/src/boringssl/crypto/pkcs8/pkcs8.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/pkcs8.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <limits.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/bytestring.h> |
22 | | #include <openssl/cipher.h> |
23 | | #include <openssl/digest.h> |
24 | | #include <openssl/err.h> |
25 | | #include <openssl/mem.h> |
26 | | #include <openssl/nid.h> |
27 | | #include <openssl/rand.h> |
28 | | |
29 | | #include "../bytestring/internal.h" |
30 | | #include "../internal.h" |
31 | | #include "internal.h" |
32 | | |
33 | | |
34 | | static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out, |
35 | 0 | size_t *out_len) { |
36 | 0 | bssl::ScopedCBB cbb; |
37 | 0 | if (!CBB_init(cbb.get(), in_len * 2)) { |
38 | 0 | return 0; |
39 | 0 | } |
40 | | |
41 | | // Convert the password to BMPString, or UCS-2. See |
42 | | // https://tools.ietf.org/html/rfc7292#appendix-B.1. |
43 | 0 | CBS cbs; |
44 | 0 | CBS_init(&cbs, (const uint8_t *)in, in_len); |
45 | 0 | while (CBS_len(&cbs) != 0) { |
46 | 0 | uint32_t c; |
47 | 0 | if (!CBS_get_utf8(&cbs, &c) || !CBB_add_ucs2_be(cbb.get(), c)) { |
48 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
49 | 0 | return 0; |
50 | 0 | } |
51 | 0 | } |
52 | | |
53 | | // Terminate the result with a UCS-2 NUL. |
54 | 0 | if (!CBB_add_ucs2_be(cbb.get(), 0) || !CBB_finish(cbb.get(), out, out_len)) { |
55 | 0 | return 0; |
56 | 0 | } |
57 | | |
58 | 0 | return 1; |
59 | 0 | } |
60 | | |
61 | | int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt, |
62 | | size_t salt_len, uint8_t id, uint32_t iterations, |
63 | 0 | size_t out_len, uint8_t *out, const EVP_MD *md) { |
64 | | // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the |
65 | | // specification have errata applied and other typos fixed. |
66 | |
|
67 | 0 | if (iterations < 1) { |
68 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
69 | 0 | return 0; |
70 | 0 | } |
71 | | |
72 | 0 | int ret = 0; |
73 | 0 | EVP_MD_CTX ctx; |
74 | 0 | EVP_MD_CTX_init(&ctx); |
75 | 0 | uint8_t *pass_raw = NULL, *I = NULL; |
76 | 0 | size_t pass_raw_len = 0, I_len = 0; |
77 | |
|
78 | 0 | { |
79 | | // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw |
80 | | // password. |
81 | 0 | if (pass != NULL && |
82 | 0 | !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) { |
83 | 0 | goto err; |
84 | 0 | } |
85 | | |
86 | | // In the spec, |block_size| is called "v", but measured in bits. |
87 | 0 | size_t block_size = EVP_MD_block_size(md); |
88 | | |
89 | | // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies |
90 | | // of ID. |
91 | 0 | uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; |
92 | 0 | OPENSSL_memset(D, id, block_size); |
93 | | |
94 | | // 2. Concatenate copies of the salt together to create a string S of length |
95 | | // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to |
96 | | // create S). Note that if the salt is the empty string, then so is S. |
97 | | // |
98 | | // 3. Concatenate copies of the password together to create a string P of |
99 | | // length v(ceiling(p/v)) bits (the final copy of the password may be |
100 | | // truncated to create P). Note that if the password is the empty string, |
101 | | // then so is P. |
102 | | // |
103 | | // 4. Set I=S||P to be the concatenation of S and P. |
104 | 0 | if (salt_len + block_size - 1 < salt_len || |
