/src/boringssl/crypto/dsa/dsa.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/dsa.h> |
16 | | |
17 | | #include <string.h> |
18 | | |
19 | | #include <openssl/bn.h> |
20 | | #include <openssl/dh.h> |
21 | | #include <openssl/digest.h> |
22 | | #include <openssl/engine.h> |
23 | | #include <openssl/err.h> |
24 | | #include <openssl/ex_data.h> |
25 | | #include <openssl/mem.h> |
26 | | #include <openssl/rand.h> |
27 | | #include <openssl/sha.h> |
28 | | |
29 | | #include "../fipsmodule/bn/internal.h" |
30 | | #include "../fipsmodule/dh/internal.h" |
31 | | #include "../internal.h" |
32 | | #include "internal.h" |
33 | | |
34 | | |
35 | | static_assert(OPENSSL_DSA_MAX_MODULUS_BITS <= |
36 | | BN_MONTGOMERY_MAX_WORDS * BN_BITS2, |
37 | | "Max DSA size too big for Montgomery arithmetic"); |
38 | | |
39 | | // Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of |
40 | | // Miller-Rabin. |
41 | 0 | #define DSS_prime_checks 50 |
42 | | |
43 | | static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv, |
44 | | BIGNUM **out_r); |
45 | | |
46 | | static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; |
47 | | |
48 | 801 | DSA *DSA_new(void) { |
49 | 801 | DSA *dsa = reinterpret_cast<DSA *>(OPENSSL_zalloc(sizeof(DSA))); |
50 | 801 | if (dsa == NULL) { |
51 | 0 | return NULL; |
52 | 0 | } |
53 | | |
54 | 801 | dsa->references = 1; |
55 | 801 | CRYPTO_MUTEX_init(&dsa->method_mont_lock); |
56 | 801 | CRYPTO_new_ex_data(&dsa->ex_data); |
57 | 801 | return dsa; |
58 | 801 | } |
59 | | |
60 | 1.16k | void DSA_free(DSA *dsa) { |
61 | 1.16k | if (dsa == NULL) { |
62 | 360 | return; |
63 | 360 | } |
64 | | |
65 | 801 | if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) { |
66 | 0 | return; |
67 | 0 | } |
68 | | |
69 | 801 | CRYPTO_free_ex_data(&g_ex_data_class, &dsa->ex_data); |
70 | | |
71 | 801 | BN_clear_free(dsa->p); |
72 | 801 | BN_clear_free(dsa->q); |
73 | 801 | BN_clear_free(dsa->g); |
74 | 801 | BN_clear_free(dsa->pub_key); |
75 | 801 | BN_clear_free(dsa->priv_key); |
76 | 801 | BN_MONT_CTX_free(dsa->method_mont_p); |
77 | 801 | BN_MONT_CTX_free(dsa->method_mont_q); |
78 | 801 | CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock); |
79 | 801 | OPENSSL_free(dsa); |
80 | 801 | } |
81 | | |
82 | 0 | int DSA_up_ref(DSA *dsa) { |
83 | 0 | CRYPTO_refcount_inc(&dsa->references); |
84 | 0 | return 1; |
85 | 0 | } |
86 | | |
87 | 0 | unsigned DSA_bits(const DSA *dsa) { return BN_num_bits(dsa->p); } |
88 | | |
89 | 0 | const BIGNUM *DSA_get0_pub_key(const DSA *dsa) { return dsa->pub_key; } |
90 | | |
91 | 0 | const BIGNUM *DSA_get0_priv_key(const DSA *dsa) { return dsa->priv_key; } |
92 | | |
93 | 0 | const BIGNUM *DSA_get0_p(const DSA *dsa) { return dsa->p; } |
94 | | |
95 | 0 | const BIGNUM *DSA_get0_q(const DSA *dsa) { return dsa->q; } |
96 | | |
97 | 0 | const BIGNUM *DSA_get0_g(const DSA *dsa) { return dsa->g; } |
98 | | |
99 | | void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key, |
100 | 0 | const BIGNUM **out_priv_key) { |
101 | 0 | if (out_pub_key != NULL) { |
102 | 0 | *out_pub_key = dsa->pub_key; |
103 | 0 | } |
104 | 0 | if (out_priv_key != NULL) { |
105 | 0 | *out_priv_key = dsa->priv_key; |
106 | 0 | } |
107 | 0 | } |
108 | | |
109 | | void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q, |
110 | 0 | const BIGNUM **out_g) { |
111 | 0 | if (out_p != NULL) { |
112 | 0 | *out_p = dsa->p; |
113 | 0 | } |
114 | 0 | if (out_q != NULL) { |
115 | 0 | *out_q = dsa->q; |
116 | 0 | } |
117 | 0 | if (out_g != NULL) { |
118 | 0 | *out_g = dsa->g; |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | 0 | int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) { |
123 | 0 | if (dsa->pub_key == NULL && pub_key == NULL) { |
124 | 0 | return 0; |
125 | 0 | } |
126 | | |
