
0
    }
187
0
  }
188
189
20.0k
  ret->dc_privatekey = UpRef(cert->dc_privatekey);
190
20.0k
  ret->dc_key_method = cert->dc_key_method;
191
192
20.0k
  return ret;
193
20.0k
}
194
195
// Free up and clear all certificates and chains
196
20.0k
void ssl_cert_clear_certs(CERT *cert) {
197
20.0k
  if (cert == NULL) {
198
0
    return;
199
0
  }
200
201
20.0k
  cert->x509_method->cert_clear(cert);
202
203
20.0k
  cert->chain.reset();
204
20.0k
  cert->privatekey.reset();
205
20.0k
  cert->key_method = nullptr;
206
207
20.0k
  cert->dc.reset();
208
20.0k
  cert->dc_privatekey.reset();
209
20.0k
  cert->dc_key_method = nullptr;
210
20.0k
}
211
212
static void ssl_cert_set_cert_cb(CERT *cert, int (*cb)(SSL *ssl, void *arg),
213
0
                                 void *arg) {
214
0
  cert->cert_cb = cb;
215
0
  cert->cert_cb_arg = arg;
216
0
}
217
218
enum leaf_cert_and_privkey_result_t {
219
  leaf_cert_and_privkey_error,
220
  leaf_cert_and_privkey_ok,
221
  leaf_cert_and_privkey_mismatch,
222
};
223
224
// check_leaf_cert_and_privkey checks whether the certificate in |leaf_buffer|
225
// and the private key in |privkey| are suitable and coherent. It returns
226
// |leaf_cert_and_privkey_error| and pushes to the error queue if a problem is
227
// found. If the certificate and private key are valid, but incoherent, it
228
// returns |leaf_cert_and_privkey_mismatch|. Otherwise it returns
229
// |leaf_cert_and_privkey_ok|.
230
static enum leaf_cert_and_privkey_result_t check_leaf_cert_and_privkey(
231
2
    CRYPTO_BUFFER *leaf_buffer, EVP_PKEY *privkey) {
232
2
  CBS cert_cbs;
233
2
  CRYPTO_BUFFER_init_CBS(leaf_buffer, &cert_cbs);
234
2
  UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
235
2
  if (!pubkey) {
236
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
237
0
    return leaf_cert_and_privkey_error;
238
0
  }
239
240
2
  if (!ssl_is_key_type_supported(EVP_PKEY_id(pubkey.get()))) {
241
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
242
0
    return leaf_cert_and_privkey_error;
243
0
  }
244
245
  // An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA
246
  // certificates, so sanity-check the key usage extension.
247
2
  if (EVP_PKEY_id(pubkey.get()) == EVP_PKEY_EC &&
248
2
      !ssl_cert_check_key_usage(&cert_cbs, key_usage_digital_signature)) {
249
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
250
0
    return leaf_cert_and_privkey_error;
251
0
  }
252
253
2
  if (privkey != NULL &&
254
      // Sanity-check that the private key and the certificate match.
255
2
      !ssl_compare_public_and_private_key(pubkey.get(), privkey)) {
256
0
    ERR_clear_error();
257
0
    return leaf_cert_and_privkey_mismatch;
258
0
  }
259
260
2
  return leaf_cert_and_privkey_ok;
261
2
}
262
263
static int cert_set_chain_and_key(
264
    CERT *cert, CRYPTO_BUFFER *const *certs, size_t num_certs,
265
0
    EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) {
266
0
  if (num_certs == 0 ||
267
0
      (privkey == NULL && privkey_method == NULL)) {
268
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
269
0
    return 0;
270
0
  }
271
272
0
  if (privkey != NULL && privkey_method != NULL) {
273
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD);
274
0
    return 0;
275
0
  }
276
277
0
  switch (check_leaf_cert_and_privkey(certs[0], privkey)) {
278
0
    case leaf_cert_and_privkey_error:
279
0
      return 0;
280
0
    case leaf_cert_and_privkey_mismatch:
281
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH);
282
0
      return 0;
283
0
    case leaf_cert_and_privkey_ok:
284
0
      break;
285
0
  }
286
287
0
  UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs_sk(sk_CRYPTO_BUFFER_new_null());
288
0
  if (!certs_sk) {
289
0
    return 0;
290
0
  }
291
292
0
  for (size_t i = 0; i < num_certs; i++) {
293
0
    if (!PushToStack(certs_sk.get(), UpRef(certs[i]))) {
294
0
      return 0;
295
0
    }
296
0
  }
297
298
0
  cert->privatekey = UpRef(privkey);
299
0
  cert->key_method = privkey_method;
300
301
0
  cert->chain = std::move(certs_sk);
302
0
  return 1;
303
0
}
304
305
2
bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer) {
306
2
  switch (check_leaf_cert_and_privkey(buffer.get(), cert->privatekey.get())) {
307
0
    case leaf_cert_and_privkey_error:
308
0
      return false;
309
0
    case leaf_cert_and_privkey_mismatch:
310
      // don't fail for a cert/key mismatch, just free current private key
311
      // (when switching to a different cert & key, first this function should
312
      // be used, then |ssl_set_pkey|.
