/src/boringssl/ssl/handshake_client.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. |
3 | | // Copyright 2005 Nokia. All rights reserved. |
4 | | // |
5 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
6 | | // you may not use this file except in compliance with the License. |
7 | | // You may obtain a copy of the License at |
8 | | // |
9 | | // https://www.apache.org/licenses/LICENSE-2.0 |
10 | | // |
11 | | // Unless required by applicable law or agreed to in writing, software |
12 | | // distributed under the License is distributed on an "AS IS" BASIS, |
13 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
14 | | // See the License for the specific language governing permissions and |
15 | | // limitations under the License. |
16 | | |
17 | | #include <openssl/ssl.h> |
18 | | |
19 | | #include <assert.h> |
20 | | #include <limits.h> |
21 | | #include <string.h> |
22 | | |
23 | | #include <algorithm> |
24 | | #include <utility> |
25 | | |
26 | | #include <openssl/aead.h> |
27 | | #include <openssl/bn.h> |
28 | | #include <openssl/bytestring.h> |
29 | | #include <openssl/ec_key.h> |
30 | | #include <openssl/ecdsa.h> |
31 | | #include <openssl/err.h> |
32 | | #include <openssl/evp.h> |
33 | | #include <openssl/hpke.h> |
34 | | #include <openssl/md5.h> |
35 | | #include <openssl/mem.h> |
36 | | #include <openssl/rand.h> |
37 | | #include <openssl/sha.h> |
38 | | |
39 | | #include "../crypto/internal.h" |
40 | | #include "internal.h" |
41 | | |
42 | | |
43 | | BSSL_NAMESPACE_BEGIN |
44 | | |
45 | | enum ssl_client_hs_state_t { |
46 | | state_start_connect = 0, |
47 | | state_enter_early_data, |
48 | | state_early_reverify_server_certificate, |
49 | | state_read_server_hello, |
50 | | state_tls13, |
51 | | state_read_server_certificate, |
52 | | state_read_certificate_status, |
53 | | state_verify_server_certificate, |
54 | | state_reverify_server_certificate, |
55 | | state_read_server_key_exchange, |
56 | | state_read_certificate_request, |
57 | | state_read_server_hello_done, |
58 | | state_send_client_certificate, |
59 | | state_send_client_key_exchange, |
60 | | state_send_client_certificate_verify, |
61 | | state_send_client_finished, |
62 | | state_finish_flight, |
63 | | state_read_session_ticket, |
64 | | state_process_change_cipher_spec, |
65 | | state_read_server_finished, |
66 | | state_finish_client_handshake, |
67 | | state_done, |
68 | | }; |
69 | | |
70 | | // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of |
71 | | // disabled algorithms. |
72 | | static void ssl_get_client_disabled(const SSL_HANDSHAKE *hs, |
73 | | uint32_t *out_mask_a, |
74 | 0 | uint32_t *out_mask_k) { |
75 | 0 | *out_mask_a = 0; |
76 | 0 | *out_mask_k = 0; |
77 | | |
78 | | // PSK requires a client callback. |
79 | 0 | if (hs->config->psk_client_callback == NULL) { |
80 | 0 | *out_mask_a |= SSL_aPSK; |
81 | 0 | *out_mask_k |= SSL_kPSK; |
82 | 0 | } |
83 | 0 | } |
84 | | |
85 | | static bool ssl_add_tls13_cipher(CBB *cbb, uint16_t cipher_id, |
86 | 0 | ssl_compliance_policy_t policy) { |
87 | 0 | if (ssl_tls13_cipher_meets_policy(cipher_id, policy)) { |
88 | 0 | return CBB_add_u16(cbb, cipher_id); |
89 | 0 | } |
90 | 0 | return true; |
91 | 0 | } |
92 | | |
93 | | static bool ssl_write_client_cipher_list(const SSL_HANDSHAKE *hs, CBB *out, |
94 | 0 | ssl_client_hello_type_t type) { |
95 | 0 | const SSL *const ssl = hs->ssl; |
96 | 0 | uint32_t mask_a, mask_k; |
97 | 0 | ssl_get_client_disabled(hs, &mask_a, &mask_k); |
98 | |
|
99 | 0 | CBB child; |
100 | 0 | if (!CBB_add_u16_length_prefixed(out, &child)) { |
101 | 0 | return false; |
102 | 0 | } |
103 | | |
104 | | // Add a fake cipher suite. See RFC 8701. |
105 | 0 | if (ssl->ctx->grease_enabled && |
106 | 0 | !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) { |
107 | 0 | return false; |
108 | 0 | } |
109 | | |
110 | | // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on |
111 | | // hardware support. |
112 | 0 | if (hs->max_version >= TLS1_3_VERSION) { |
113 | 0 | static const uint16_t kCiphersNoAESHardware[] = { |
114 | 0 | TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff, |
115 | 0 | TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff, |
116 | 0 | TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff, |
117 | 0 | }; |
118 | 0 | static const uint16_t kCiphersAESHardware[] = { |
119 | 0 | TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff, |
120 | 0 | TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff, |
121 | 0 | TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff, |
122 | 0 | }; |
123 | 0 | static const uint16_t kCiphersCNSA[] = { |
124 | 0 | TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff, |
125 | 0 | TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff, |
126 | 0 | TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff, |
127 | 0 | }; |
128 | |
|
129 | 0 | const bool has_aes_hw = ssl->config->aes_hw_override |
130 | 0 | ? ssl->config->aes_hw_override_value |
131 | 0 | : EVP_has_aes_hardware(); |
132 | 0 | const bssl::Span<const uint16_t> ciphers = |
133 | 0 | ssl->config->compliance_policy == ssl_compliance_policy_cnsa_202407 |
134 | 0 | ? bssl::Span<const uint16_t>(kCiphersCNSA) |
135 | 0 | : (has_aes_hw ? bssl::Span<const uint16_t>(kCiphersAESHardware) |
136 | 0 | : bssl::Span<const uint16_t>(kCiphersNoAESHardware)); |
137 | |
|
138 | 0 | for (auto cipher : ciphers) { |
139 | 0 | if (!ssl_add_tls13_cipher(&child, cipher, |
140 | 0 | ssl->config->compliance_policy)) { |
141 | 0 | return false; |
142 | 0 | } |
143 | 0 | } |
144 | 0 | } |
145 | | |
146 | 0 | if (hs->min_version < TLS1_3_VERSION && type != ssl_client_hello_inner) { |
147 | 0 | bool any_enabled = false; |
148 | 0 | for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) { |
149 | | // Skip disabled ciphers |
150 | 0 | if ((cipher->algorithm_mkey & mask_k) || |
151 | 0 | (cipher->algorithm_auth & mask_a)) { |
152 | 0 | continue; |
153 | 0 | } |
154 | 0 | if (SSL_CIPHER_get_min_version(cipher) > hs->max_version || |
155 | 0 | SSL_CIPHER_get_max_version(cipher) < hs->min_version) { |
156 | 0 | continue; |
157 | 0 | } |
158 | 0 | any_enabled = true; |
