/src/boringssl/crypto/evp/print.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/evp.h> |
16 | | |
17 | | #include <openssl/bio.h> |
18 | | #include <openssl/bn.h> |
19 | | #include <openssl/dsa.h> |
20 | | #include <openssl/ec.h> |
21 | | #include <openssl/ec_key.h> |
22 | | #include <openssl/mem.h> |
23 | | #include <openssl/rsa.h> |
24 | | |
25 | | #include "../fipsmodule/rsa/internal.h" |
26 | | #include "../internal.h" |
27 | | |
28 | | |
29 | 0 | static int print_hex(BIO *bp, const uint8_t *data, size_t len, int off) { |
30 | 0 | for (size_t i = 0; i < len; i++) { |
31 | 0 | if ((i % 15) == 0) { |
32 | 0 | if (BIO_puts(bp, "\n") <= 0 || // |
33 | 0 | !BIO_indent(bp, off + 4, 128)) { |
34 | 0 | return 0; |
35 | 0 | } |
36 | 0 | } |
37 | 0 | if (BIO_printf(bp, "%02x%s", data[i], (i + 1 == len) ? "" : ":") <= 0) { |
38 | 0 | return 0; |
39 | 0 | } |
40 | 0 | } |
41 | 0 | if (BIO_write(bp, "\n", 1) <= 0) { |
42 | 0 | return 0; |
43 | 0 | } |
44 | 0 | return 1; |
45 | 0 | } |
46 | | |
47 | 0 | static int bn_print(BIO *bp, const char *name, const BIGNUM *num, int off) { |
48 | 0 | if (num == NULL) { |
49 | 0 | return 1; |
50 | 0 | } |
51 | | |
52 | 0 | if (!BIO_indent(bp, off, 128)) { |
53 | 0 | return 0; |
54 | 0 | } |
55 | 0 | if (BN_is_zero(num)) { |
56 | 0 | if (BIO_printf(bp, "%s 0\n", name) <= 0) { |
57 | 0 | return 0; |
58 | 0 | } |
59 | 0 | return 1; |
60 | 0 | } |
61 | | |
62 | 0 | uint64_t u64; |
63 | 0 | if (BN_get_u64(num, &u64)) { |
64 | 0 | const char *neg = BN_is_negative(num) ? "-" : ""; |
65 | 0 | return BIO_printf(bp, "%s %s%" PRIu64 " (%s0x%" PRIx64 ")\n", name, neg, |
66 | 0 | u64, neg, u64) > 0; |
67 | 0 | } |
68 | | |
69 | 0 | if (BIO_printf(bp, "%s%s", name, |
70 | 0 | (BN_is_negative(num)) ? " (Negative)" : "") <= 0) { |
71 | 0 | return 0; |
72 | 0 | } |
73 | | |
74 | | // Print |num| in hex, adding a leading zero, as in ASN.1, if the high bit |
75 | | // is set. |
76 | | // |
77 | | // TODO(davidben): Do we need to do this? We already print "(Negative)" above |
78 | | // and negative values are never valid in keys anyway. |
79 | 0 | size_t len = BN_num_bytes(num); |
80 | 0 | uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(len + 1)); |
81 | 0 | if (buf == NULL) { |
82 | 0 | return 0; |
83 | 0 | } |
84 | | |
85 | 0 | buf[0] = 0; |
86 | 0 | BN_bn2bin(num, buf + 1); |
87 | 0 | int ret; |
88 | 0 | if (len > 0 && (buf[1] & 0x80) != 0) { |
89 | | // Print the whole buffer. |
90 | 0 | ret = print_hex(bp, buf, len + 1, off); |
91 | 0 | } else { |
92 | | // Skip the leading zero. |
93 | 0 | ret = print_hex(bp, buf + 1, len, off); |
94 | 0 | } |
95 | 0 | OPENSSL_free(buf); |
96 | 0 | return ret; |
97 | 0 | } |
98 | | |
99 | | // RSA keys. |
100 | | |
101 | | static int do_rsa_print(BIO *out, const RSA *rsa, int off, |
102 | 0 | int include_private) { |
103 | 0 | int mod_len = 0; |
104 | 0 | if (rsa->n != NULL) { |
105 | 0 | mod_len = BN_num_bits(rsa->n); |
106 | 0 | } |
107 | |
|
108 | 0 | if (!BIO_indent(out, off, 128)) { |
109 | 0 | return 0; |
110 | 0 | } |
111 | | |
112 | 0 | const char *s, *str; |
113 | 0 | if (include_private && rsa->d) { |
114 | 0 | if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { |
115 | 0 | return 0; |
116 | 0 | } |
117 | 0 | str = "modulus:"; |
118 | 0 | s = "publicExponent:"; |
119 | 0 | } else { |
120 | 0 | if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { |
121 | 0 | return 0; |
122 | 0 | } |
123 | 0 | str = "Modulus:"; |
124 | 0 | s = "Exponent:"; |
125 | 0 | } |
126 | 0 | if (!bn_print(out, str, rsa->n, off) || !bn_print(out, s, rsa->e, off)) { |
127 | 0 | return 0; |
128 | 0 | } |
129 | | |
130 | 0 | if (include_private) { |
131 | 0 | if (!bn_print(out, "privateExponent:", rsa->d, off) || |
