Coverage Report

Created: 2023-06-29 07:25

/src/boringssl/crypto/pkcs8/pkcs8.c
Line
Count
Source (jump to first uncovered line)
1
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2
 * project 1999.
3
 */
4
/* ====================================================================
5
 * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 *
11
 * 1. Redistributions of source code must retain the above copyright
12
 *    notice, this list of conditions and the following disclaimer.
13
 *
14
 * 2. Redistributions in binary form must reproduce the above copyright
15
 *    notice, this list of conditions and the following disclaimer in
16
 *    the documentation and/or other materials provided with the
17
 *    distribution.
18
 *
19
 * 3. All advertising materials mentioning features or use of this
20
 *    software must display the following acknowledgment:
21
 *    "This product includes software developed by the OpenSSL Project
22
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23
 *
24
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25
 *    endorse or promote products derived from this software without
26
 *    prior written permission. For written permission, please contact
27
 *    licensing@OpenSSL.org.
28
 *
29
 * 5. Products derived from this software may not be called "OpenSSL"
30
 *    nor may "OpenSSL" appear in their names without prior written
31
 *    permission of the OpenSSL Project.
32
 *
33
 * 6. Redistributions of any form whatsoever must retain the following
34
 *    acknowledgment:
35
 *    "This product includes software developed by the OpenSSL Project
36
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37
 *
38
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49
 * OF THE POSSIBILITY OF SUCH DAMAGE.
50
 * ====================================================================
51
 *
52
 * This product includes cryptographic software written by Eric Young
53
 * (eay@cryptsoft.com).  This product includes software written by Tim
54
 * Hudson (tjh@cryptsoft.com). */
55
56
#include <openssl/pkcs8.h>
57
58
#include <assert.h>
59
#include <limits.h>
60
#include <string.h>
61
62
#include <openssl/bytestring.h>
63
#include <openssl/cipher.h>
64
#include <openssl/digest.h>
65
#include <openssl/err.h>
66
#include <openssl/mem.h>
67
#include <openssl/nid.h>
68
#include <openssl/rand.h>
69
70
#include "internal.h"
71
#include "../bytestring/internal.h"
72
#include "../internal.h"
73
74
75
static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out,
76
0
                                  size_t *out_len) {
77
0
  CBB cbb;
78
0
  if (!CBB_init(&cbb, in_len * 2)) {
79
0
    return 0;
80
0
  }
81
82
  // Convert the password to BMPString, or UCS-2. See
83
  // https://tools.ietf.org/html/rfc7292#appendix-B.1.
84
0
  CBS cbs;
85
0
  CBS_init(&cbs, (const uint8_t *)in, in_len);
86
0
  while (CBS_len(&cbs) != 0) {
87
0
    uint32_t c;
88
0
    if (!cbs_get_utf8(&cbs, &c) ||
89
0
        !cbb_add_ucs2_be(&cbb, c)) {
90
0
      OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
91
0
      goto err;
92
0
    }
93
0
  }
94
95
  // Terminate the result with a UCS-2 NUL.
96
0
  if (!cbb_add_ucs2_be(&cbb, 0) ||
97
0
      !CBB_finish(&cbb, out, out_len)) {
98
0
    goto err;
99
0
  }
100
101
0
  return 1;
102
103
0
err:
104
0
  CBB_cleanup(&cbb);
105
0
  return 0;
106
0
}
107
108
int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt,
109
                   size_t salt_len, uint8_t id, unsigned iterations,
110
0
                   size_t out_len, uint8_t *out, const EVP_MD *md) {
111
  // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the
112
  // specification have errata applied and other typos fixed.
113
114
0
  if (iterations < 1) {
115
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
116
0
    return 0;
117
0
  }
118
119
0
  int ret = 0;
120
0
  EVP_MD_CTX ctx;
121
0
  EVP_MD_CTX_init(&ctx);
122
0
  uint8_t *pass_raw = NULL, *I = NULL;
123
0
  size_t pass_raw_len = 0, I_len = 0;
124
  // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw
125
  // password.
126
0
  if (pass != NULL &&
127
0
      !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) {
128
0
    goto err;
129
0
  }
130
131
  // In the spec, |block_size| is called "v", but measured in bits.
132
0
  size_t block_size = EVP_MD_block_size(md);
133
134
  // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies
135
  // of ID.