159 | 0 | if (!CBB_add_u16(&child, SSL_CIPHER_get_protocol_id(cipher))) { |
160 | 0 | return false; |
161 | 0 | } |
162 | 0 | } |
163 | | |
164 | | // If all ciphers were disabled, return the error to the caller. |
165 | 0 | if (!any_enabled && hs->max_version < TLS1_3_VERSION) { |
166 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE); |
167 | 0 | return false; |
168 | 0 | } |
169 | 0 | } |
170 | | |
171 | 0 | if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) { |
172 | 0 | if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) { |
173 | 0 | return false; |
174 | 0 | } |
175 | 0 | } |
176 | | |
177 | 0 | return CBB_flush(out); |
178 | 0 | } |
179 | | |
180 | | bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs, |
181 | | CBB *cbb, |
182 | | ssl_client_hello_type_t type, |
183 | 0 | bool empty_session_id) { |
184 | 0 | const SSL *const ssl = hs->ssl; |
185 | 0 | CBB child; |
186 | 0 | if (!CBB_add_u16(cbb, hs->client_version) || |
187 | 0 | !CBB_add_bytes(cbb, |
188 | 0 | type == ssl_client_hello_inner ? hs->inner_client_random |
189 | 0 | : ssl->s3->client_random, |
190 | 0 | SSL3_RANDOM_SIZE) || |
191 | 0 | !CBB_add_u8_length_prefixed(cbb, &child)) { |
192 | 0 | return false; |
193 | 0 | } |
194 | | |
195 | | // Do not send a session ID on renegotiation. |
196 | 0 | if (!ssl->s3->initial_handshake_complete && // |
197 | 0 | !empty_session_id && // |
198 | 0 | !CBB_add_bytes(&child, hs->session_id.data(), hs->session_id.size())) { |
199 | 0 | return false; |
200 | 0 | } |
201 | | |
202 | 0 | if (SSL_is_dtls(ssl)) { |
203 | 0 | if (!CBB_add_u8_length_prefixed(cbb, &child) || |
204 | 0 | !CBB_add_bytes(&child, hs->dtls_cookie.data(), |
205 | 0 | hs->dtls_cookie.size())) { |
206 | 0 | return false; |
207 | 0 | } |
208 | 0 | } |
209 | | |
210 | 0 | if (!ssl_write_client_cipher_list(hs, cbb, type) || |
211 | 0 | !CBB_add_u8(cbb, 1 /* one compression method */) || |
212 | 0 | !CBB_add_u8(cbb, 0 /* null compression */)) { |
213 | 0 | return false; |
214 | 0 | } |
215 | 0 | return true; |
216 | 0 | } |
217 | | |
218 | 0 | bool ssl_add_client_hello(SSL_HANDSHAKE *hs) { |
219 | 0 | SSL *const ssl = hs->ssl; |
220 | 0 | ScopedCBB cbb; |
221 | 0 | CBB body; |
222 | 0 | ssl_client_hello_type_t type = hs->selected_ech_config |
223 | 0 | ? ssl_client_hello_outer |
224 | 0 | : ssl_client_hello_unencrypted; |
225 | 0 | bool needs_psk_binder; |
226 | 0 | Array<uint8_t> msg; |
227 | 0 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO) || |
228 | 0 | !ssl_write_client_hello_without_extensions(hs, &body, type, |
229 | 0 | /*empty_session_id=*/false) || |
230 | 0 | !ssl_add_clienthello_tlsext(hs, &body, /*out_encoded=*/nullptr, |
231 | 0 | &needs_psk_binder, type, CBB_len(&body)) || |
232 | 0 | !ssl->method->finish_message(ssl, cbb.get(), &msg)) { |
233 | 0 | return false; |
234 | 0 | } |
235 | | |
236 | | // Now that the length prefixes have been computed, fill in the placeholder |
237 | | // PSK binder. |
238 | 0 | if (needs_psk_binder) { |
239 | | // ClientHelloOuter cannot have a PSK binder. Otherwise the |
240 | | // ClientHellOuterAAD computation would break. |
241 | 0 | assert(type != ssl_client_hello_outer); |
242 | 0 | if (!tls13_write_psk_binder(hs, hs->transcript, Span(msg), |
243 | 0 | /*out_binder_len=*/0)) { |
244 | 0 | return false; |
245 | 0 | } |
246 | 0 | } |
247 | | |
248 | 0 | return ssl->method->add_message(ssl, std::move(msg)); |
249 | 0 | } |
250 | | |
251 | | static bool parse_server_version(const SSL_HANDSHAKE *hs, uint16_t *out_version, |
252 | | uint8_t *out_alert, |
253 | 0 | const ParsedServerHello &server_hello) { |
254 | 0 | uint16_t legacy_version = TLS1_2_VERSION; |
255 | 0 | if (SSL_is_dtls(hs->ssl)) { |
256 | 0 | legacy_version = DTLS1_2_VERSION; |
257 | 0 | } |
258 | | // If the outer version is not TLS 1.2, use it. |
259 | | // TODO(davidben): This function doesn't quite match the RFC8446 formulation. |
260 | 0 | if (server_hello.legacy_version != legacy_version) { |
261 | 0 | *out_version = server_hello.legacy_version; |
262 | 0 | return true; |
263 | 0 | } |
264 | | |
265 | 0 | SSLExtension supported_versions(TLSEXT_TYPE_supported_versions); |
266 | 0 | CBS extensions = server_hello.extensions; |
267 | 0 | if (!ssl_parse_extensions(&extensions, out_alert, {&supported_versions}, |
268 | 0 | /*ignore_unknown=*/true)) { |
269 | 0 | return false; |
270 | 0 | } |
271 | | |
272 | 0 | if (!supported_versions.present) { |
273 | 0 | *out_version = server_hello.legacy_version; |
274 | 0 | return true; |
275 | 0 | } |
276 | | |
277 | 0 | if (!CBS_get_u16(&supported_versions.data, out_version) || // |
278 | 0 | CBS_len(&supported_versions.data) != 0) { |
279 | 0 | *out_alert = SSL_AD_DECODE_ERROR; |
280 | 0 | return false; |
281 | 0 | } |
282 | | |
283 | 0 | return true; |
284 | 0 | } |
285 | | |
286 | | // should_offer_early_data returns |ssl_early_data_accepted| if |hs| should |
287 | | // offer early data, and some other reason code otherwise. |
288 | | static ssl_early_data_reason_t should_offer_early_data( |
289 | 0 | const SSL_HANDSHAKE *hs) { |
290 | 0 | const SSL *const ssl = hs->ssl; |
291 | 0 | assert(!ssl->server); |
292 | 0 | if (!ssl->enable_early_data) { |
293 | 0 | return ssl_early_data_disabled; |
294 | 0 | } |
295 | | |
296 | 0 | if (hs->max_version < TLS1_3_VERSION || SSL_is_dtls(ssl)) { |
297 | | // We discard inapplicable sessions, so this is redundant with the session |
298 | | // checks below, but reporting that TLS 1.3 was disabled is more useful. |
299 | | // |
300 | | // TODO(crbug.com/381113363): Support early data in DTLS 1.3. |
301 | 0 | return ssl_early_data_protocol_version; |
302 | 0 | } |
303 | | |
304 | 0 | if (ssl->session == nullptr) { |
305 | 0 | return ssl_early_data_no_session_offered; |
306 | 0 | } |
307 | | |
308 | 0 | if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION || |
309 | 0 | ssl->session->ticket_max_early_data == 0) { |
310 | 0 | return ssl_early_data_unsupported_for_session; |
311 | 0 | } |
312 | | |
313 | 0 | if (!ssl->session->early_alpn.empty()) { |
314 | 0 | if (!ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) { |