313
0
      cert->privatekey.reset();
314
0
      break;
315
2
    case leaf_cert_and_privkey_ok:
316
2
      break;
317
2
  }
318
319
2
  cert->x509_method->cert_flush_cached_leaf(cert);
320
321
2
  if (cert->chain != nullptr) {
322
0
    CRYPTO_BUFFER_free(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0));
323
0
    sk_CRYPTO_BUFFER_set(cert->chain.get(), 0, buffer.release());
324
0
    return true;
325
0
  }
326
327
2
  cert->chain.reset(sk_CRYPTO_BUFFER_new_null());
328
2
  if (cert->chain == nullptr) {
329
0
    return false;
330
0
  }
331
332
2
  if (!PushToStack(cert->chain.get(), std::move(buffer))) {
333
0
    cert->chain.reset();
334
0
    return false;
335
0
  }
336
337
2
  return true;
338
2
}
339
340
14.4k
bool ssl_has_certificate(const SSL_HANDSHAKE *hs) {
341
14.4k
  return hs->config->cert->chain != nullptr &&
342
14.4k
         sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0) != nullptr &&
343
14.4k
         ssl_has_private_key(hs);
344
14.4k
}
345
346
bool ssl_parse_cert_chain(uint8_t *out_alert,
347
                          UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
348
                          UniquePtr<EVP_PKEY> *out_pubkey,
349
                          uint8_t *out_leaf_sha256, CBS *cbs,
350
1.51k
                          CRYPTO_BUFFER_POOL *pool) {
351
1.51k
  out_chain->reset();
352
1.51k
  out_pubkey->reset();
353
354
1.51k
  CBS certificate_list;
355
1.51k
  if (!CBS_get_u24_length_prefixed(cbs, &certificate_list)) {
356
19
    *out_alert = SSL_AD_DECODE_ERROR;
357
19
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
358
19
    return false;
359
19
  }
360
361
1.50k
  if (CBS_len(&certificate_list) == 0) {
362
14
    return true;
363
14
  }
364
365
1.48k
  UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain(sk_CRYPTO_BUFFER_new_null());
366
1.48k
  if (!chain) {
367
0
    *out_alert = SSL_AD_INTERNAL_ERROR;
368
0
    return false;
369
0
  }
370
371
1.48k
  UniquePtr<EVP_PKEY> pubkey;
372
2.80k
  while (CBS_len(&certificate_list) > 0) {
373
1.58k
    CBS certificate;
374
1.58k
    if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) ||
375
1.58k
        CBS_len(&certificate) == 0) {
376
16
      *out_alert = SSL_AD_DECODE_ERROR;
377
16
      OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
378
16
      return false;
379
16
    }
380
381
1.56k
    if (sk_CRYPTO_BUFFER_num(chain.get()) == 0) {
382
1.47k
      pubkey = ssl_cert_parse_pubkey(&certificate);
383
1.47k
      if (!pubkey) {
384
243
        *out_alert = SSL_AD_DECODE_ERROR;
385
243
        return false;
386
243
      }
387
388
      // Retain the hash of the leaf certificate if requested.