136
0
  uint8_t D[EVP_MAX_MD_BLOCK_SIZE];
137
0
  OPENSSL_memset(D, id, block_size);
138
139
  // 2. Concatenate copies of the salt together to create a string S of length
140
  // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to
141
  // create S). Note that if the salt is the empty string, then so is S.
142
  //
143
  // 3. Concatenate copies of the password together to create a string P of
144
  // length v(ceiling(p/v)) bits (the final copy of the password may be
145
  // truncated to create P).  Note that if the password is the empty string,
146
  // then so is P.
147
  //
148
  // 4. Set I=S||P to be the concatenation of S and P.
149
0
  if (salt_len + block_size - 1 < salt_len ||
150
0
      pass_raw_len + block_size - 1 < pass_raw_len) {
151
0
    OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
152
0
    goto err;
153
0
  }
154
0
  size_t S_len = block_size * ((salt_len + block_size - 1) / block_size);
155
0
  size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size);
156
0
  I_len = S_len + P_len;
157
0
  if (I_len < S_len) {
158
0
    OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
159
0
    goto err;
160
0
  }
161
162
0
  I = OPENSSL_malloc(I_len);
163
0
  if (I_len != 0 && I == NULL) {
164
0
    goto err;
165
0
  }
166
167
0
  for (size_t i = 0; i < S_len; i++) {
168
0
    I[i] = salt[i % salt_len];
169
0
  }
170
0
  for (size_t i = 0; i < P_len; i++) {
171
0
    I[i + S_len] = pass_raw[i % pass_raw_len];
172
0
  }
173
174
0
  while (out_len != 0) {
175
    // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I,
176
    // H(H(H(... H(D||I))))
177
0
    uint8_t A[EVP_MAX_MD_SIZE];
178
0
    unsigned A_len;
179
0
    if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
180
0
        !EVP_DigestUpdate(&ctx, D, block_size) ||
181
0
        !EVP_DigestUpdate(&ctx, I, I_len) ||
182
0
        !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
183
0
      goto err;
184
0
    }
185
0
    for (unsigned iter = 1; iter < iterations; iter++) {
186
0
      if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
187
0
          !EVP_DigestUpdate(&ctx, A, A_len) ||
188
0
          !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
189
0
        goto err;
190
0
      }
191
0
    }
192
193
0
    size_t todo = out_len < A_len ? out_len : A_len;
194
0
    OPENSSL_memcpy(out, A, todo);
195
0
    out += todo;
196
0
    out_len -= todo;
197
0
    if (out_len == 0) {
198
0
      break;
199
0
    }
200
201
    // B. Concatenate copies of A_i to create a string B of length v bits (the
202
    // final copy of A_i may be truncated to create B).
203
0
    uint8_t B[EVP_MAX_MD_BLOCK_SIZE];
204
0
    for (size_t i = 0; i < block_size; i++) {
205
0
      B[i] = A[i % A_len];
206
0
    }
207
208
    // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks,
209
    // where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod
210
    // 2^v for each j.
211
0
    assert(I_len % block_size == 0);
212
0
    for (size_t i = 0; i < I_len; i += block_size) {
213
0
      unsigned carry = 1;
214
0
      for (size_t j = block_size - 1; j < block_size; j--) {
215
0
        carry += I[i + j] + B[j];
216
0
        I[i + j] = (uint8_t)carry;
217
0
        carry >>= 8;
218
0
      }
219
0
    }
220
0
  }
221
222
0
  ret = 1;
223
224
0
err:
225
0
  OPENSSL_free(I);
226
0
  OPENSSL_free(pass_raw);
227
0
  EVP_MD_CTX_cleanup(&ctx);
228
0
  return ret;
229
0
}
230
231
static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite,
232
                                  EVP_CIPHER_CTX *ctx, unsigned iterations,
233
                                  const char *pass, size_t pass_len,
234
                                  const uint8_t *salt, size_t salt_len,
235
0
                                  int is_encrypt) {
236
0
  const EVP_CIPHER *cipher = suite->cipher_func();
237
0
  const EVP_MD *md = suite->md_func();
238
239
0
  uint8_t key[EVP_MAX_KEY_LENGTH];
240
0
  uint8_t iv[EVP_MAX_IV_LENGTH];
241
0
  if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations,
242
0
                      EVP_CIPHER_key_length(cipher), key, md) ||
243
0
      !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations,
244
0
                      EVP_CIPHER_iv_length(cipher), iv, md)) {
245
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
246
0
    return 0;
247
0
  }
248
249
0
  int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
250
0
  OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
251
0
  OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
252
0
  return ret;
253
0
}
254
255
static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite,
256
                                   EVP_CIPHER_CTX *ctx, const char *pass,
257
0
                                   size_t pass_len, CBS *param) {
258
0
  CBS pbe_param, salt;
259
0
  uint64_t iterations;
260
0
  if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
261
0
      !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) ||
262
0
      !CBS_get_asn1_uint64(&pbe_param, &iterations) ||
263
0
      CBS_len(&pbe_param) != 0 ||
264
0
      CBS_len(param) != 0) {