315 | | // Avoid reporting a confusing value in |SSL_get0_alpn_selected|. |
316 | 0 | return ssl_early_data_alpn_mismatch; |
317 | 0 | } |
318 | | |
319 | | // If the previous connection negotiated ALPS, only offer 0-RTT when the |
320 | | // local are settings are consistent with what we'd offer for this |
321 | | // connection. |
322 | 0 | if (ssl->session->has_application_settings) { |
323 | 0 | Span<const uint8_t> settings; |
324 | 0 | if (!ssl_get_local_application_settings(hs, &settings, |
325 | 0 | ssl->session->early_alpn) || |
326 | 0 | settings != ssl->session->local_application_settings) { |
327 | 0 | return ssl_early_data_alps_mismatch; |
328 | 0 | } |
329 | 0 | } |
330 | 0 | } |
331 | | |
332 | | // Early data has not yet been accepted, but we use it as a success code. |
333 | 0 | return ssl_early_data_accepted; |
334 | 0 | } |
335 | | |
336 | 0 | void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs) { |
337 | 0 | hs->ech_client_outer.Reset(); |
338 | 0 | hs->cookie.Reset(); |
339 | 0 | hs->key_share_bytes.Reset(); |
340 | 0 | hs->pake_share_bytes.Reset(); |
341 | 0 | } |
342 | | |
343 | 0 | static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) { |
344 | 0 | SSL *const ssl = hs->ssl; |
345 | |
|
346 | 0 | ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1); |
347 | | // |session_reused| must be reset in case this is a renegotiation. |
348 | 0 | ssl->s3->session_reused = false; |
349 | | |
350 | | // Freeze the version range. |
351 | 0 | if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) { |
352 | 0 | return ssl_hs_error; |
353 | 0 | } |
354 | | |
355 | 0 | uint8_t ech_enc[EVP_HPKE_MAX_ENC_LENGTH]; |
356 | 0 | size_t ech_enc_len; |
357 | 0 | if (!ssl_select_ech_config(hs, ech_enc, &ech_enc_len)) { |
358 | 0 | return ssl_hs_error; |
359 | 0 | } |
360 | | |
361 | | // Always advertise the ClientHello version from the original maximum version, |
362 | | // even on renegotiation. The static RSA key exchange uses this field, and |
363 | | // some servers fail when it changes across handshakes. |
364 | 0 | if (SSL_is_dtls(hs->ssl)) { |
365 | 0 | hs->client_version = |
366 | 0 | hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION; |
367 | 0 | } else { |
368 | 0 | hs->client_version = |
369 | 0 | hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version; |
370 | 0 | } |
371 | |
|
372 | 0 | if (!ssl_setup_pake_shares(hs)) { |
373 | 0 | return ssl_hs_error; |
374 | 0 | } |
375 | | |
376 | | // If the configured session has expired or is not usable, drop it. We also do |
377 | | // not offer sessions on renegotiation. |
378 | 0 | SSLSessionType session_type = SSLSessionType::kNotResumable; |
379 | 0 | if (ssl->session != nullptr) { |
380 | 0 | session_type = ssl_session_get_type(ssl->session.get()); |
381 | 0 | if (ssl->session->is_server || |
382 | 0 | !ssl_supports_version(hs, ssl->session->ssl_version) || |
383 | | // Do not offer TLS 1.2 sessions with ECH. ClientHelloInner does not |
384 | | // offer TLS 1.2, and the cleartext session ID may leak the server |
385 | | // identity. |
386 | 0 | (hs->selected_ech_config && |
387 | 0 | ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) || |
388 | 0 | session_type == SSLSessionType::kNotResumable || |
389 | | // Don't offer TLS 1.2 tickets if disabled. |
390 | 0 | (session_type == SSLSessionType::kTicket && |
391 | 0 | (SSL_get_options(ssl) & SSL_OP_NO_TICKET)) || |
392 | | // Don't offer sessions and PAKEs at the same time. We do not currently |
393 | | // support resumption with PAKEs. (Offering both together would need |
394 | | // more logic to conditionally send the key_share extension.) |
395 | 0 | hs->pake_prover != nullptr || |
396 | 0 | !ssl_session_is_time_valid(ssl, ssl->session.get()) || |
397 | 0 | SSL_is_quic(ssl) != int{ssl->session->is_quic} || |
398 | 0 | ssl->s3->initial_handshake_complete) { |
399 | 0 | ssl_set_session(ssl, nullptr); |
400 | 0 | session_type = SSLSessionType::kNotResumable; |
401 | 0 | } |
402 | 0 | } |
403 | |
|
404 | 0 | if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) { |
405 | 0 | return ssl_hs_error; |
406 | 0 | } |
407 | 0 | if (hs->selected_ech_config && |
408 | 0 | !RAND_bytes(hs->inner_client_random, sizeof(hs->inner_client_random))) { |
409 | 0 | return ssl_hs_error; |
410 | 0 | } |
411 | | |
412 | | // Compatibility mode sends a random session ID. Compatibility mode is |
413 | | // enabled for TLS 1.3, but not when it's run over QUIC or DTLS. |
414 | 0 | const bool enable_compatibility_mode = hs->max_version >= TLS1_3_VERSION && |
415 | 0 | !SSL_is_quic(ssl) && !SSL_is_dtls(ssl); |
416 | 0 | if (session_type == SSLSessionType::kID) { |
417 | 0 | hs->session_id = ssl->session->session_id; |
418 | 0 | } else if (session_type == SSLSessionType::kTicket || |
419 | 0 | enable_compatibility_mode) { |
420 | | // TLS 1.2 session tickets require a placeholder value to signal resumption. |
421 | 0 | hs->session_id.ResizeForOverwrite(SSL_MAX_SSL_SESSION_ID_LENGTH); |
422 | 0 | if (!RAND_bytes(hs->session_id.data(), hs->session_id.size())) { |
423 | 0 | return ssl_hs_error; |
424 | 0 | } |
425 | 0 | } |
426 | | |
427 | 0 | ssl_early_data_reason_t reason = should_offer_early_data(hs); |
428 | 0 | if (reason != ssl_early_data_accepted) { |
429 | 0 | ssl->s3->early_data_reason = reason; |
430 | 0 | } else { |
431 | 0 | hs->early_data_offered = true; |
432 | 0 | } |
433 | |
|
434 | 0 | if (!ssl_setup_key_shares(hs, /*override_group_id=*/0) || |
435 | 0 | !ssl_setup_extension_permutation(hs) || |
436 | 0 | !ssl_encrypt_client_hello(hs, Span(ech_enc, ech_enc_len)) || |
437 | 0 | !ssl_add_client_hello(hs)) { |
438 | 0 | return ssl_hs_error; |
439 | 0 | } |
440 | | |
441 | 0 | hs->state = state_enter_early_data; |
442 | 0 | return ssl_hs_flush; |
443 | 0 | } |
444 | | |
445 | 0 | static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) { |
446 | 0 | SSL *const ssl = hs->ssl; |
447 | 0 | if (!hs->early_data_offered) { |
448 | 0 | hs->state = state_read_server_hello; |
449 | 0 | return ssl_hs_ok; |
450 | 0 | } |
451 | | |
452 | | // Stash the early data session and activate the early version. This must |