127 | 0 | if (pub_key != NULL) { |
128 | 0 | BN_free(dsa->pub_key); |
129 | 0 | dsa->pub_key = pub_key; |
130 | 0 | } |
131 | 0 | if (priv_key != NULL) { |
132 | 0 | BN_free(dsa->priv_key); |
133 | 0 | dsa->priv_key = priv_key; |
134 | 0 | } |
135 | |
|
136 | 0 | return 1; |
137 | 0 | } |
138 | | |
139 | 0 | int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) { |
140 | 0 | if ((dsa->p == NULL && p == NULL) || (dsa->q == NULL && q == NULL) || |
141 | 0 | (dsa->g == NULL && g == NULL)) { |
142 | 0 | return 0; |
143 | 0 | } |
144 | | |
145 | 0 | if (p != NULL) { |
146 | 0 | BN_free(dsa->p); |
147 | 0 | dsa->p = p; |
148 | 0 | } |
149 | 0 | if (q != NULL) { |
150 | 0 | BN_free(dsa->q); |
151 | 0 | dsa->q = q; |
152 | 0 | } |
153 | 0 | if (g != NULL) { |
154 | 0 | BN_free(dsa->g); |
155 | 0 | dsa->g = g; |
156 | 0 | } |
157 | |
|
158 | 0 | BN_MONT_CTX_free(dsa->method_mont_p); |
159 | 0 | dsa->method_mont_p = NULL; |
160 | 0 | BN_MONT_CTX_free(dsa->method_mont_q); |
161 | 0 | dsa->method_mont_q = NULL; |
162 | 0 | return 1; |
163 | 0 | } |
164 | | |
165 | | int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in, |
166 | | size_t seed_len, int *out_counter, |
167 | 0 | unsigned long *out_h, BN_GENCB *cb) { |
168 | 0 | if (bits > OPENSSL_DSA_MAX_MODULUS_BITS) { |
169 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); |
170 | 0 | return 0; |
171 | 0 | } |
172 | | |
173 | 0 | unsigned char seed[SHA256_DIGEST_LENGTH]; |
174 | 0 | unsigned char md[SHA256_DIGEST_LENGTH]; |
175 | 0 | unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH]; |
176 | 0 | BIGNUM *r0, *W, *X, *c, *test; |
177 | 0 | BIGNUM *g = NULL, *q = NULL, *p = NULL; |
178 | 0 | int k, n = 0, m = 0; |
179 | 0 | int counter = 0; |
180 | 0 | int r = 0; |
181 | 0 | unsigned int h = 2; |
182 | 0 | const EVP_MD *evpmd; |
183 | |
|
184 | 0 | evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1(); |
185 | 0 | size_t qsize = EVP_MD_size(evpmd); |
186 | |
|
187 | 0 | if (bits < 512) { |
188 | 0 | bits = 512; |
189 | 0 | } |
190 | |
|
191 | 0 | bits = (bits + 63) / 64 * 64; |
192 | |
|
193 | 0 | if (seed_in != NULL) { |
194 | 0 | if (seed_len < qsize) { |
195 | 0 | return 0; |
196 | 0 | } |
197 | 0 | if (seed_len > qsize) { |
198 | | // Only consume as much seed as is expected. |
199 | 0 | seed_len = qsize; |
200 | 0 | } |
201 | 0 | OPENSSL_memcpy(seed, seed_in, seed_len); |
202 | 0 | } |
203 | | |
204 | 0 | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
205 | 0 | if (ctx == nullptr) { |
206 | 0 | return 0; |
207 | 0 | } |
208 | 0 | bssl::BN_CTXScope scope(ctx.get()); |
209 | |
|
210 | 0 | r0 = BN_CTX_get(ctx.get()); |
211 | 0 | g = BN_CTX_get(ctx.get()); |
212 | 0 | W = BN_CTX_get(ctx.get()); |
213 | 0 | q = BN_CTX_get(ctx.get()); |
214 | 0 | X = BN_CTX_get(ctx.get()); |
215 | 0 | c = BN_CTX_get(ctx.get()); |
216 | 0 | p = BN_CTX_get(ctx.get()); |
217 | 0 | test = BN_CTX_get(ctx.get()); |
218 | |
|
219 | 0 | if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) { |
220 | 0 | return 0; |
221 | 0 | } |
222 | | |
223 | 0 | for (;;) { |
224 | | // Find q. |
225 | 0 | for (;;) { |
226 | | // step 1 |
227 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, m++)) { |
228 | 0 | return 0; |
229 | 0 | } |
230 | | |
231 | 0 | int use_random_seed = (seed_in == NULL); |
232 | 0 | if (use_random_seed) { |
233 | 0 | if (!RAND_bytes(seed, qsize)) { |
234 | 0 | return 0; |
235 | 0 | } |
236 | | // DSA parameters are public. |
237 | 0 | CONSTTIME_DECLASSIFY(seed, qsize); |
238 | 0 | } else { |
239 | | // If we come back through, use random seed next time. |
240 | 0 | seed_in = NULL; |
241 | 0 | } |
242 | 0 | OPENSSL_memcpy(buf, seed, qsize); |
243 | 0 | OPENSSL_memcpy(buf2, seed, qsize); |
244 | | // precompute "SEED + 1" for step 7: |