389
1.23k
      if (out_leaf_sha256 != NULL) {
390
0
        SHA256(CBS_data(&certificate), CBS_len(&certificate), out_leaf_sha256);
391
0
      }
392
1.23k
    }
393
394
1.32k
    UniquePtr<CRYPTO_BUFFER> buf(
395
1.32k
        CRYPTO_BUFFER_new_from_CBS(&certificate, pool));
396
1.32k
    if (!buf ||
397
1.32k
        !PushToStack(chain.get(), std::move(buf))) {
398
0
      *out_alert = SSL_AD_INTERNAL_ERROR;
399
0
      return false;
400
0
    }
401
1.32k
  }
402
403
1.22k
  *out_chain = std::move(chain);
404
1.22k
  *out_pubkey = std::move(pubkey);
405
1.22k
  return true;
406
1.48k
}
407
408
3.07k
bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb) {
409
3.07k
  if (!ssl_has_certificate(hs)) {
410
0
    return CBB_add_u24(cbb, 0);
411
0
  }
412
413
3.07k
  CBB certs;
414
3.07k
  if (!CBB_add_u24_length_prefixed(cbb, &certs)) {
415
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
416
0
    return false;
417
0
  }
418
419
3.07k
  STACK_OF(CRYPTO_BUFFER) *chain = hs->config->cert->chain.get();
420
6.15k
  for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) {
421
3.07k
    CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i);
422
3.07k
    CBB child;
423
3.07k
    if (!CBB_add_u24_length_prefixed(&certs, &child) ||
424
3.07k
        !CBB_add_bytes(&child, CRYPTO_BUFFER_data(buffer),
425
3.07k
                       CRYPTO_BUFFER_len(buffer)) ||
426
3.07k
        !CBB_flush(&certs)) {
427
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
428
0
      return false;
429
0
    }
430
3.07k
  }
431
432
3.07k
  return CBB_flush(cbb);
433
3.07k
}
434
435
// ssl_cert_skip_to_spki parses a DER-encoded, X.509 certificate from |in| and
436
// positions |*out_tbs_cert| to cover the TBSCertificate, starting at the
437
// subjectPublicKeyInfo.
438
6.62k
static bool ssl_cert_skip_to_spki(const CBS *in, CBS *out_tbs_cert) {
439
  /* From RFC 5280, section 4.1
440
   *    Certificate  ::=  SEQUENCE  {
441
   *      tbsCertificate       TBSCertificate,
442
   *      signatureAlgorithm   AlgorithmIdentifier,
443
   *      signatureValue       BIT STRING  }
444
445
   * TBSCertificate  ::=  SEQUENCE  {
446
   *      version         [0]  EXPLICIT Version DEFAULT v1,
447
   *      serialNumber         CertificateSerialNumber,
448
   *      signature            AlgorithmIdentifier,
449
   *      issuer               Name,
450
   *      validity             Validity,
451
   *      subject              Name,
452
   *      subjectPublicKeyInfo SubjectPublicKeyInfo,
453
   *      ... } */
454
6.62k
  CBS buf = *in;
455
456
6.62k
  CBS toplevel;
457
6.62k
  if (!CBS_get_asn1(&buf, &toplevel, CBS_ASN1_SEQUENCE) ||
458
6.62k
      CBS_len(&buf) != 0 ||
459
6.62k
      !CBS_get_asn1(&toplevel, out_tbs_cert, CBS_ASN1_SEQUENCE) ||
460
      // version
461
6.62k
      !CBS_get_optional_asn1(
462
6.61k
          out_tbs_cert, NULL, NULL,
463
6.61k
          CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
464
      // serialNumber
465
6.62k
      !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_INTEGER) ||
466
      // signature algorithm
467
6.62k
      !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
468
      // issuer
469
6.62k
      !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
470
      // validity
471
6.62k
      !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
472
      // subject
473
6.62k
      !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE)) {
474
19
    return false;
475
19
  }
476
477
6.60k
  return true;
478
6.62k
}
479
480
5.70k
UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in) {
481
5.70k
  CBS buf = *in, tbs_cert;
482
5.70k
  if (!ssl_cert_skip_to_spki(&buf, &tbs_cert)) {
483
19
    OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
484
19
    return nullptr;
485
19
  }
486
487
5.68k
  return UniquePtr<EVP_PKEY>(EVP_parse_public_key(&tbs_cert));
488
5.70k
}
489
490
bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
491
2
                                        const EVP_PKEY *privkey) {
492
2
  if (EVP_PKEY_is_opaque(privkey)) {
493
    // We cannot check an opaque private key and have to trust that it
494
    // matches.