453 | | // happen before |do_early_reverify_server_certificate|, so early connection |
454 | | // properties are available to the callback. Note the early version may be |
455 | | // overwritten later by the final version. |
456 | 0 | hs->early_session = UpRef(ssl->session); |
457 | 0 | ssl->s3->version = hs->early_session->ssl_version; |
458 | 0 | hs->is_early_version = true; |
459 | 0 | hs->state = state_early_reverify_server_certificate; |
460 | 0 | return ssl_hs_ok; |
461 | 0 | } |
462 | | |
463 | | static enum ssl_hs_wait_t do_early_reverify_server_certificate( |
464 | 0 | SSL_HANDSHAKE *hs) { |
465 | 0 | SSL *const ssl = hs->ssl; |
466 | 0 | if (ssl->ctx->reverify_on_resume) { |
467 | | // Don't send an alert on error. The alert would be in the clear, which the |
468 | | // server is not expecting anyway. Alerts in between ClientHello and |
469 | | // ServerHello cannot usefully be delivered in TLS 1.3. |
470 | | // |
471 | | // TODO(davidben): The client behavior should be to verify the certificate |
472 | | // before deciding whether to offer the session and, if invalid, decline to |
473 | | // send the session. |
474 | 0 | switch (ssl_reverify_peer_cert(hs, /*send_alert=*/false)) { |
475 | 0 | case ssl_verify_ok: |
476 | 0 | break; |
477 | 0 | case ssl_verify_invalid: |
478 | 0 | return ssl_hs_error; |
479 | 0 | case ssl_verify_retry: |
480 | 0 | hs->state = state_early_reverify_server_certificate; |
481 | 0 | return ssl_hs_certificate_verify; |
482 | 0 | } |
483 | 0 | } |
484 | | |
485 | 0 | if (!ssl->method->add_change_cipher_spec(ssl)) { |
486 | 0 | return ssl_hs_error; |
487 | 0 | } |
488 | | |
489 | | // Defer releasing the 0-RTT key to after certificate reverification, so the |
490 | | // QUIC implementation does not accidentally write data too early. |
491 | 0 | if (!tls13_init_early_key_schedule(hs, hs->early_session.get()) || |
492 | 0 | !tls13_derive_early_secret(hs) || |
493 | 0 | !tls13_set_traffic_key(hs->ssl, ssl_encryption_early_data, evp_aead_seal, |
494 | 0 | hs->early_session.get(), |
495 | 0 | hs->early_traffic_secret)) { |
496 | 0 | return ssl_hs_error; |
497 | 0 | } |
498 | | |
499 | 0 | hs->in_early_data = true; |
500 | 0 | hs->can_early_write = true; |
501 | 0 | hs->state = state_read_server_hello; |
502 | 0 | return ssl_hs_early_return; |
503 | 0 | } |
504 | | |
505 | | static bool handle_hello_verify_request(SSL_HANDSHAKE *hs, |
506 | 0 | const SSLMessage &msg) { |
507 | 0 | SSL *const ssl = hs->ssl; |
508 | 0 | assert(SSL_is_dtls(ssl)); |
509 | 0 | assert(msg.type == DTLS1_MT_HELLO_VERIFY_REQUEST); |
510 | 0 | assert(!hs->received_hello_verify_request); |
511 | | |
512 | 0 | CBS hello_verify_request = msg.body, cookie; |
513 | 0 | uint16_t server_version; |
514 | 0 | if (!CBS_get_u16(&hello_verify_request, &server_version) || |
515 | 0 | !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) || |
516 | 0 | CBS_len(&hello_verify_request) != 0) { |
517 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
518 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
519 | 0 | return false; |
520 | 0 | } |
521 | | |
522 | 0 | if (!hs->dtls_cookie.CopyFrom(cookie)) { |
523 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
524 | 0 | return false; |
525 | 0 | } |
526 | 0 | hs->received_hello_verify_request = true; |
527 | |
|
528 | 0 | ssl->method->next_message(ssl); |
529 | | |
530 | | // DTLS resets the handshake buffer after HelloVerifyRequest. |
531 | 0 | if (!hs->transcript.Init()) { |
532 | 0 | return false; |
533 | 0 | } |
534 | | |
535 | 0 | return ssl_add_client_hello(hs); |
536 | 0 | } |
537 | | |
538 | | bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert, |
539 | 0 | const SSLMessage &msg) { |
540 | 0 | if (msg.type != SSL3_MT_SERVER_HELLO) { |
541 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
542 | 0 | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
543 | 0 | return false; |
544 | 0 | } |
545 | 0 | out->raw = msg.raw; |
546 | 0 | CBS body = msg.body; |
547 | 0 | if (!CBS_get_u16(&body, &out->legacy_version) || |
548 | 0 | !CBS_get_bytes(&body, &out->random, SSL3_RANDOM_SIZE) || |
549 | 0 | !CBS_get_u8_length_prefixed(&body, &out->session_id) || |
550 | 0 | CBS_len(&out->session_id) > SSL3_SESSION_ID_SIZE || |
551 | 0 | !CBS_get_u16(&body, &out->cipher_suite) || |
552 | 0 | !CBS_get_u8(&body, &out->compression_method)) { |
553 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
554 | 0 | *out_alert = SSL_AD_DECODE_ERROR; |
555 | 0 | return false; |
556 | 0 | } |
557 | | // In TLS 1.2 and below, empty extensions blocks may be omitted. In TLS 1.3, |
558 | | // ServerHellos always have extensions, so this can be applied generically. |
559 | 0 | CBS_init(&out->extensions, nullptr, 0); |
560 | 0 | if ((CBS_len(&body) != 0 && |
561 | 0 | !CBS_get_u16_length_prefixed(&body, &out->extensions)) || |
562 | 0 | CBS_len(&body) != 0) { |
563 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
564 | 0 | *out_alert = SSL_AD_DECODE_ERROR; |
565 | 0 | return false; |
566 | 0 | } |
567 | 0 | return true; |
568 | 0 | } |
569 | | |
570 | 0 | static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) { |
571 | 0 | SSL *const ssl = hs->ssl; |
572 | 0 | SSLMessage msg; |
573 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
574 | 0 | return ssl_hs_read_server_hello; |
575 | 0 | } |
576 | | |
577 | 0 | if (SSL_is_dtls(ssl) && !hs->received_hello_verify_request && |
578 | 0 | msg.type == DTLS1_MT_HELLO_VERIFY_REQUEST) { |
579 | 0 | if (!handle_hello_verify_request(hs, msg)) { |
580 | 0 | return ssl_hs_error; |
581 | 0 | } |
582 | 0 | hs->received_hello_verify_request = true; |
583 | 0 | hs->state = state_read_server_hello; |
584 | 0 | return ssl_hs_flush; |
585 | 0 | } |
586 | | |
587 | 0 | ParsedServerHello server_hello; |
588 | 0 | uint16_t server_version; |
589 | 0 | uint8_t alert = SSL_AD_DECODE_ERROR; |
590 | 0 | if (!ssl_parse_server_hello(&server_hello, &alert, msg) || |
591 | 0 | !parse_server_version(hs, &server_version, &alert, server_hello)) { |
592 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
593 | 0 | return ssl_hs_error; |
594 | 0 | } |
595 | | |