245 | 0 | for (size_t i = qsize - 1; i < qsize; i--) { |
246 | 0 | buf[i]++; |
247 | 0 | if (buf[i] != 0) { |
248 | 0 | break; |
249 | 0 | } |
250 | 0 | } |
251 | | |
252 | | // step 2 |
253 | 0 | if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) || |
254 | 0 | !EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) { |
255 | 0 | return 0; |
256 | 0 | } |
257 | 0 | for (size_t i = 0; i < qsize; i++) { |
258 | 0 | md[i] ^= buf2[i]; |
259 | 0 | } |
260 | | |
261 | | // step 3 |
262 | 0 | md[0] |= 0x80; |
263 | 0 | md[qsize - 1] |= 0x01; |
264 | 0 | if (!BN_bin2bn(md, qsize, q)) { |
265 | 0 | return 0; |
266 | 0 | } |
267 | | |
268 | | // step 4 |
269 | 0 | r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx.get(), |
270 | 0 | use_random_seed, cb); |
271 | 0 | if (r > 0) { |
272 | 0 | break; |
273 | 0 | } |
274 | 0 | if (r != 0) { |
275 | 0 | return 0; |
276 | 0 | } |
277 | | |
278 | | // do a callback call |
279 | | // step 5 |
280 | 0 | } |
281 | | |
282 | 0 | if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) { |
283 | 0 | return 0; |
284 | 0 | } |
285 | | |
286 | | // step 6 |
287 | 0 | counter = 0; |
288 | | // "offset = 2" |
289 | |
|
290 | 0 | n = (bits - 1) / 160; |
291 | |
|
292 | 0 | for (;;) { |
293 | 0 | if ((counter != 0) && !BN_GENCB_call(cb, BN_GENCB_GENERATED, counter)) { |
294 | 0 | return 0; |
295 | 0 | } |
296 | | |
297 | | // step 7 |
298 | 0 | BN_zero(W); |
299 | | // now 'buf' contains "SEED + offset - 1" |
300 | 0 | for (k = 0; k <= n; k++) { |
301 | | // obtain "SEED + offset + k" by incrementing: |
302 | 0 | for (size_t i = qsize - 1; i < qsize; i--) { |
303 | 0 | buf[i]++; |
304 | 0 | if (buf[i] != 0) { |
305 | 0 | break; |
306 | 0 | } |
307 | 0 | } |
308 | |
|
309 | 0 | if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) { |
310 | 0 | return 0; |
311 | 0 | } |
312 | | |
313 | | // step 8 |
314 | 0 | if (!BN_bin2bn(md, qsize, r0) || !BN_lshift(r0, r0, (qsize << 3) * k) || |
315 | 0 | !BN_add(W, W, r0)) { |
316 | 0 | return 0; |
317 | 0 | } |
318 | 0 | } |
319 | | |
320 | | // more of step 8 |
321 | 0 | if (!BN_mask_bits(W, bits - 1) || !BN_copy(X, W) || !BN_add(X, X, test)) { |
322 | 0 | return 0; |
323 | 0 | } |
324 | | |
325 | | // step 9 |
326 | 0 | if (!BN_lshift1(r0, q) || !BN_mod(c, X, r0, ctx.get()) || |
327 | 0 | !BN_sub(r0, c, BN_value_one()) || !BN_sub(p, X, r0)) { |
328 | 0 | return 0; |
329 | 0 | } |
330 | | |
331 | | // step 10 |
332 | 0 | if (BN_cmp(p, test) >= 0) { |
333 | | // step 11 |
334 | 0 | r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx.get(), 1, cb); |
335 | 0 | if (r > 0) { |
336 | 0 | goto end; // found it |
337 | 0 | } |
338 | 0 | if (r != 0) { |
339 | 0 | return 0; |
340 | 0 | } |
341 | 0 | } |
342 | | |
343 | | // step 13 |
344 | 0 | counter++; |
345 | | // "offset = offset + n + 1" |
346 | | |
347 | | // step 14 |
348 | 0 | if (counter >= 4096) { |
349 | 0 | break; |
350 | 0 | } |
351 | 0 | } |
352 | 0 | } |
353 | 0 | end: |
354 | 0 | if (!BN_GENCB_call(cb, 2, 1)) { |
355 | 0 | return 0; |
356 | 0 | } |
357 | | |
358 | | // We now need to generate g |
359 | | // Set r0=(p-1)/q |
360 | 0 | if (!BN_sub(test, p, BN_value_one()) || |
361 | 0 | !BN_div(r0, NULL, test, q, ctx.get())) { |
362 | 0 | return 0; |
363 | 0 | } |
364 | | |
365 | 0 | bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_for_modulus(p, ctx.get())); |
366 | 0 | if (mont == nullptr || !BN_set_word(test, h)) { |
367 | 0 | return 0; |
368 | 0 | } |
369 | | |
370 | 0 | for (;;) { |
371 | | // g=test^r0%p |
372 | 0 | if (!BN_mod_exp_mont(g, test, r0, p, ctx.get(), mont.get())) { |
373 | 0 | return 0; |
374 | 0 | } |
375 | 0 | if (!BN_is_one(g)) { |
376 | 0 | break; |
377 | 0 | } |
378 | 0 | if (!BN_add(test, test, BN_value_one())) { |
379 | 0 | return 0; |