105 | 0 | pass_raw_len + block_size - 1 < pass_raw_len) { |
106 | 0 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
107 | 0 | goto err; |
108 | 0 | } |
109 | 0 | size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); |
110 | 0 | size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); |
111 | 0 | I_len = S_len + P_len; |
112 | 0 | if (I_len < S_len) { |
113 | 0 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
114 | 0 | goto err; |
115 | 0 | } |
116 | | |
117 | 0 | I = reinterpret_cast<uint8_t *>(OPENSSL_malloc(I_len)); |
118 | 0 | if (I_len != 0 && I == NULL) { |
119 | 0 | goto err; |
120 | 0 | } |
121 | | |
122 | 0 | for (size_t i = 0; i < S_len; i++) { |
123 | 0 | I[i] = salt[i % salt_len]; |
124 | 0 | } |
125 | 0 | for (size_t i = 0; i < P_len; i++) { |
126 | 0 | I[i + S_len] = pass_raw[i % pass_raw_len]; |
127 | 0 | } |
128 | |
|
129 | 0 | while (out_len != 0) { |
130 | | // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, |
131 | | // H(H(H(... H(D||I)))) |
132 | 0 | uint8_t A[EVP_MAX_MD_SIZE]; |
133 | 0 | unsigned A_len; |
134 | 0 | if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
135 | 0 | !EVP_DigestUpdate(&ctx, D, block_size) || |
136 | 0 | !EVP_DigestUpdate(&ctx, I, I_len) || |
137 | 0 | !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
138 | 0 | goto err; |
139 | 0 | } |
140 | 0 | for (uint32_t iter = 1; iter < iterations; iter++) { |
141 | 0 | if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
142 | 0 | !EVP_DigestUpdate(&ctx, A, A_len) || |
143 | 0 | !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
144 | 0 | goto err; |
145 | 0 | } |
146 | 0 | } |
147 | | |
148 | 0 | size_t todo = out_len < A_len ? out_len : A_len; |
149 | 0 | OPENSSL_memcpy(out, A, todo); |
150 | 0 | out += todo; |
151 | 0 | out_len -= todo; |
152 | 0 | if (out_len == 0) { |
153 | 0 | break; |
154 | 0 | } |
155 | | |
156 | | // B. Concatenate copies of A_i to create a string B of length v bits (the |
157 | | // final copy of A_i may be truncated to create B). |
158 | 0 | uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; |
159 | 0 | for (size_t i = 0; i < block_size; i++) { |
160 | 0 | B[i] = A[i % A_len]; |
161 | 0 | } |
162 | | |
163 | | // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit |
164 | | // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by setting |
165 | | // I_j=(I_j+B+1) mod 2^v for each j. |
166 | 0 | assert(I_len % block_size == 0); |
167 | 0 | for (size_t i = 0; i < I_len; i += block_size) { |
168 | 0 | unsigned carry = 1; |
169 | 0 | for (size_t j = block_size - 1; j < block_size; j--) { |
170 | 0 | carry += I[i + j] + B[j]; |
171 | 0 | I[i + j] = (uint8_t)carry; |
172 | 0 | carry >>= 8; |
173 | 0 | } |
174 | 0 | } |
175 | 0 | } |
176 | | |
177 | 0 | ret = 1; |
178 | 0 | } |
179 | | |
180 | 0 | err: |
181 | 0 | OPENSSL_free(I); |
182 | 0 | OPENSSL_free(pass_raw); |
183 | 0 | EVP_MD_CTX_cleanup(&ctx); |
184 | 0 | return ret; |
185 | 0 | } |
186 | | |
187 | | static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, |
188 | | EVP_CIPHER_CTX *ctx, uint32_t iterations, |
189 | | const char *pass, size_t pass_len, |
190 | | const uint8_t *salt, size_t salt_len, |
191 | 0 | int is_encrypt) { |
192 | 0 | const EVP_CIPHER *cipher = suite->cipher_func(); |
193 | 0 | const EVP_MD *md = suite->md_func(); |
194 | |
|
195 | 0 | uint8_t key[EVP_MAX_KEY_LENGTH]; |