596 | 0 | if (!ssl_supports_version(hs, server_version)) { |
597 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); |
598 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
599 | 0 | return ssl_hs_error; |
600 | 0 | } |
601 | | |
602 | 0 | if (!ssl->s3->initial_handshake_complete) { |
603 | | // |ssl->s3->version| may be set due to 0-RTT. If it was to a different |
604 | | // value, the check below will fire. |
605 | 0 | assert(ssl->s3->version == 0 || |
606 | 0 | (hs->is_early_version && |
607 | 0 | ssl->s3->version == hs->early_session->ssl_version)); |
608 | 0 | ssl->s3->version = server_version; |
609 | 0 | hs->is_early_version = false; |
610 | 0 | } else if (server_version != ssl->s3->version) { |
611 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); |
612 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
613 | 0 | return ssl_hs_error; |
614 | 0 | } |
615 | | |
616 | | // If the version did not match, stop sending 0-RTT data. |
617 | 0 | if (hs->early_data_offered && |
618 | 0 | ssl->s3->version != hs->early_session->ssl_version) { |
619 | | // This is currently only possible by reading a TLS 1.2 (or earlier) |
620 | | // ServerHello in response to TLS 1.3. If there is ever a TLS 1.4, or |
621 | | // another variant of TLS 1.3, the fatal error below will need to be a clean |
622 | | // 0-RTT reject. |
623 | 0 | assert(ssl_protocol_version(ssl) < TLS1_3_VERSION); |
624 | 0 | assert(ssl_session_protocol_version(hs->early_session.get()) >= |
625 | 0 | TLS1_3_VERSION); |
626 | | |
627 | | // A TLS 1.2 server would not know to skip the early data we offered, so |
628 | | // there is no point in continuing the handshake. Report an error code as |
629 | | // soon as we detect this. The caller may use this error code to implement |
630 | | // the fallback described in RFC 8446 appendix D.3. |
631 | | // |
632 | | // Disconnect early writes. This ensures subsequent |SSL_write| calls query |
633 | | // the handshake which, in turn, will replay the error code rather than fail |
634 | | // at the |write_shutdown| check. See https://crbug.com/1078515. |
635 | | // TODO(davidben): Should all handshake errors do this? What about record |
636 | | // decryption failures? |
637 | | // |
638 | | // TODO(crbug.com/381113363): Although missing from the spec, a DTLS 1.2 |
639 | | // server will already naturally skip 0-RTT data. If we implement DTLS 1.3 |
640 | | // 0-RTT, we may want a clean reject. |
641 | 0 | assert(!SSL_is_dtls(ssl)); |
642 | 0 | hs->can_early_write = false; |
643 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA); |
644 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
645 | 0 | return ssl_hs_error; |
646 | 0 | } |
647 | | |
648 | 0 | if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
649 | 0 | if (hs->received_hello_verify_request) { |
650 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_MESSAGE); |
651 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
652 | 0 | return ssl_hs_error; |
653 | 0 | } |
654 | | |
655 | 0 | hs->state = state_tls13; |
656 | 0 | return ssl_hs_ok; |
657 | 0 | } |
658 | | |
659 | | // If this client is configured to use a PAKE, then the server must support |
660 | | // TLS 1.3. |
661 | 0 | if (hs->pake_prover) { |
662 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); |
663 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); |
664 | 0 | return ssl_hs_error; |
665 | 0 | } |
666 | | |
667 | | // Clear some TLS 1.3 state that no longer needs to be retained. |
668 | 0 | hs->key_shares[0].reset(); |
669 | 0 | hs->key_shares[1].reset(); |
670 | 0 | ssl_done_writing_client_hello(hs); |
671 | | |
672 | | // TLS 1.2 handshakes cannot accept ECH. |
673 | 0 | if (hs->selected_ech_config) { |
674 | 0 | ssl->s3->ech_status = ssl_ech_rejected; |
675 | 0 | } |
676 | | |
677 | | // Copy over the server random. |
678 | 0 | OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random), |
679 | 0 | SSL3_RANDOM_SIZE); |
680 | | |
681 | | // Enforce the TLS 1.3 anti-downgrade feature. |
682 | 0 | if (!ssl->s3->initial_handshake_complete && |
683 | 0 | hs->max_version >= TLS1_3_VERSION) { |
684 | 0 | static_assert( |
685 | 0 | sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom), |
686 | 0 | "downgrade signals have different size"); |
687 | 0 | static_assert( |
688 | 0 | sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom), |
689 | 0 | "downgrade signals have different size"); |
690 | 0 | auto suffix = |
691 | 0 | Span(ssl->s3->server_random).last(sizeof(kTLS13DowngradeRandom)); |
692 | 0 | if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom || |
693 | 0 | suffix == kJDK11DowngradeRandom) { |
694 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE); |
695 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
696 | 0 | return ssl_hs_error; |
697 | 0 | } |
698 | 0 | } |
699 | | |
700 | | // The cipher must be allowed in the selected version and enabled. |
701 | 0 | const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite); |
702 | 0 | uint32_t mask_a, mask_k; |
703 | 0 | ssl_get_client_disabled(hs, &mask_a, &mask_k); |
704 | 0 | if (cipher == nullptr || // |
705 | 0 | (cipher->algorithm_mkey & mask_k) || // |
706 | 0 | (cipher->algorithm_auth & mask_a) || // |
707 | 0 | SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) || // |
708 | 0 | SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) || // |
709 | 0 | !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), nullptr, cipher)) { |
710 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); |
711 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
712 | 0 | return ssl_hs_error; |
713 | 0 | } |
714 | | |
715 | 0 | hs->new_cipher = cipher; |
716 | |
|
717 | 0 | if (!hs->session_id.empty() && |
718 | 0 | Span<const uint8_t>(server_hello.session_id) == hs->session_id) { |
719 | | // Echoing the ClientHello session ID in TLS 1.2, whether from the session |
720 | | // or a synthetic one, indicates resumption. If there was no session (or if |
721 | | // the session was only offered in ECH ClientHelloInner), this was the |
722 | | // TLS 1.3 compatibility mode session ID. As we know this is not a session |