380 | 0 | } |
381 | 0 | h++; |
382 | 0 | } |
383 | | |
384 | 0 | if (!BN_GENCB_call(cb, 3, 1)) { |
385 | 0 | return 0; |
386 | 0 | } |
387 | | |
388 | 0 | BN_free(dsa->p); |
389 | 0 | BN_free(dsa->q); |
390 | 0 | BN_free(dsa->g); |
391 | 0 | dsa->p = BN_dup(p); |
392 | 0 | dsa->q = BN_dup(q); |
393 | 0 | dsa->g = BN_dup(g); |
394 | 0 | if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) { |
395 | 0 | return 0; |
396 | 0 | } |
397 | 0 | if (out_counter != NULL) { |
398 | 0 | *out_counter = counter; |
399 | 0 | } |
400 | 0 | if (out_h != NULL) { |
401 | 0 | *out_h = h; |
402 | 0 | } |
403 | |
|
404 | 0 | return 1; |
405 | 0 | } |
406 | | |
407 | 0 | DSA *DSAparams_dup(const DSA *dsa) { |
408 | 0 | DSA *ret = DSA_new(); |
409 | 0 | if (ret == NULL) { |
410 | 0 | return NULL; |
411 | 0 | } |
412 | 0 | ret->p = BN_dup(dsa->p); |
413 | 0 | ret->q = BN_dup(dsa->q); |
414 | 0 | ret->g = BN_dup(dsa->g); |
415 | 0 | if (ret->p == NULL || ret->q == NULL || ret->g == NULL) { |
416 | 0 | DSA_free(ret); |
417 | 0 | return NULL; |
418 | 0 | } |
419 | 0 | return ret; |
420 | 0 | } |
421 | | |
422 | 0 | int DSA_generate_key(DSA *dsa) { |
423 | 0 | if (!dsa_check_key(dsa)) { |
424 | 0 | return 0; |
425 | 0 | } |
426 | | |
427 | 0 | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
428 | 0 | if (ctx == nullptr) { |
429 | 0 | return 0; |
430 | 0 | } |
431 | | |
432 | 0 | int ok = 0; |
433 | 0 | BIGNUM *pub_key = nullptr; |
434 | 0 | BIGNUM *priv_key = dsa->priv_key; |
435 | 0 | if (priv_key == nullptr) { |
436 | 0 | priv_key = BN_new(); |
437 | 0 | if (priv_key == nullptr) { |
438 | 0 | goto err; |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | 0 | if (!BN_rand_range_ex(priv_key, 1, dsa->q)) { |
443 | 0 | goto err; |
444 | 0 | } |
445 | | |
446 | 0 | pub_key = dsa->pub_key; |
447 | 0 | if (pub_key == nullptr) { |
448 | 0 | pub_key = BN_new(); |
449 | 0 | if (pub_key == nullptr) { |
450 | 0 | goto err; |
451 | 0 | } |
452 | 0 | } |
453 | | |
454 | 0 | if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock, |
455 | 0 | dsa->p, ctx.get()) || |
456 | 0 | !BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx.get(), |
457 | 0 | dsa->method_mont_p)) { |
458 | 0 | goto err; |
459 | 0 | } |
460 | | |
461 | | // The public key is computed from the private key, but is public. |
462 | 0 | bn_declassify(pub_key); |
463 | |
|
464 | 0 | dsa->priv_key = priv_key; |
465 | 0 | dsa->pub_key = pub_key; |
466 | 0 | ok = 1; |
467 | |
|
468 | 0 | err: |
469 | 0 | if (dsa->pub_key == nullptr) { |
470 | 0 | BN_free(pub_key); |
471 | 0 | } |
472 | 0 | if (dsa->priv_key == nullptr) { |
473 | 0 | BN_free(priv_key); |
474 | 0 | } |
475 | |
|
476 | 0 | return ok; |
477 | 0 | } |
478 | | |
479 | 0 | DSA_SIG *DSA_SIG_new(void) { |
480 | 0 | return reinterpret_cast<DSA_SIG *>(OPENSSL_zalloc(sizeof(DSA_SIG))); |
481 | 0 | } |
482 | | |
483 | 0 | void DSA_SIG_free(DSA_SIG *sig) { |
484 | 0 | if (!sig) { |
485 | 0 | return; |
486 | 0 | } |
487 | | |
488 | 0 | BN_free(sig->r); |
489 | 0 | BN_free(sig->s); |
490 | 0 | OPENSSL_free(sig); |
491 | 0 | } |
492 | | |
493 | | void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **out_r, |
494 | 0 | const BIGNUM **out_s) { |
495 | 0 | if (out_r != NULL) { |
496 | 0 | *out_r = sig->r; |
497 | 0 | } |
498 | 0 | if (out_s != NULL) { |
499 | 0 | *out_s = sig->s; |
500 | 0 | } |
501 | 0 | } |
502 | | |
503 | 0 | int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) { |
504 | 0 | if (r == NULL || s == NULL) { |
505 | 0 | return 0; |
506 | 0 | } |
507 | 0 | BN_free(sig->r); |
508 | 0 | BN_free(sig->s); |
509 | 0 | sig->r = r; |
510 | 0 | sig->s = s; |
511 | 0 | return 1; |
512 | 0 | } |
513 | | |
514 | | // mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and |