495
0
    return true;
496
0
  }
497
498
2
  switch (EVP_PKEY_cmp(pubkey, privkey)) {
499
2
    case 1:
500
2
      return true;
501
0
    case 0:
502
0
      OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH);
503
0
      return false;
504
0
    case -1:
505
0
      OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH);
506
0
      return false;
507
0
    case -2:
508
0
      OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
509
0
      return false;
510
2
  }
511
512
0
  assert(0);
513
0
  return false;
514
2
}
515
516
0
bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey) {
517
0
  if (privkey == nullptr) {
518
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
519
0
    return false;
520
0
  }
521
522
0
  if (cert->chain == nullptr ||
523
0
      sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) == nullptr) {
524
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
525
0
    return false;
526
0
  }
527
528
0
  CBS cert_cbs;
529
0
  CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0),
530
0
                         &cert_cbs);
531
0
  UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
532
0
  if (!pubkey) {
533
0
    OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
534
0
    return false;
535
0
  }
536
537
0
  return ssl_compare_public_and_private_key(pubkey.get(), privkey);
538
0
}
539
540
925
bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit) {
541
925
  CBS buf = *in;
542
543
925
  CBS tbs_cert, outer_extensions;
544
925
  int has_extensions;
545
925
  if (!ssl_cert_skip_to_spki(&buf, &tbs_cert) ||
546
      // subjectPublicKeyInfo
547
925
      !CBS_get_asn1(&tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
548
      // issuerUniqueID
549
925
      !CBS_get_optional_asn1(&tbs_cert, NULL, NULL,
550
925
                             CBS_ASN1_CONTEXT_SPECIFIC | 1) ||
551
      // subjectUniqueID
552
925
      !CBS_get_optional_asn1(&tbs_cert, NULL, NULL,
553
924
                             CBS_ASN1_CONTEXT_SPECIFIC | 2) ||
554
925
      !CBS_get_optional_asn1(
555
923
          &tbs_cert, &outer_extensions, &has_extensions,
556
923
          CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) {
557
3
    OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
558
3
    return false;
559
3
  }
560
561
922
  if (!has_extensions) {
562
18
    return true;
563
18
  }
564
565
904
  CBS extensions;
566
904
  if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) {
567
1
    OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
568
1
    return false;
569
1
  }
570
571
3.10k
  while (CBS_len(&extensions) > 0) {
572
2.26k
    CBS extension, oid, contents;
573
2.26k
    if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) ||
574
2.26k
        !CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) ||
575
2.26k
        (CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) &&
576
2.25k
         !CBS_get_asn1(&extension, NULL, CBS_ASN1_BOOLEAN)) ||
577
2.26k
        !CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) ||
578
2.26k
        CBS_len(&extension) != 0) {
579
10
      OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
580
10
      return false;
581
10
    }
582
583
2.25k
    static const uint8_t kKeyUsageOID[3] = {0x55, 0x1d, 0x0f};
584
2.25k
    if (CBS_len(&oid) != sizeof(kKeyUsageOID) ||
585
2.25k
        OPENSSL_memcmp(CBS_data(&oid), kKeyUsageOID, sizeof(kKeyUsageOID)) !=
586
2.20k
            0) {
587
2.20k
      continue;
588
2.20k
    }
589
590
48
    CBS bit_string;
591
48
    if (!CBS_get_asn1(&contents, &bit_string, CBS_ASN1_BITSTRING) ||
592
48
        CBS_len(&contents) != 0) {
593
3
      OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
594
3
      return false;
595
3
    }
596
597
    // This is the KeyUsage extension. See
598
    // https://tools.ietf.org/html/rfc5280#section-4.2.1.3
599
45
    if (!CBS_is_valid_asn1_bitstring(&bit_string)) {
600
4
      OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
601
4
      return false;
602
4
    }
603
604
41
    if (!CBS_asn1_bitstring_has_bit(&bit_string, bit)) {
605
1
      OPENSSL_PUT_ERROR(SSL, SSL_R_KEY_USAGE_BIT_INCORRECT);
606
1
      return false;
607
1
    }
608
609
40
    return true;
610
41
  }
611
612
  // No KeyUsage extension found.