132 | 0 | !bn_print(out, "prime1:", rsa->p, off) || |
133 | 0 | !bn_print(out, "prime2:", rsa->q, off) || |
134 | 0 | !bn_print(out, "exponent1:", rsa->dmp1, off) || |
135 | 0 | !bn_print(out, "exponent2:", rsa->dmq1, off) || |
136 | 0 | !bn_print(out, "coefficient:", rsa->iqmp, off)) { |
137 | 0 | return 0; |
138 | 0 | } |
139 | 0 | } |
140 | | |
141 | 0 | return 1; |
142 | 0 | } |
143 | | |
144 | 0 | static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
145 | 0 | return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 0); |
146 | 0 | } |
147 | | |
148 | 0 | static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
149 | 0 | return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 1); |
150 | 0 | } |
151 | | |
152 | | |
153 | | // DSA keys. |
154 | | |
155 | 0 | static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { |
156 | 0 | const BIGNUM *priv_key = NULL; |
157 | 0 | if (ptype == 2) { |
158 | 0 | priv_key = DSA_get0_priv_key(x); |
159 | 0 | } |
160 | |
|
161 | 0 | const BIGNUM *pub_key = NULL; |
162 | 0 | if (ptype > 0) { |
163 | 0 | pub_key = DSA_get0_pub_key(x); |
164 | 0 | } |
165 | |
|
166 | 0 | const char *ktype = "DSA-Parameters"; |
167 | 0 | if (ptype == 2) { |
168 | 0 | ktype = "Private-Key"; |
169 | 0 | } else if (ptype == 1) { |
170 | 0 | ktype = "Public-Key"; |
171 | 0 | } |
172 | |
|
173 | 0 | if (!BIO_indent(bp, off, 128) || |
174 | 0 | BIO_printf(bp, "%s: (%u bit)\n", ktype, BN_num_bits(DSA_get0_p(x))) <= |
175 | 0 | 0 || |
176 | | // |priv_key| and |pub_key| may be NULL, in which case |bn_print| will |
177 | | // silently skip them. |
178 | 0 | !bn_print(bp, "priv:", priv_key, off) || |
179 | 0 | !bn_print(bp, "pub:", pub_key, off) || |
180 | 0 | !bn_print(bp, "P:", DSA_get0_p(x), off) || |
181 | 0 | !bn_print(bp, "Q:", DSA_get0_q(x), off) || |
182 | 0 | !bn_print(bp, "G:", DSA_get0_g(x), off)) { |
183 | 0 | return 0; |
184 | 0 | } |
185 | | |
186 | 0 | return 1; |
187 | 0 | } |
188 | | |
189 | 0 | static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
190 | 0 | return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 0); |
191 | 0 | } |
192 | | |
193 | 0 | static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
194 | 0 | return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 1); |
195 | 0 | } |
196 | | |
197 | 0 | static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
198 | 0 | return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 2); |
199 | 0 | } |
200 | | |
201 | | |
202 | | // EC keys. |
203 | | |
204 | 0 | static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { |
205 | 0 | const EC_GROUP *group; |
206 | 0 | if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { |
207 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_PASSED_NULL_PARAMETER); |
208 | 0 | return 0; |
209 | 0 | } |
210 | | |
211 | 0 | const char *ecstr; |
212 | 0 | if (ktype == 2) { |
213 | 0 | ecstr = "Private-Key"; |
214 | 0 | } else if (ktype == 1) { |
215 | 0 | ecstr = "Public-Key"; |
216 | 0 | } else { |
217 | 0 | ecstr = "ECDSA-Parameters"; |
218 | 0 | } |
219 | |
|
220 | 0 | if (!BIO_indent(bp, off, 128)) { |
221 | 0 | return 0; |
222 | 0 | } |
223 | 0 | int curve_name = EC_GROUP_get_curve_name(group); |
224 | 0 | if (BIO_printf(bp, "%s: (%s)\n", ecstr, |
225 | 0 | curve_name == NID_undef |
226 | 0 | ? "unknown curve" |
227 | 0 | : EC_curve_nid2nist(curve_name)) <= 0) { |
228 | 0 | return 0; |
229 | 0 | } |
230 | | |
231 | 0 | if (ktype == 2) { |
232 | 0 | const BIGNUM *priv_key = EC_KEY_get0_private_key(x); |
233 | 0 | if (priv_key != NULL && // |
234 | 0 | !bn_print(bp, "priv:", priv_key, off)) { |
235 | 0 | return 0; |
236 | 0 | } |
237 | 0 | } |