515 | | // |b| as secret. This function internally uses Montgomery reduction, but |
516 | | // neither inputs nor outputs are in Montgomery form. |
517 | | static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
518 | 0 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
519 | 0 | bssl::BN_CTXScope scope(ctx); |
520 | 0 | BIGNUM *tmp = BN_CTX_get(ctx); |
521 | | // |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a |
522 | | // single |BN_to_montgomery| which adds one factor of R. |
523 | 0 | return tmp != nullptr && // |
524 | 0 | BN_to_montgomery(tmp, a, mont, ctx) && |
525 | 0 | BN_mod_mul_montgomery(r, tmp, b, mont, ctx); |
526 | 0 | } |
527 | | |
528 | 0 | DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) { |
529 | 0 | if (!dsa_check_key(dsa)) { |
530 | 0 | return NULL; |
531 | 0 | } |
532 | | |
533 | 0 | if (dsa->priv_key == NULL) { |
534 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
535 | 0 | return NULL; |
536 | 0 | } |
537 | | |
538 | 0 | BIGNUM *kinv = NULL, *r = NULL, *s = NULL; |
539 | 0 | BIGNUM m; |
540 | 0 | BIGNUM xr; |
541 | 0 | BN_CTX *ctx = NULL; |
542 | 0 | DSA_SIG *ret = NULL; |
543 | |
|
544 | 0 | BN_init(&m); |
545 | 0 | BN_init(&xr); |
546 | 0 | s = BN_new(); |
547 | 0 | { |
548 | 0 | if (s == NULL) { |
549 | 0 | goto err; |
550 | 0 | } |
551 | 0 | ctx = BN_CTX_new(); |
552 | 0 | if (ctx == NULL) { |
553 | 0 | goto err; |
554 | 0 | } |
555 | | |
556 | | // Cap iterations so that invalid parameters do not infinite loop. This does |
557 | | // not impact valid parameters because the probability of requiring even one |
558 | | // retry is negligible, let alone 32. Unfortunately, DSA was mis-specified, |
559 | | // so invalid parameters are reachable from most callers handling untrusted |
560 | | // private keys. (The |dsa_check_key| call above is not sufficient. Checking |
561 | | // whether arbitrary paremeters form a valid DSA group is expensive.) |
562 | 0 | static const int kMaxIterations = 32; |
563 | 0 | int iters = 0; |
564 | 0 | redo: |
565 | 0 | if (!dsa_sign_setup(dsa, ctx, &kinv, &r)) { |
566 | 0 | goto err; |
567 | 0 | } |
568 | | |
569 | 0 | if (digest_len > BN_num_bytes(dsa->q)) { |
570 | | // If the digest length is greater than the size of |dsa->q| use the |
571 | | // BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-3, 4.2. |
572 | | // Note the above check that |dsa->q| is a multiple of 8 bits. |
573 | 0 | digest_len = BN_num_bytes(dsa->q); |
574 | 0 | } |
575 | |
|
576 | 0 | if (BN_bin2bn(digest, digest_len, &m) == NULL) { |
577 | 0 | goto err; |
578 | 0 | } |
579 | | |
580 | | // |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This |
581 | | // violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions. |
582 | | // (The underlying algorithms could accept looser bounds, but we reduce for |
583 | | // simplicity.) |
584 | 0 | size_t q_width = bn_minimal_width(dsa->q); |
585 | 0 | if (!bn_resize_words(&m, q_width) || !bn_resize_words(&xr, q_width)) { |
586 | 0 | goto err; |
587 | 0 | } |
588 | 0 | bn_reduce_once_in_place(m.d, 0 /* no carry word */, dsa->q->d, |
589 | 0 | xr.d /* scratch space */, q_width); |
590 | | |
591 | | // Compute s = inv(k) (m + xr) mod q. Note |dsa->method_mont_q| is |
592 | | // initialized by |dsa_sign_setup|. |
593 | 0 | if (!mod_mul_consttime(&xr, dsa->priv_key, r, dsa->method_mont_q, ctx) || |
594 | 0 | !bn_mod_add_consttime(s, &xr, &m, dsa->q, ctx) || |
595 | 0 | !mod_mul_consttime(s, s, kinv, dsa->method_mont_q, ctx)) { |
596 | 0 | goto err; |
597 | 0 | } |
598 | | |
599 | | // The signature is computed from the private key, but is public. |
600 | 0 | bn_declassify(r); |
601 | 0 | bn_declassify(s); |
602 | | |
603 | | // Redo if r or s is zero as required by FIPS 186-3: this is |
604 | | // very unlikely. |