723 | | // the server knows about, any server resuming it is in error. Reject the |
724 | | // first connection deterministicly, rather than installing an invalid |
725 | | // session into the session cache. https://crbug.com/796910 |
726 | 0 | if (ssl->session == nullptr || ssl->s3->ech_status == ssl_ech_rejected) { |
727 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID); |
728 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
729 | 0 | return ssl_hs_error; |
730 | 0 | } |
731 | 0 | if (ssl->session->ssl_version != ssl->s3->version) { |
732 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED); |
733 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
734 | 0 | return ssl_hs_error; |
735 | 0 | } |
736 | 0 | if (ssl->session->cipher != hs->new_cipher) { |
737 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED); |
738 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
739 | 0 | return ssl_hs_error; |
740 | 0 | } |
741 | 0 | if (!ssl_session_is_context_valid(hs, ssl->session.get())) { |
742 | | // This is actually a client application bug. |
743 | 0 | OPENSSL_PUT_ERROR(SSL, |
744 | 0 | SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT); |
745 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
746 | 0 | return ssl_hs_error; |
747 | 0 | } |
748 | | // We never offer sessions on renegotiation. |
749 | 0 | assert(!ssl->s3->initial_handshake_complete); |
750 | 0 | ssl->s3->session_reused = true; |
751 | 0 | } else { |
752 | | // The session wasn't resumed. Create a fresh SSL_SESSION to fill out. |
753 | 0 | ssl_set_session(ssl, NULL); |
754 | 0 | if (!ssl_get_new_session(hs)) { |
755 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
756 | 0 | return ssl_hs_error; |
757 | 0 | } |
758 | | |
759 | | // Save the session ID from the server. This may be empty if the session |
760 | | // isn't resumable, or if we'll receive a session ticket later. The |
761 | | // ServerHello parser ensures |server_hello.session_id| is within bounds. |
762 | 0 | hs->new_session->session_id.CopyFrom(server_hello.session_id); |
763 | 0 | hs->new_session->cipher = hs->new_cipher; |
764 | 0 | } |
765 | | |
766 | | // Now that the cipher is known, initialize the handshake hash and hash the |
767 | | // ServerHello. |
768 | 0 | if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) || |
769 | 0 | !ssl_hash_message(hs, msg)) { |
770 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
771 | 0 | return ssl_hs_error; |
772 | 0 | } |
773 | | |
774 | | // If doing a full handshake, the server may request a client certificate |
775 | | // which requires hashing the handshake transcript. Otherwise, the handshake |
776 | | // buffer may be released. |
777 | 0 | if (ssl->session != NULL || |
778 | 0 | !ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
779 | 0 | hs->transcript.FreeBuffer(); |
780 | 0 | } |
781 | | |
782 | | // Only the NULL compression algorithm is supported. |
783 | 0 | if (server_hello.compression_method != 0) { |
784 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM); |
785 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
786 | 0 | return ssl_hs_error; |
787 | 0 | } |
788 | | |
789 | 0 | if (!ssl_parse_serverhello_tlsext(hs, &server_hello.extensions)) { |
790 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
791 | 0 | return ssl_hs_error; |
792 | 0 | } |
793 | | |
794 | 0 | if (ssl->session != NULL && |
795 | 0 | hs->extended_master_secret != ssl->session->extended_master_secret) { |
796 | 0 | if (ssl->session->extended_master_secret) { |
797 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); |
798 | 0 | } else { |
799 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION); |
800 | 0 | } |
801 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
802 | 0 | return ssl_hs_error; |
803 | 0 | } |
804 | | |
805 | 0 | ssl->method->next_message(ssl); |
806 | |
|
807 | 0 | if (ssl->session != NULL) { |
808 | 0 | if (ssl->ctx->reverify_on_resume && |
809 | 0 | ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
810 | 0 | hs->state = state_reverify_server_certificate; |
811 | 0 | } else { |
812 | 0 | hs->state = state_read_session_ticket; |
813 | 0 | } |
814 | 0 | return ssl_hs_ok; |
815 | 0 | } |
816 | | |
817 | 0 | hs->state = state_read_server_certificate; |
818 | 0 | return ssl_hs_ok; |
819 | 0 | } |
820 | | |
821 | 0 | static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { |
822 | 0 | enum ssl_hs_wait_t wait = tls13_client_handshake(hs); |
823 | 0 | if (wait == ssl_hs_ok) { |
824 | 0 | hs->state = state_finish_client_handshake; |
825 | 0 | return ssl_hs_ok; |
826 | 0 | } |
827 | | |
828 | 0 | return wait; |
829 | 0 | } |
830 | | |
831 | 0 | static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) { |
832 | 0 | SSL *const ssl = hs->ssl; |
833 | |
|
834 | 0 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
835 | 0 | hs->state = state_read_certificate_status; |
836 | 0 | return ssl_hs_ok; |
837 | 0 | } |
838 | | |
839 | 0 | SSLMessage msg; |
840 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
841 | 0 | return ssl_hs_read_message; |
842 | 0 | } |
843 | | |
844 | 0 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) || |
845 | 0 | !ssl_hash_message(hs, msg)) { |
846 | 0 | return ssl_hs_error; |
847 | 0 | } |
848 | | |
849 | 0 | CBS body = msg.body; |
850 | 0 | uint8_t alert = SSL_AD_DECODE_ERROR; |
851 | 0 | if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey, |
852 | 0 | NULL, &body, ssl->ctx->pool)) { |
853 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
854 | 0 | return ssl_hs_error; |
855 | 0 | } |
856 | | |
857 | 0 | if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 || |
858 | 0 | CBS_len(&body) != 0 || |
859 | 0 | !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { |
860 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
861 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
862 | 0 | return ssl_hs_error; |
863 | 0 | } |
864 | | |
865 | 0 | if (!ssl_check_leaf_certificate( |
866 | 0 | hs, hs->peer_pubkey.get(), |
867 | 0 | sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) { |
868 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