613
845
  return true;
614
903
}
615
616
UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
617
                                                            uint8_t *out_alert,
618
0
                                                            CBS *cbs) {
619
0
  CRYPTO_BUFFER_POOL *const pool = ssl->ctx->pool;
620
621
0
  UniquePtr<STACK_OF(CRYPTO_BUFFER)> ret(sk_CRYPTO_BUFFER_new_null());
622
0
  if (!ret) {
623
0
    *out_alert = SSL_AD_INTERNAL_ERROR;
624
0
    return nullptr;
625
0
  }
626
627
0
  CBS child;
628
0
  if (!CBS_get_u16_length_prefixed(cbs, &child)) {
629
0
    *out_alert = SSL_AD_DECODE_ERROR;
630
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH);
631
0
    return nullptr;
632
0
  }
633
634
0
  while (CBS_len(&child) > 0) {
635
0
    CBS distinguished_name;
636
0
    if (!CBS_get_u16_length_prefixed(&child, &distinguished_name)) {
637
0
      *out_alert = SSL_AD_DECODE_ERROR;
638
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG);
639
0
      return nullptr;
640
0
    }
641
642
0
    UniquePtr<CRYPTO_BUFFER> buffer(
643
0
        CRYPTO_BUFFER_new_from_CBS(&distinguished_name, pool));
644
0
    if (!buffer ||
645
0
        !PushToStack(ret.get(), std::move(buffer))) {
646
0
      *out_alert = SSL_AD_INTERNAL_ERROR;
647
0
      return nullptr;
648
0
    }
649
0
  }
650
651
0
  if (!ssl->ctx->x509_method->check_client_CA_list(ret.get())) {
652
0
    *out_alert = SSL_AD_DECODE_ERROR;
653
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
654
0
    return nullptr;
655
0
  }
656
657
0
  return ret;
658
0
}
659
660
107
bool ssl_has_client_CAs(const SSL_CONFIG *cfg) {
661
107
  const STACK_OF(CRYPTO_BUFFER) *names = cfg->client_CA.get();
662
107
  if (names == nullptr) {
663
107
    names = cfg->ssl->ctx->client_CA.get();
664
107
  }
665
107
  if (names == nullptr) {
666
0
    return false;
667
0
  }
668
107
  return sk_CRYPTO_BUFFER_num(names) > 0;
669
107
}
670
671
1.61k
bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb) {
672
1.61k
  CBB child, name_cbb;
673
1.61k
  if (!CBB_add_u16_length_prefixed(cbb, &child)) {
674
0
    return false;
675
0
  }
676
677
1.61k
  const STACK_OF(CRYPTO_BUFFER) *names = hs->config->client_CA.get();
678
1.61k
  if (names == NULL) {
679
1.61k
    names = hs->ssl->ctx->client_CA.get();
680
1.61k
  }
681
1.61k
  if (names == NULL) {
682
0
    return CBB_flush(cbb);
683
0
  }
684
685
1.61k
  for (const CRYPTO_BUFFER *name : names) {
686
0
    if (!CBB_add_u16_length_prefixed(&child, &name_cbb) ||
687
0
        !CBB_add_bytes(&name_cbb, CRYPTO_BUFFER_data(name),
688
0
                       CRYPTO_BUFFER_len(name))) {
689
0
      return false;
690
0
    }
691
0
  }
692
693
1.61k
  return CBB_flush(cbb);
694
1.61k
}
695
696
bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
697
0
                                const CRYPTO_BUFFER *leaf) {
698
0
  assert(ssl_protocol_version(hs->ssl) < TLS1_3_VERSION);
699
700
  // Check the certificate's type matches the cipher.