605 | 0 | if (BN_is_zero(r) || BN_is_zero(s)) { |
606 | 0 | iters++; |
607 | 0 | if (iters > kMaxIterations) { |
608 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_TOO_MANY_ITERATIONS); |
609 | 0 | goto err; |
610 | 0 | } |
611 | 0 | goto redo; |
612 | 0 | } |
613 | | |
614 | 0 | ret = DSA_SIG_new(); |
615 | 0 | if (ret == NULL) { |
616 | 0 | goto err; |
617 | 0 | } |
618 | 0 | ret->r = r; |
619 | 0 | ret->s = s; |
620 | 0 | } |
621 | | |
622 | 0 | err: |
623 | 0 | if (ret == NULL) { |
624 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
625 | 0 | BN_free(r); |
626 | 0 | BN_free(s); |
627 | 0 | } |
628 | 0 | BN_CTX_free(ctx); |
629 | 0 | BN_clear_free(&m); |
630 | 0 | BN_clear_free(&xr); |
631 | 0 | BN_clear_free(kinv); |
632 | |
|
633 | 0 | return ret; |
634 | 0 | } |
635 | | |
636 | | int DSA_do_verify(const uint8_t *digest, size_t digest_len, const DSA_SIG *sig, |
637 | 0 | const DSA *dsa) { |
638 | 0 | int valid; |
639 | 0 | if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) { |
640 | 0 | return -1; |
641 | 0 | } |
642 | 0 | return valid; |
643 | 0 | } |
644 | | |
645 | | int DSA_do_check_signature(int *out_valid, const uint8_t *digest, |
646 | | size_t digest_len, const DSA_SIG *sig, |
647 | 0 | const DSA *dsa) { |
648 | 0 | *out_valid = 0; |
649 | 0 | if (!dsa_check_key(dsa)) { |
650 | 0 | return 0; |
651 | 0 | } |
652 | | |
653 | 0 | if (dsa->pub_key == NULL) { |
654 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
655 | 0 | return 0; |
656 | 0 | } |
657 | | |
658 | 0 | int ret = 0; |
659 | 0 | BIGNUM u1, u2, t1; |
660 | 0 | BN_init(&u1); |
661 | 0 | BN_init(&u2); |
662 | 0 | BN_init(&t1); |
663 | 0 | BN_CTX *ctx = BN_CTX_new(); |
664 | 0 | { |
665 | 0 | if (ctx == NULL) { |
666 | 0 | goto err; |
667 | 0 | } |
668 | | |
669 | 0 | if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || |
670 | 0 | BN_ucmp(sig->r, dsa->q) >= 0) { |
671 | 0 | ret = 1; |
672 | 0 | goto err; |
673 | 0 | } |
674 | 0 | if (BN_is_zero(sig->s) || BN_is_negative(sig->s) || |
675 | 0 | BN_ucmp(sig->s, dsa->q) >= 0) { |
676 | 0 | ret = 1; |
677 | 0 | goto err; |
678 | 0 | } |
679 | | |
680 | 0 | if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, |
681 | 0 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, |
682 | 0 | ctx) || |
683 | 0 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q, |
684 | 0 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q, |
685 | 0 | ctx)) { |
686 | 0 | goto err; |
687 | 0 | } |
688 | | |
689 | | // Calculate W = inv(S) mod Q, in the Montgomery domain. This is slightly |
690 | | // more efficiently computed as FromMont(s)^-1 = (s * R^-1)^-1 = s^-1 * R, |
691 | | // instead of ToMont(s^-1) = s^-1 * R. |
692 | 0 | if (!BN_from_montgomery(&u2, sig->s, dsa->method_mont_q, ctx) || |
693 | 0 | !BN_mod_inverse(&u2, &u2, dsa->q, ctx)) { |
694 | 0 | goto err; |
695 | 0 | } |
696 | | |
697 | | // save M in u1 |
698 | 0 | unsigned q_bits = BN_num_bits(dsa->q); |
699 | 0 | if (digest_len > (q_bits >> 3)) { |
700 | | // if the digest length is greater than the size of q use the |
701 | | // BN_num_bits(dsa->q) leftmost bits of the digest, see |
702 | | // fips 186-3, 4.2 |
703 | 0 | digest_len = (q_bits >> 3); |
704 | 0 | } |
705 | |
|
706 | 0 | if (BN_bin2bn(digest, digest_len, &u1) == NULL) { |
707 | 0 | goto err; |
708 | 0 | } |
709 | | |
710 | | // u1 = M * w mod q. w was stored in the Montgomery domain while M was not, |
711 | | // so the result will already be out of the Montgomery domain. |
712 | 0 | if (!BN_mod_mul_montgomery(&u1, &u1, &u2, dsa->method_mont_q, ctx)) { |
713 | 0 | goto err; |
714 | 0 | } |
715 | | |
716 | | // u2 = r * w mod q. w was stored in the Montgomery domain while r was not, |
717 | | // so the result will already be out of the Montgomery domain. |