869 | 0 | return ssl_hs_error; |
870 | 0 | } |
871 | | |
872 | 0 | ssl->method->next_message(ssl); |
873 | |
|
874 | 0 | hs->state = state_read_certificate_status; |
875 | 0 | return ssl_hs_ok; |
876 | 0 | } |
877 | | |
878 | 0 | static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) { |
879 | 0 | SSL *const ssl = hs->ssl; |
880 | |
|
881 | 0 | if (!hs->certificate_status_expected) { |
882 | 0 | hs->state = state_verify_server_certificate; |
883 | 0 | return ssl_hs_ok; |
884 | 0 | } |
885 | | |
886 | 0 | SSLMessage msg; |
887 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
888 | 0 | return ssl_hs_read_message; |
889 | 0 | } |
890 | | |
891 | 0 | if (msg.type != SSL3_MT_CERTIFICATE_STATUS) { |
892 | | // A server may send status_request in ServerHello and then change its mind |
893 | | // about sending CertificateStatus. |
894 | 0 | hs->state = state_verify_server_certificate; |
895 | 0 | return ssl_hs_ok; |
896 | 0 | } |
897 | | |
898 | 0 | if (!ssl_hash_message(hs, msg)) { |
899 | 0 | return ssl_hs_error; |
900 | 0 | } |
901 | | |
902 | 0 | CBS certificate_status = msg.body, ocsp_response; |
903 | 0 | uint8_t status_type; |
904 | 0 | if (!CBS_get_u8(&certificate_status, &status_type) || // |
905 | 0 | status_type != TLSEXT_STATUSTYPE_ocsp || // |
906 | 0 | !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || // |
907 | 0 | CBS_len(&ocsp_response) == 0 || // |
908 | 0 | CBS_len(&certificate_status) != 0) { |
909 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
910 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
911 | 0 | return ssl_hs_error; |
912 | 0 | } |
913 | | |
914 | 0 | hs->new_session->ocsp_response.reset( |
915 | 0 | CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool)); |
916 | 0 | if (hs->new_session->ocsp_response == nullptr) { |
917 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
918 | 0 | return ssl_hs_error; |
919 | 0 | } |
920 | | |
921 | 0 | ssl->method->next_message(ssl); |
922 | |
|
923 | 0 | hs->state = state_verify_server_certificate; |
924 | 0 | return ssl_hs_ok; |
925 | 0 | } |
926 | | |
927 | 0 | static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) { |
928 | 0 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
929 | 0 | hs->state = state_read_server_key_exchange; |
930 | 0 | return ssl_hs_ok; |
931 | 0 | } |
932 | | |
933 | 0 | switch (ssl_verify_peer_cert(hs)) { |
934 | 0 | case ssl_verify_ok: |
935 | 0 | break; |
936 | 0 | case ssl_verify_invalid: |
937 | 0 | return ssl_hs_error; |
938 | 0 | case ssl_verify_retry: |
939 | 0 | hs->state = state_verify_server_certificate; |
940 | 0 | return ssl_hs_certificate_verify; |
941 | 0 | } |
942 | | |
943 | 0 | hs->state = state_read_server_key_exchange; |
944 | 0 | return ssl_hs_ok; |
945 | 0 | } |
946 | | |
947 | 0 | static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) { |
948 | 0 | assert(hs->ssl->ctx->reverify_on_resume); |
949 | | |
950 | 0 | switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) { |
951 | 0 | case ssl_verify_ok: |
952 | 0 | break; |
953 | 0 | case ssl_verify_invalid: |
954 | 0 | return ssl_hs_error; |
955 | 0 | case ssl_verify_retry: |
956 | 0 | hs->state = state_reverify_server_certificate; |
957 | 0 | return ssl_hs_certificate_verify; |
958 | 0 | } |
959 | | |
960 | 0 | hs->state = state_read_session_ticket; |
961 | 0 | return ssl_hs_ok; |
962 | 0 | } |
963 | | |
964 | 0 | static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) { |
965 | 0 | SSL *const ssl = hs->ssl; |
966 | 0 | SSLMessage msg; |
967 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
968 | 0 | return ssl_hs_read_message; |
969 | 0 | } |
970 | | |
971 | 0 | if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) { |
972 | | // Some ciphers (pure PSK) have an optional ServerKeyExchange message. |
973 | 0 | if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) { |
974 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
975 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
976 | 0 | return ssl_hs_error; |
977 | 0 | } |
978 | | |
979 | 0 | hs->state = state_read_certificate_request; |
980 | 0 | return ssl_hs_ok; |
981 | 0 | } |
982 | | |
983 | 0 | if (!ssl_hash_message(hs, msg)) { |
984 | 0 | return ssl_hs_error; |
985 | 0 | } |
986 | | |
987 | 0 | uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
988 | 0 | uint32_t alg_a = hs->new_cipher->algorithm_auth; |
989 | 0 | CBS server_key_exchange = msg.body; |
990 | 0 | if (alg_a & SSL_aPSK) { |
991 | 0 | CBS psk_identity_hint; |
992 | | |
993 | | // Each of the PSK key exchanges begins with a psk_identity_hint. |
994 | 0 | if (!CBS_get_u16_length_prefixed(&server_key_exchange, |
995 | 0 | &psk_identity_hint)) { |
996 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
997 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
998 | 0 | return ssl_hs_error; |
999 | 0 | } |
1000 | | |
1001 | | // Store the PSK identity hint for the ClientKeyExchange. Assume that the |
1002 | | // maximum length of a PSK identity hint can be as long as the maximum |
1003 | | // length of a PSK identity. Also do not allow NULL characters; identities |
1004 | | // are saved as C strings. |
1005 | | // |
1006 | | // TODO(davidben): Should invalid hints be ignored? It's a hint rather than |
1007 | | // a specific identity. |
1008 | 0 | if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN || |
1009 | 0 | CBS_contains_zero_byte(&psk_identity_hint)) { |
1010 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
1011 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
1012 | 0 | return ssl_hs_error; |
1013 | 0 | } |
1014 | | |
1015 | | // Save non-empty identity hints as a C string. Empty identity hints we |
1016 | | // treat as missing. Plain PSK makes it possible to send either no hint |
1017 | | // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell |
1018 | | // empty hint. Having different capabilities is odd, so we interpret empty |
1019 | | // and missing as identical. |
1020 | 0 | char *raw = nullptr; |
1021 | 0 | if (CBS_len(&psk_identity_hint) != 0 && |
1022 | 0 | !CBS_strdup(&psk_identity_hint, &raw)) { |