701
0
  if (!(hs->new_cipher->algorithm_auth & ssl_cipher_auth_mask_for_key(pkey))) {
702
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE);
703
0
    return false;
704
0
  }
705
706
0
  if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) {
707
    // Check the key's group and point format are acceptable.
708
0
    EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey);
709
0
    uint16_t group_id;
710
0
    if (!ssl_nid_to_group_id(
711
0
            &group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) ||
712
0
        !tls1_check_group_id(hs, group_id) ||
713
0
        EC_KEY_get_conv_form(ec_key) != POINT_CONVERSION_UNCOMPRESSED) {
714
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT);
715
0
      return false;
716
0
    }
717
0
  }
718
719
0
  return true;
720
0
}
721
722
4.15k
bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs) {
723
4.15k
  SSL *const ssl = hs->ssl;
724
4.15k
  if (!ssl_has_certificate(hs)) {
725
    // Nothing to do.
726
0
    return true;
727
0
  }
728
729
4.15k
  if (!ssl->ctx->x509_method->ssl_auto_chain_if_needed(hs)) {
730
0
    return false;
731
0
  }
732
733
4.15k
  CBS leaf;
734
4.15k
  CRYPTO_BUFFER_init_CBS(
735
4.15k
      sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0), &leaf);
736
737
4.15k
  if (ssl_signing_with_dc(hs)) {
738
0
    hs->local_pubkey = UpRef(hs->config->cert->dc->pkey);
739
4.15k
  } else {
740
4.15k
    hs->local_pubkey = ssl_cert_parse_pubkey(&leaf);
741
4.15k
  }
742
4.15k
  return hs->local_pubkey != NULL;
743
4.15k
}
744
745
746
// Delegated credentials.
747
748
0
DC::DC() = default;
749
0
DC::~DC() = default;
750
751
0
UniquePtr<DC> DC::Dup() {
752
0
  bssl::UniquePtr<DC> ret = MakeUnique<DC>();
753
0
  if (!ret) {
754
0
    return nullptr;
755
0
  }
756
757
0
  ret->raw = UpRef(raw);
758
0
  ret->expected_cert_verify_algorithm = expected_cert_verify_algorithm;
759
0
  ret->pkey = UpRef(pkey);
760
0
  return ret;
761
0
}
762
763
// static
764
0
UniquePtr<DC> DC::Parse(CRYPTO_BUFFER *in, uint8_t *out_alert) {
765
0
  UniquePtr<DC> dc = MakeUnique<DC>();
766
0
  if (!dc) {
767
0
    *out_alert = SSL_AD_INTERNAL_ERROR;
768
0
    return nullptr;
769
0
  }
770
771
0
  dc->raw = UpRef(in);
772
773
0
  CBS pubkey, deleg, sig;
774
0
  uint32_t valid_time;
775
0
  uint16_t algorithm;
776
0
  CRYPTO_BUFFER_init_CBS(dc->raw.get(), &deleg);
777
0
  if (!CBS_get_u32(&deleg, &valid_time) ||
778
0
      !CBS_get_u16(&deleg, &dc->expected_cert_verify_algorithm) ||
779
0
      !CBS_get_u24_length_prefixed(&deleg, &pubkey) ||
780
0
      !CBS_get_u16(&deleg, &algorithm) ||
781
0
      !CBS_get_u16_length_prefixed(&deleg, &sig) ||
782
0
      CBS_len(&deleg) != 0) {
783
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
784
0
    *out_alert = SSL_AD_DECODE_ERROR;
785
0
    return nullptr;
786
0
  }
787
788
0
  dc->pkey.reset(EVP_parse_public_key(&pubkey));
789
0
  if (dc->pkey == nullptr) {
790
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
791
0
    *out_alert = SSL_AD_DECODE_ERROR;
792
0
    return nullptr;
793
0
  }
794
795
0
  return dc;
796
0
}
797
798
// ssl_can_serve_dc returns true if the host has configured a DC that it can
799
// serve in the handshake. Specifically, it checks that a DC has been
800
// configured and that the DC signature algorithm is supported by the peer.