718 | 0 | if (!BN_mod_mul_montgomery(&u2, sig->r, &u2, dsa->method_mont_q, ctx)) { |
719 | 0 | goto err; |
720 | 0 | } |
721 | | |
722 | 0 | if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx, |
723 | 0 | dsa->method_mont_p)) { |
724 | 0 | goto err; |
725 | 0 | } |
726 | | |
727 | | // let u1 = u1 mod q |
728 | 0 | if (!BN_mod(&u1, &t1, dsa->q, ctx)) { |
729 | 0 | goto err; |
730 | 0 | } |
731 | | |
732 | | // V is now in u1. If the signature is correct, it will be |
733 | | // equal to R. |
734 | 0 | *out_valid = BN_ucmp(&u1, sig->r) == 0; |
735 | 0 | ret = 1; |
736 | 0 | } |
737 | | |
738 | 0 | err: |
739 | 0 | if (ret != 1) { |
740 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
741 | 0 | } |
742 | 0 | BN_CTX_free(ctx); |
743 | 0 | BN_free(&u1); |
744 | 0 | BN_free(&u2); |
745 | 0 | BN_free(&t1); |
746 | |
|
747 | 0 | return ret; |
748 | 0 | } |
749 | | |
750 | | int DSA_sign(int type, const uint8_t *digest, size_t digest_len, |
751 | 0 | uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) { |
752 | 0 | DSA_SIG *s; |
753 | |
|
754 | 0 | s = DSA_do_sign(digest, digest_len, dsa); |
755 | 0 | if (s == NULL) { |
756 | 0 | *out_siglen = 0; |
757 | 0 | return 0; |
758 | 0 | } |
759 | | |
760 | 0 | *out_siglen = i2d_DSA_SIG(s, &out_sig); |
761 | 0 | DSA_SIG_free(s); |
762 | 0 | return 1; |
763 | 0 | } |
764 | | |
765 | | int DSA_verify(int type, const uint8_t *digest, size_t digest_len, |
766 | 0 | const uint8_t *sig, size_t sig_len, const DSA *dsa) { |
767 | 0 | int valid; |
768 | 0 | if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) { |
769 | 0 | return -1; |
770 | 0 | } |
771 | 0 | return valid; |
772 | 0 | } |
773 | | |
774 | | int DSA_check_signature(int *out_valid, const uint8_t *digest, |
775 | | size_t digest_len, const uint8_t *sig, size_t sig_len, |
776 | 0 | const DSA *dsa) { |
777 | 0 | DSA_SIG *s = NULL; |
778 | 0 | int ret = 0; |
779 | 0 | uint8_t *der = NULL; |
780 | |
|
781 | 0 | s = DSA_SIG_new(); |
782 | 0 | { |
783 | 0 | if (s == NULL) { |
784 | 0 | goto err; |
785 | 0 | } |
786 | | |
787 | 0 | const uint8_t *sigp = sig; |
788 | 0 | if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) { |
789 | 0 | goto err; |
790 | 0 | } |
791 | | |
792 | | // Ensure that the signature uses DER and doesn't have trailing garbage. |
793 | 0 | int der_len = i2d_DSA_SIG(s, &der); |
794 | 0 | if (der_len < 0 || (size_t)der_len != sig_len || |
795 | 0 | OPENSSL_memcmp(sig, der, sig_len)) { |
796 | 0 | goto err; |
797 | 0 | } |
798 | | |
799 | 0 | ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa); |
800 | 0 | } |
801 | | |
802 | 0 | err: |
803 | 0 | OPENSSL_free(der); |
804 | 0 | DSA_SIG_free(s); |
805 | 0 | return ret; |
806 | 0 | } |
807 | | |
808 | | // der_len_len returns the number of bytes needed to represent a length of |len| |
809 | | // in DER. |
810 | 0 | static size_t der_len_len(size_t len) { |
811 | 0 | if (len < 0x80) { |
812 | 0 | return 1; |
813 | 0 | } |
814 | 0 | size_t ret = 1; |
815 | 0 | while (len > 0) { |
816 | 0 | ret++; |
817 | 0 | len >>= 8; |
818 | 0 | } |
819 | 0 | return ret; |
820 | 0 | } |
821 | | |
822 | 0 | int DSA_size(const DSA *dsa) { |
823 | 0 | if (dsa->q == NULL) { |
824 | 0 | return 0; |
825 | 0 | } |
826 | | |
827 | 0 | size_t order_len = BN_num_bytes(dsa->q); |
828 | | // Compute the maximum length of an |order_len| byte integer. Defensively |
829 | | // assume that the leading 0x00 is included. |
830 | 0 | size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len; |
831 | 0 | if (integer_len < order_len) { |
832 | 0 | return 0; |
833 | 0 | } |
834 | | // A DSA signature is two INTEGERs. |
835 | 0 | size_t value_len = 2 * integer_len; |
836 | 0 | if (value_len < integer_len) { |
837 | 0 | return 0; |
838 | 0 | } |