196 | 0 | uint8_t iv[EVP_MAX_IV_LENGTH]; |
197 | 0 | if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations, |
198 | 0 | EVP_CIPHER_key_length(cipher), key, md) || |
199 | 0 | !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations, |
200 | 0 | EVP_CIPHER_iv_length(cipher), iv, md)) { |
201 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); |
202 | 0 | return 0; |
203 | 0 | } |
204 | | |
205 | 0 | int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
206 | 0 | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
207 | 0 | OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
208 | 0 | return ret; |
209 | 0 | } |
210 | | |
211 | | static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, |
212 | | EVP_CIPHER_CTX *ctx, const char *pass, |
213 | 0 | size_t pass_len, CBS *param) { |
214 | 0 | CBS pbe_param, salt; |
215 | 0 | uint64_t iterations; |
216 | 0 | if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
217 | 0 | !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || |
218 | 0 | !CBS_get_asn1_uint64(&pbe_param, &iterations) || |
219 | 0 | CBS_len(&pbe_param) != 0 || CBS_len(param) != 0) { |
220 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
221 | 0 | return 0; |
222 | 0 | } |
223 | | |
224 | 0 | if (!pkcs12_iterations_acceptable(iterations)) { |
225 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
226 | 0 | return 0; |
227 | 0 | } |
228 | | |
229 | 0 | return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass, |
230 | 0 | pass_len, CBS_data(&salt), CBS_len(&salt), |
231 | 0 | 0 /* decrypt */); |
232 | 0 | } |
233 | | |
234 | | static const struct pbe_suite kBuiltinPBE[] = { |
235 | | { |
236 | | NID_pbe_WithSHA1And40BitRC2_CBC, |
237 | | // 1.2.840.113549.1.12.1.6 |
238 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06}, |
239 | | 10, |
240 | | EVP_rc2_40_cbc, |
241 | | EVP_sha1, |
242 | | pkcs12_pbe_decrypt_init, |
243 | | }, |
244 | | { |
245 | | NID_pbe_WithSHA1And128BitRC4, |
246 | | // 1.2.840.113549.1.12.1.1 |
247 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01}, |
248 | | 10, |
249 | | EVP_rc4, |
250 | | EVP_sha1, |
251 | | pkcs12_pbe_decrypt_init, |
252 | | }, |
253 | | { |
254 | | NID_pbe_WithSHA1And3_Key_TripleDES_CBC, |
255 | | // 1.2.840.113549.1.12.1.3 |
256 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03}, |
257 | | 10, |
258 | | EVP_des_ede3_cbc, |
259 | | EVP_sha1, |
260 | | pkcs12_pbe_decrypt_init, |
261 | | }, |
262 | | { |
263 | | NID_pbes2, |
264 | | // 1.2.840.113549.1.5.13 |
265 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}, |
266 | | 9, |
267 | | NULL, |
268 | | NULL, |
269 | | PKCS5_pbe2_decrypt_init, |
270 | | }, |
271 | | }; |
272 | | |
273 | 0 | static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) { |
274 | 0 | for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
275 | 0 | if (kBuiltinPBE[i].pbe_nid == pbe_nid && |
276 | | // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme. |
277 | 0 | kBuiltinPBE[i].cipher_func != NULL && kBuiltinPBE[i].md_func != NULL) { |
278 | 0 | return &kBuiltinPBE[i]; |
279 | 0 | } |
280 | 0 | } |
281 | | |
282 | 0 | return NULL; |
283 | 0 | } |
284 | | |
285 | | int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg_nid, |
286 | | const EVP_CIPHER *alg_cipher, uint32_t iterations, |
287 | | const char *pass, size_t pass_len, |
288 | 0 | const uint8_t *salt, size_t salt_len) { |