801
263
static bool ssl_can_serve_dc(const SSL_HANDSHAKE *hs) {
802
  // Check that a DC has been configured.
803
263
  const CERT *cert = hs->config->cert.get();
804
263
  if (cert->dc == nullptr ||
805
263
      cert->dc->raw == nullptr ||
806
263
      (cert->dc_privatekey == nullptr && cert->dc_key_method == nullptr)) {
807
263
    return false;
808
263
  }
809
810
  // Check that 1.3 or higher has been negotiated.
811
0
  const DC *dc = cert->dc.get();
812
0
  assert(hs->ssl->s3->have_version);
813
0
  if (ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) {
814
0
    return false;
815
0
  }
816
817
  // Check that the DC signature algorithm is supported by the peer.
818
0
  Span<const uint16_t> peer_sigalgs = hs->peer_delegated_credential_sigalgs;
819
0
  for (uint16_t peer_sigalg : peer_sigalgs) {
820
0
    if (dc->expected_cert_verify_algorithm == peer_sigalg) {
821
0
      return true;
822
0
    }
823
0
  }
824
0
  return false;
825
0
}
826
827
9.49k
bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs) {
828
  // As of draft-ietf-tls-subcert-03, only the server may use delegated
829
  // credentials to authenticate itself.
830
9.49k
  return hs->ssl->server &&
831
9.49k
         hs->delegated_credential_requested &&
832
9.49k
         ssl_can_serve_dc(hs);
833
9.49k
}
834
835
static int cert_set_dc(CERT *cert, CRYPTO_BUFFER *const raw, EVP_PKEY *privkey,
836
0
                       const SSL_PRIVATE_KEY_METHOD *key_method) {
837
0
  if (privkey == nullptr && key_method == nullptr) {
838
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
839
0
    return 0;
840
0
  }
841
842
0
  if (privkey != nullptr && key_method != nullptr) {
843
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD);
844
0
    return 0;
845
0
  }
846
847
0
  uint8_t alert;
848
0
  UniquePtr<DC> dc = DC::Parse(raw, &alert);
849
0
  if (dc == nullptr) {
850
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_DELEGATED_CREDENTIAL);
851
0
    return 0;
852
0
  }
853
854
0
  if (privkey) {
855
    // Check that the public and private keys match.
856
0
    if (!ssl_compare_public_and_private_key(dc->pkey.get(), privkey)) {
857
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH);
858
0
      return 0;
859
0
    }
860
0
  }
861
862
0
  cert->dc = std::move(dc);
863
0
  cert->dc_privatekey = UpRef(privkey);
864
0
  cert->dc_key_method = key_method;
865
866
0
  return 1;
867
0
}
868
869
BSSL_NAMESPACE_END
870
871
using namespace bssl;
872
873
int SSL_set_chain_and_key(SSL *ssl, CRYPTO_BUFFER *const *certs,
874
                          size_t num_certs, EVP_PKEY *privkey,
875
0
                          const SSL_PRIVATE_KEY_METHOD *privkey_method) {
876
0
  if (!ssl->config) {
877
0
    return 0;
878
0
  }
879
0
  return cert_set_chain_and_key(ssl->config->cert.get(), certs, num_certs,
880
0
                                privkey, privkey_method);
881
0
}
882
883
int SSL_CTX_set_chain_and_key(SSL_CTX *ctx, CRYPTO_BUFFER *const *certs,
884
                              size_t num_certs, EVP_PKEY *privkey,
885
0
                              const SSL_PRIVATE_KEY_METHOD *privkey_method) {
886
0
  return cert_set_chain_and_key(ctx->cert.get(), certs, num_certs, privkey,
887
0
                                privkey_method);
888
0
}
889
890
0
const STACK_OF(CRYPTO_BUFFER)* SSL_CTX_get0_chain(const SSL_CTX *ctx) {
891
0
  return ctx->cert->chain.get();
892
0
}
893
894
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len,
895
0
                                 const uint8_t *der) {
896
0
  UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
897
0
  if (!buffer) {
898
0
    return 0;
899
0
  }
900
901
0
  return ssl_set_cert(ctx->cert.get(), std::move(buffer));
902
0
}
903
904
0
int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