839 | | // Add the header. |
840 | 0 | size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len; |
841 | 0 | if (ret < value_len) { |
842 | 0 | return 0; |
843 | 0 | } |
844 | 0 | return ret; |
845 | 0 | } |
846 | | |
847 | | static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv, |
848 | 0 | BIGNUM **out_r) { |
849 | 0 | int ret = 0; |
850 | 0 | BIGNUM k; |
851 | 0 | BN_init(&k); |
852 | 0 | BIGNUM *r = BN_new(); |
853 | 0 | BIGNUM *kinv = BN_new(); |
854 | 0 | if (r == NULL || kinv == NULL || |
855 | | // Get random k |
856 | 0 | !BN_rand_range_ex(&k, 1, dsa->q) || |
857 | 0 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, |
858 | 0 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, |
859 | 0 | ctx) || |
860 | 0 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q, |
861 | 0 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q, |
862 | 0 | ctx) || |
863 | | // Compute r = (g^k mod p) mod q |
864 | 0 | !BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx, |
865 | 0 | dsa->method_mont_p)) { |
866 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
867 | 0 | goto err; |
868 | 0 | } |
869 | | // Note |BN_mod| below is not constant-time and may leak information about |
870 | | // |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not |
871 | | // easily performed in constant-time with Montgomery reduction. |
872 | | // |
873 | | // However, |r| at this point is g^k (mod p). It is almost the value of |r| |
874 | | // revealed in the signature anyway (g^k (mod p) (mod q)), going from it to |
875 | | // |k| would require computing a discrete log. |
876 | 0 | bn_declassify(r); |
877 | 0 | if (!BN_mod(r, r, dsa->q, ctx) || |
878 | | // Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little |
879 | | // Theorem. |
880 | 0 | !bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) { |
881 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
882 | 0 | goto err; |
883 | 0 | } |
884 | | |
885 | 0 | BN_clear_free(*out_kinv); |
886 | 0 | *out_kinv = kinv; |
887 | 0 | kinv = NULL; |
888 | |
|
889 | 0 | BN_clear_free(*out_r); |
890 | 0 | *out_r = r; |
891 | 0 | r = NULL; |
892 | |
|
893 | 0 | ret = 1; |
894 | |
|
895 | 0 | err: |
896 | 0 | BN_clear_free(&k); |
897 | 0 | BN_clear_free(r); |
898 | 0 | BN_clear_free(kinv); |
899 | 0 | return ret; |
900 | 0 | } |
901 | | |
902 | | int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
903 | 0 | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
904 | 0 | return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func); |
905 | 0 | } |
906 | | |
907 | 0 | int DSA_set_ex_data(DSA *dsa, int idx, void *arg) { |
908 | 0 | return CRYPTO_set_ex_data(&dsa->ex_data, idx, arg); |
909 | 0 | } |
910 | | |
911 | 0 | void *DSA_get_ex_data(const DSA *dsa, int idx) { |
912 | 0 | return CRYPTO_get_ex_data(&dsa->ex_data, idx); |
913 | 0 | } |
914 | | |
915 | 0 | DH *DSA_dup_DH(const DSA *dsa) { |
916 | 0 | if (dsa == nullptr) { |
917 | 0 | return nullptr; |
918 | 0 | } |
919 | | |
920 | 0 | bssl::UniquePtr<DH> ret(DH_new()); |
921 | 0 | if (ret == nullptr) { |
922 | 0 | return nullptr; |
923 | 0 | } |
924 | 0 | if (dsa->q != nullptr) { |
925 | 0 | ret->priv_length = BN_num_bits(dsa->q); |
926 | 0 | if ((ret->q = BN_dup(dsa->q)) == nullptr) { |
927 | 0 | return nullptr; |
928 | 0 | } |
929 | 0 | } |
930 | 0 | if ((dsa->p != nullptr && (ret->p = BN_dup(dsa->p)) == nullptr) || |
931 | 0 | (dsa->g != nullptr && (ret->g = BN_dup(dsa->g)) == nullptr) || |
932 | 0 | (dsa->pub_key != nullptr && |
933 | 0 | (ret->pub_key = BN_dup(dsa->pub_key)) == nullptr) || |
934 | 0 | (dsa->priv_key != nullptr && |
935 | 0 | (ret->priv_key = BN_dup(dsa->priv_key)) == nullptr)) { |
936 | 0 | return nullptr; |
937 | 0 | } |
938 | | |
939 | 0 | return ret.release(); |
940 | 0 | } |