289 | | // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either |
290 | | // the PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will |
291 | | // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses |
292 | | // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL. |
293 | 0 | if (alg_nid == -1) { |
294 | 0 | return PKCS5_pbe2_encrypt_init(out, ctx, alg_cipher, iterations, pass, |
295 | 0 | pass_len, salt, salt_len); |
296 | 0 | } |
297 | | |
298 | 0 | const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg_nid); |
299 | 0 | if (suite == NULL) { |
300 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
301 | 0 | return 0; |
302 | 0 | } |
303 | | |
304 | | // See RFC 7292, appendix C. All our supported "PBES1" schemes are the PKCS#12 |
305 | | // schemes, which use a different KDF. The true PBES1 schemes in RFC 8018 use |
306 | | // PBKDF1, which use a very similar PBEParameter structure, but require the |
307 | | // salt be exactly 8 bytes. |
308 | 0 | CBB algorithm, param; |
309 | 0 | if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
310 | 0 | !CBB_add_asn1_element(&algorithm, CBS_ASN1_OBJECT, suite->oid, |
311 | 0 | suite->oid_len) || |
312 | 0 | !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
313 | 0 | !CBB_add_asn1_octet_string(¶m, salt, salt_len) || |
314 | 0 | !CBB_add_asn1_uint64(¶m, iterations) || !CBB_flush(out)) { |
315 | 0 | return 0; |
316 | 0 | } |
317 | | |
318 | 0 | return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt, |
319 | 0 | salt_len, 1 /* encrypt */); |
320 | 0 | } |
321 | | |
322 | | int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, |
323 | | const char *pass, size_t pass_len, const uint8_t *in, |
324 | 0 | size_t in_len) { |
325 | 0 | int ret = 0; |
326 | 0 | uint8_t *buf = NULL; |
327 | 0 | bssl::ScopedEVP_CIPHER_CTX ctx; |
328 | |
|
329 | 0 | CBS obj; |
330 | 0 | const struct pbe_suite *suite = NULL; |
331 | 0 | if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { |
332 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
333 | 0 | goto err; |
334 | 0 | } |
335 | | |
336 | 0 | for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
337 | 0 | if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) { |
338 | 0 | suite = &kBuiltinPBE[i]; |
339 | 0 | break; |
340 | 0 | } |
341 | 0 | } |
342 | 0 | if (suite == NULL) { |
343 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
344 | 0 | goto err; |
345 | 0 | } |
346 | | |
347 | 0 | if (!suite->decrypt_init(suite, ctx.get(), pass, pass_len, algorithm)) { |
348 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); |
349 | 0 | goto err; |
350 | 0 | } |
351 | | |
352 | 0 | buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(in_len)); |
353 | 0 | if (buf == NULL) { |
354 | 0 | goto err; |
355 | 0 | } |
356 | | |
357 | 0 | if (in_len > INT_MAX) { |
358 | 0 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
359 | 0 | goto err; |
360 | 0 | } |
361 | | |
362 | 0 | int n1, n2; |
363 | 0 | if (!EVP_DecryptUpdate(ctx.get(), buf, &n1, in, (int)in_len) || |
364 | 0 | !EVP_DecryptFinal_ex(ctx.get(), buf + n1, &n2)) { |
365 | 0 | goto err; |
366 | 0 | } |
367 | | |
368 | 0 | *out = buf; |
369 | 0 | *out_len = n1 + n2; |
370 | 0 | ret = 1; |
371 | 0 | buf = NULL; |
372 | |
|
373 | 0 | err: |
374 | 0 | OPENSSL_free(buf); |
375 | 0 | return ret; |
376 | 0 | } |
377 | | |
378 | | EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass, |