905
0
  UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
906
0
  if (!buffer || !ssl->config) {
907
0
    return 0;
908
0
  }
909
910
0
  return ssl_set_cert(ssl->config->cert.get(), std::move(buffer));
911
0
}
912
913
void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg),
914
0
                         void *arg) {
915
0
  ssl_cert_set_cert_cb(ctx->cert.get(), cb, arg);
916
0
}
917
918
0
void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) {
919
0
  if (!ssl->config) {
920
0
    return;
921
0
  }
922
0
  ssl_cert_set_cert_cb(ssl->config->cert.get(), cb, arg);
923
0
}
924
925
0
const STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates(const SSL *ssl) {
926
0
  SSL_SESSION *session = SSL_get_session(ssl);
927
0
  if (session == NULL) {
928
0
    return NULL;
929
0
  }
930
931
0
  return session->certs.get();
932
0
}
933
934
0
const STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs(const SSL *ssl) {
935
0
  if (ssl->s3->hs == NULL) {
936
0
    return NULL;
937
0
  }
938
0
  return ssl->s3->hs->ca_names.get();
939
0
}
940
941
static int set_signed_cert_timestamp_list(CERT *cert, const uint8_t *list,
942
2
                                          size_t list_len) {
943
2
  CBS sct_list;
944
2
  CBS_init(&sct_list, list, list_len);
945
2
  if (!ssl_is_sct_list_valid(&sct_list)) {
946
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SCT_LIST);
947
0
    return 0;
948
0
  }
949
950
2
  cert->signed_cert_timestamp_list.reset(
951
2
      CRYPTO_BUFFER_new(CBS_data(&sct_list), CBS_len(&sct_list), nullptr));
952
2
  return cert->signed_cert_timestamp_list != nullptr;
953
2
}
954
955
int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list,
956
2
                                           size_t list_len) {
957
2
  return set_signed_cert_timestamp_list(ctx->cert.get(), list, list_len);
958
2
}
959
960
int SSL_set_signed_cert_timestamp_list(SSL *ssl, const uint8_t *list,
961
0
                                       size_t list_len) {
962
0
  if (!ssl->config) {
963
0
    return 0;
964
0
  }
965
0
  return set_signed_cert_timestamp_list(ssl->config->cert.get(), list,
966
0
                                        list_len);
967
0
}
968
969
int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response,
970
2
                              size_t response_len) {
971
2
  ctx->cert->ocsp_response.reset(
972
2
      CRYPTO_BUFFER_new(response, response_len, nullptr));
973
2
  return ctx->cert->ocsp_response != nullptr;
974
2
}
975
976
int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response,
977
0
                          size_t response_len) {
978
0
  if (!ssl->config) {
979
0
    return 0;
980
0
  }
981
0
  ssl->config->cert->ocsp_response.reset(
982
0
      CRYPTO_BUFFER_new(response, response_len, nullptr));
983
0
  return ssl->config->cert->ocsp_response != nullptr;
984
0
}
985
986
0
void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list) {
987
0
  ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx);
988
0
  ctx->client_CA.reset(name_list);
989
0
}
990
991
0
void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list) {
992
0
  if (!ssl->config) {
993
0
    return;
994
0
  }
995
0
  ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl->config.get());
996
0
  ssl->config->client_CA.reset(name_list);
997
0
}
998
999
int SSL_set1_delegated_credential(SSL *ssl, CRYPTO_BUFFER *dc, EVP_PKEY *pkey,
1000
0
                                  const SSL_PRIVATE_KEY_METHOD *key_method) {
1001
0
  if (!ssl->config) {
1002
0
    return 0;
1003
0
  }
1004
1005
0
  return cert_set_dc(ssl->config->cert.get(), dc, pkey, key_method);
1006
0
}
1007
1008
0
int SSL_delegated_credential_used(const SSL *ssl) {
1009
0
  return ssl->s3->delegated_credential_used;
1010
0
}