265
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
266
0
    return 0;
267
0
  }
268
269
0
  if (!pkcs12_iterations_acceptable(iterations)) {
270
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
271
0
    return 0;
272
0
  }
273
274
0
  return pkcs12_pbe_cipher_init(suite, ctx, (unsigned)iterations, pass,
275
0
                                pass_len, CBS_data(&salt), CBS_len(&salt),
276
0
                                0 /* decrypt */);
277
0
}
278
279
static const struct pbe_suite kBuiltinPBE[] = {
280
    {
281
        NID_pbe_WithSHA1And40BitRC2_CBC,
282
        // 1.2.840.113549.1.12.1.6
283
        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06},
284
        10,
285
        EVP_rc2_40_cbc,
286
        EVP_sha1,
287
        pkcs12_pbe_decrypt_init,
288
    },
289
    {
290
        NID_pbe_WithSHA1And128BitRC4,
291
        // 1.2.840.113549.1.12.1.1
292
        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01},
293
        10,
294
        EVP_rc4,
295
        EVP_sha1,
296
        pkcs12_pbe_decrypt_init,
297
    },
298
    {
299
        NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
300
        // 1.2.840.113549.1.12.1.3
301
        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03},
302
        10,
303
        EVP_des_ede3_cbc,
304
        EVP_sha1,
305
        pkcs12_pbe_decrypt_init,
306
    },
307
    {
308
        NID_pbes2,
309
        // 1.2.840.113549.1.5.13
310
        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d},
311
        9,
312
        NULL,
313
        NULL,
314
        PKCS5_pbe2_decrypt_init,
315
    },
316
};
317
318
0
static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) {
319
0
  for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
320
0
    if (kBuiltinPBE[i].pbe_nid == pbe_nid &&
321
        // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme.
322
0
        kBuiltinPBE[i].cipher_func != NULL &&
323
0
        kBuiltinPBE[i].md_func != NULL) {
324
0
      return &kBuiltinPBE[i];
325
0
    }
326
0
  }
327
328
0
  return NULL;
329
0
}
330
331
int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg,
332
                            unsigned iterations, const char *pass,
333
                            size_t pass_len, const uint8_t *salt,
334
0
                            size_t salt_len) {
335
0
  const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg);
336
0
  if (suite == NULL) {
337
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
338
0
    return 0;
339
0
  }
340
341
  // See RFC 2898, appendix A.3.
342
0
  CBB algorithm, oid, param, salt_cbb;
343
0
  if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
344
0
      !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
345
0
      !CBB_add_bytes(&oid, suite->oid, suite->oid_len) ||
346
0
      !CBB_add_asn1(&algorithm, &param, CBS_ASN1_SEQUENCE) ||
347
0
      !CBB_add_asn1(&param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
348
0
      !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
349
0
      !CBB_add_asn1_uint64(&param, iterations) ||
350
0
      !CBB_flush(out)) {
351
0
    return 0;
352
0
  }
353
354
0
  return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt,
355
0
                                salt_len, 1 /* encrypt */);
356
0
}
357
358
int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm,
359
                      const char *pass, size_t pass_len, const uint8_t *in,
360
0
                      size_t in_len) {
361
0
  int ret = 0;
362
0
  uint8_t *buf = NULL;;
363
0
  EVP_CIPHER_CTX ctx;
364
0
  EVP_CIPHER_CTX_init(&ctx);
365
366
0
  CBS obj;
367
0
  if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) {
368
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
369
0
    goto err;
370
0
  }
371
372
0
  const struct pbe_suite *suite = NULL;
373
0
  for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
374
0
    if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) {
375
0
      suite = &kBuiltinPBE[i];
376
0
      break;
377
0
    }
378
0
  }
379
0
  if (suite == NULL) {
380
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
381
0
    goto err;
382
0
  }
383
384
0
  if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) {
385
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE);
386
0
    goto err;
387
0
  }
388
389
0
  buf = OPENSSL_malloc(in_len);
390
0
  if (buf == NULL) {
391
0
    goto err;
392
0
  }
393
394
0
  if (in_len > INT_MAX) {
395
0
    OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
396
0
    goto err;
397
0
  }
398
399
0
  int n1, n2;
400
0
  if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) ||
401
0
      !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) {
402
0
    goto err;
403
0
  }
404
405
0
  *out = buf;
406
0
  *out_len = n1 + n2;
407
0
  ret = 1;
408
0
  buf = NULL;
409
410
0
err:
411
0
  OPENSSL_free(buf);
412
0
  EVP_CIPHER_CTX_cleanup(&ctx);
413
0
  return ret;
414
0
}
415
416
EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass,
417
0
                                            size_t pass_len) {
418
  // See RFC 5208, section 6.