238 | | |
239 | 0 | if (ktype > 0 && EC_KEY_get0_public_key(x) != NULL) { |
240 | 0 | uint8_t *pub = NULL; |
241 | 0 | size_t pub_len = EC_KEY_key2buf(x, EC_KEY_get_conv_form(x), &pub, NULL); |
242 | 0 | if (pub_len == 0) { |
243 | 0 | return 0; |
244 | 0 | } |
245 | 0 | int ret = BIO_indent(bp, off, 128) && // |
246 | 0 | BIO_puts(bp, "pub:") > 0 && // |
247 | 0 | print_hex(bp, pub, pub_len, off); |
248 | 0 | OPENSSL_free(pub); |
249 | 0 | if (!ret) { |
250 | 0 | return 0; |
251 | 0 | } |
252 | 0 | } |
253 | | |
254 | 0 | return 1; |
255 | 0 | } |
256 | | |
257 | 0 | static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
258 | 0 | return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 0); |
259 | 0 | } |
260 | | |
261 | 0 | static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
262 | 0 | return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 1); |
263 | 0 | } |
264 | | |
265 | | |
266 | 0 | static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
267 | 0 | return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 2); |
268 | 0 | } |
269 | | |
270 | | |
271 | | typedef struct { |
272 | | int type; |
273 | | int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent); |
274 | | int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent); |
275 | | int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent); |
276 | | } EVP_PKEY_PRINT_METHOD; |
277 | | |
278 | | static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { |
279 | | { |
280 | | EVP_PKEY_RSA, |
281 | | rsa_pub_print, |
282 | | rsa_priv_print, |
283 | | NULL /* param_print */, |
284 | | }, |
285 | | { |
286 | | EVP_PKEY_DSA, |
287 | | dsa_pub_print, |
288 | | dsa_priv_print, |
289 | | dsa_param_print, |
290 | | }, |
291 | | { |
292 | | EVP_PKEY_EC, |
293 | | eckey_pub_print, |
294 | | eckey_priv_print, |
295 | | eckey_param_print, |
296 | | }, |
297 | | }; |
298 | | |
299 | | static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); |
300 | | |
301 | 0 | static EVP_PKEY_PRINT_METHOD *find_method(int type) { |
302 | 0 | for (size_t i = 0; i < kPrintMethodsLen; i++) { |
303 | 0 | if (kPrintMethods[i].type == type) { |
304 | 0 | return &kPrintMethods[i]; |
305 | 0 | } |
306 | 0 | } |
307 | 0 | return NULL; |
308 | 0 | } |
309 | | |
310 | | static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, |
311 | 0 | const char *kstr) { |
312 | 0 | BIO_indent(out, indent, 128); |
313 | 0 | BIO_printf(out, "%s algorithm unsupported\n", kstr); |
314 | 0 | return 1; |
315 | 0 | } |
316 | | |
317 | | int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, |
318 | 0 | ASN1_PCTX *pctx) { |
319 | 0 | EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); |
320 | 0 | if (method != NULL && method->pub_print != NULL) { |
321 | 0 | return method->pub_print(out, pkey, indent); |
322 | 0 | } |
323 | 0 | return print_unsupported(out, pkey, indent, "Public Key"); |
324 | 0 | } |
325 | | |
326 | | int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, |
327 | 0 | ASN1_PCTX *pctx) { |
328 | 0 | EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); |
329 | 0 | if (method != NULL && method->priv_print != NULL) { |
330 | 0 | return method->priv_print(out, pkey, indent); |
331 | 0 | } |
332 | 0 | return print_unsupported(out, pkey, indent, "Private Key"); |
333 | 0 | } |
334 | | |
335 | | int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, |
336 | 0 | ASN1_PCTX *pctx) { |
337 | 0 | EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); |
338 | 0 | if (method != NULL && method->param_print != NULL) { |
339 | 0 | return method->param_print(out, pkey, indent); |
340 | 0 | } |
341 | 0 | return print_unsupported(out, pkey, indent, "Parameters"); |
342 | 0 | } |