379 | 0 | size_t pass_len) { |
380 | | // See RFC 5208, section 6. |
381 | 0 | CBS epki, algorithm, ciphertext; |
382 | 0 | if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) || |
383 | 0 | !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || |
384 | 0 | !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
385 | 0 | CBS_len(&epki) != 0) { |
386 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
387 | 0 | return 0; |
388 | 0 | } |
389 | | |
390 | 0 | uint8_t *out; |
391 | 0 | size_t out_len; |
392 | 0 | if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len, |
393 | 0 | CBS_data(&ciphertext), CBS_len(&ciphertext))) { |
394 | 0 | return 0; |
395 | 0 | } |
396 | | |
397 | 0 | CBS pki; |
398 | 0 | CBS_init(&pki, out, out_len); |
399 | 0 | EVP_PKEY *ret = EVP_parse_private_key(&pki); |
400 | 0 | OPENSSL_free(out); |
401 | 0 | return ret; |
402 | 0 | } |
403 | | |
404 | | int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid, |
405 | | const EVP_CIPHER *cipher, |
406 | | const char *pass, size_t pass_len, |
407 | | const uint8_t *salt, size_t salt_len, |
408 | 0 | int iterations, const EVP_PKEY *pkey) { |
409 | 0 | int ret = 0; |
410 | 0 | uint8_t *plaintext = NULL, *salt_buf = NULL; |
411 | 0 | size_t plaintext_len = 0; |
412 | 0 | bssl::ScopedEVP_CIPHER_CTX ctx; |
413 | |
|
414 | 0 | { |
415 | | // Generate a random salt if necessary. |
416 | 0 | if (salt == NULL) { |
417 | 0 | if (salt_len == 0) { |
418 | 0 | salt_len = PKCS5_SALT_LEN; |
419 | 0 | } |
420 | |
|
421 | 0 | salt_buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(salt_len)); |
422 | 0 | if (salt_buf == NULL || !RAND_bytes(salt_buf, salt_len)) { |
423 | 0 | goto err; |
424 | 0 | } |
425 | | |
426 | 0 | salt = salt_buf; |
427 | 0 | } |
428 | | |
429 | 0 | if (iterations <= 0) { |
430 | 0 | iterations = PKCS12_DEFAULT_ITER; |
431 | 0 | } |
432 | | |
433 | | // Serialize the input key. |
434 | 0 | CBB plaintext_cbb; |
435 | 0 | if (!CBB_init(&plaintext_cbb, 128) || |
436 | 0 | !EVP_marshal_private_key(&plaintext_cbb, pkey) || |
437 | 0 | !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) { |
438 | 0 | CBB_cleanup(&plaintext_cbb); |
439 | 0 | goto err; |
440 | 0 | } |
441 | | |
442 | 0 | CBB epki; |
443 | 0 | if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE) || |
444 | 0 | !pkcs12_pbe_encrypt_init(&epki, ctx.get(), pbe_nid, cipher, |
445 | 0 | (uint32_t)iterations, pass, pass_len, salt, |
446 | 0 | salt_len)) { |
447 | 0 | goto err; |
448 | 0 | } |
449 | | |
450 | 0 | size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(ctx.get()); |
451 | 0 | if (max_out < plaintext_len) { |
452 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
453 | 0 | goto err; |
454 | 0 | } |
455 | | |
456 | 0 | CBB ciphertext; |
457 | 0 | uint8_t *ptr; |
458 | 0 | int n1, n2; |
459 | 0 | if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
460 | 0 | !CBB_reserve(&ciphertext, &ptr, max_out) || |
461 | 0 | !EVP_CipherUpdate(ctx.get(), ptr, &n1, plaintext, plaintext_len) || |
462 | 0 | !EVP_CipherFinal_ex(ctx.get(), ptr + n1, &n2) || |
463 | 0 | !CBB_did_write(&ciphertext, n1 + n2) || !CBB_flush(out)) { |
464 | 0 | goto err; |
465 | 0 | } |
466 | | |
467 | 0 | ret = 1; |
468 | 0 | } |
469 | | |
470 | 0 | err: |
471 | 0 | OPENSSL_free(plaintext); |
472 | 0 | OPENSSL_free(salt_buf); |
473 | 0 | return ret; |
474 | 0 | } |