419
0
  CBS epki, algorithm, ciphertext;
420
0
  if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) ||
421
0
      !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) ||
422
0
      !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
423
0
      CBS_len(&epki) != 0) {
424
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
425
0
    return 0;
426
0
  }
427
428
0
  uint8_t *out;
429
0
  size_t out_len;
430
0
  if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len,
431
0
                         CBS_data(&ciphertext), CBS_len(&ciphertext))) {
432
0
    return 0;
433
0
  }
434
435
0
  CBS pki;
436
0
  CBS_init(&pki, out, out_len);
437
0
  EVP_PKEY *ret = EVP_parse_private_key(&pki);
438
0
  OPENSSL_free(out);
439
0
  return ret;
440
0
}
441
442
int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid,
443
                                        const EVP_CIPHER *cipher,
444
                                        const char *pass, size_t pass_len,
445
                                        const uint8_t *salt, size_t salt_len,
446
0
                                        int iterations, const EVP_PKEY *pkey) {
447
0
  int ret = 0;
448
0
  uint8_t *plaintext = NULL, *salt_buf = NULL;
449
0
  size_t plaintext_len = 0;
450
0
  EVP_CIPHER_CTX ctx;
451
0
  EVP_CIPHER_CTX_init(&ctx);
452
453
  // Generate a random salt if necessary.
454
0
  if (salt == NULL) {
455
0
    if (salt_len == 0) {
456
0
      salt_len = PKCS5_SALT_LEN;
457
0
    }
458
459
0
    salt_buf = OPENSSL_malloc(salt_len);
460
0
    if (salt_buf == NULL ||
461
0
        !RAND_bytes(salt_buf, salt_len)) {
462
0
      goto err;
463
0
    }
464
465
0
    salt = salt_buf;
466
0
  }
467
468
0
  if (iterations <= 0) {
469
0
    iterations = PKCS12_DEFAULT_ITER;
470
0
  }
471
472
  // Serialize the input key.
473
0
  CBB plaintext_cbb;
474
0
  if (!CBB_init(&plaintext_cbb, 128) ||
475
0
      !EVP_marshal_private_key(&plaintext_cbb, pkey) ||
476
0
      !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) {
477
0
    CBB_cleanup(&plaintext_cbb);
478
0
    goto err;
479
0
  }
480
481
0
  CBB epki;
482
0
  if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) {
483
0
    goto err;
484
0
  }
485
486
  // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either the
487
  // PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will
488
  // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses
489
  // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL.
490
0
  int alg_ok;
491
0
  if (pbe_nid == -1) {
492
0
    alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (unsigned)iterations,
493
0
                                     pass, pass_len, salt, salt_len);
494
0
  } else {
495
0
    alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (unsigned)iterations,
496
0
                                     pass, pass_len, salt, salt_len);
497
0
  }
498
0
  if (!alg_ok) {
499
0
    goto err;
500
0
  }
501
502
0
  size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx);
503
0
  if (max_out < plaintext_len) {
504
0
    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
505
0
    goto err;
506
0
  }
507
508
0
  CBB ciphertext;
509
0
  uint8_t *ptr;
510
0
  int n1, n2;
511
0
  if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
512
0
      !CBB_reserve(&ciphertext, &ptr, max_out) ||
513
0
      !EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) ||
514
0
      !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
515
0
      !CBB_did_write(&ciphertext, n1 + n2) ||
516
0
      !CBB_flush(out)) {
517
0
    goto err;
518
0
  }
519
520
0
  ret = 1;
521
522
0
err:
523
0
  OPENSSL_free(plaintext);
524
0
  OPENSSL_free(salt_buf);
525
0
  EVP_CIPHER_CTX_cleanup(&ctx);
526
0
  return ret;
527
0
}