1023 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1024 | 0 | return ssl_hs_error; |
1025 | 0 | } |
1026 | 0 | hs->peer_psk_identity_hint.reset(raw); |
1027 | 0 | } |
1028 | | |
1029 | 0 | if (alg_k & SSL_kECDHE) { |
1030 | | // Parse the server parameters. |
1031 | 0 | uint8_t group_type; |
1032 | 0 | uint16_t group_id; |
1033 | 0 | CBS point; |
1034 | 0 | if (!CBS_get_u8(&server_key_exchange, &group_type) || |
1035 | 0 | group_type != NAMED_CURVE_TYPE || |
1036 | 0 | !CBS_get_u16(&server_key_exchange, &group_id) || |
1037 | 0 | !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) { |
1038 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1039 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1040 | 0 | return ssl_hs_error; |
1041 | 0 | } |
1042 | | |
1043 | | // Ensure the group is consistent with preferences. |
1044 | 0 | if (!tls1_check_group_id(hs, group_id)) { |
1045 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); |
1046 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
1047 | 0 | return ssl_hs_error; |
1048 | 0 | } |
1049 | | |
1050 | | // Save the group and peer public key for later. |
1051 | 0 | hs->new_session->group_id = group_id; |
1052 | 0 | if (!hs->peer_key.CopyFrom(point)) { |
1053 | 0 | return ssl_hs_error; |
1054 | 0 | } |
1055 | 0 | } else if (!(alg_k & SSL_kPSK)) { |
1056 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
1057 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
1058 | 0 | return ssl_hs_error; |
1059 | 0 | } |
1060 | | |
1061 | | // At this point, |server_key_exchange| contains the signature, if any, while |
1062 | | // |msg.body| contains the entire message. From that, derive a CBS containing |
1063 | | // just the parameter. |
1064 | 0 | CBS parameter; |
1065 | 0 | CBS_init(¶meter, CBS_data(&msg.body), |
1066 | 0 | CBS_len(&msg.body) - CBS_len(&server_key_exchange)); |
1067 | | |
1068 | | // ServerKeyExchange should be signed by the server's public key. |
1069 | 0 | if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
1070 | 0 | uint16_t signature_algorithm = 0; |
1071 | 0 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
1072 | 0 | if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) { |
1073 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1074 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1075 | 0 | return ssl_hs_error; |
1076 | 0 | } |
1077 | 0 | uint8_t alert = SSL_AD_DECODE_ERROR; |
1078 | 0 | if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm, |
1079 | 0 | hs->peer_pubkey.get())) { |
1080 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
1081 | 0 | return ssl_hs_error; |
1082 | 0 | } |
1083 | 0 | hs->new_session->peer_signature_algorithm = signature_algorithm; |
1084 | 0 | } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, |
1085 | 0 | hs->peer_pubkey.get())) { |
1086 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); |
1087 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); |
1088 | 0 | return ssl_hs_error; |
1089 | 0 | } |
1090 | | |
1091 | | // The last field in |server_key_exchange| is the signature. |
1092 | 0 | CBS signature; |
1093 | 0 | if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) || |
1094 | 0 | CBS_len(&server_key_exchange) != 0) { |
1095 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1096 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1097 | 0 | return ssl_hs_error; |
1098 | 0 | } |
1099 | | |
1100 | 0 | ScopedCBB transcript; |
1101 | 0 | Array<uint8_t> transcript_data; |
1102 | 0 | if (!CBB_init(transcript.get(), |
1103 | 0 | 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) || |
1104 | 0 | !CBB_add_bytes(transcript.get(), ssl->s3->client_random, |
1105 | 0 | SSL3_RANDOM_SIZE) || |
1106 | 0 | !CBB_add_bytes(transcript.get(), ssl->s3->server_random, |
1107 | 0 | SSL3_RANDOM_SIZE) || |
1108 | 0 | !CBB_add_bytes(transcript.get(), CBS_data(¶meter), |
1109 | 0 | CBS_len(¶meter)) || |
1110 | 0 | !CBBFinishArray(transcript.get(), &transcript_data)) { |
1111 | 0 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1112 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1113 | 0 | return ssl_hs_error; |
1114 | 0 | } |
1115 | | |
1116 | 0 | if (!ssl_public_key_verify(ssl, signature, signature_algorithm, |
1117 | 0 | hs->peer_pubkey.get(), transcript_data)) { |
1118 | | // bad signature |
1119 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); |
1120 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
1121 | 0 | return ssl_hs_error; |
1122 | 0 | } |
1123 | 0 | } else { |
1124 | | // PSK ciphers are the only supported certificate-less ciphers. |
1125 | 0 | assert(alg_a == SSL_aPSK); |
1126 | | |
1127 | 0 | if (CBS_len(&server_key_exchange) > 0) { |
1128 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE); |
1129 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1130 | 0 | return ssl_hs_error; |
1131 | 0 | } |
1132 | 0 | } |
1133 | | |
1134 | 0 | ssl->method->next_message(ssl); |
1135 | 0 | hs->state = state_read_certificate_request; |
1136 | 0 | return ssl_hs_ok; |
1137 | 0 | } |
1138 | | |
1139 | 0 | static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) { |
1140 | 0 | SSL *const ssl = hs->ssl; |
1141 | |
|
1142 | 0 | if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
1143 | 0 | hs->state = state_read_server_hello_done; |
1144 | 0 | return ssl_hs_ok; |
1145 | 0 | } |
1146 | | |
1147 | 0 | SSLMessage msg; |
1148 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
1149 | 0 | return ssl_hs_read_message; |
1150 | 0 | } |
1151 | | |
1152 | 0 | if (msg.type == SSL3_MT_SERVER_HELLO_DONE) { |
1153 | | // If we get here we don't need the handshake buffer as we won't be doing |
1154 | | // client auth. |
1155 | 0 | hs->transcript.FreeBuffer(); |
1156 | 0 | hs->state = state_read_server_hello_done; |
1157 | 0 | return ssl_hs_ok; |
1158 | 0 | } |
1159 | | |
1160 | 0 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) || |
1161 | 0 | !ssl_hash_message(hs, msg)) { |
1162 | 0 | return ssl_hs_error; |
1163 | 0 | } |
1164 | | |
1165 | | // Get the certificate types. |
1166 | 0 | CBS body = msg.body, certificate_types; |
1167 | 0 | if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) { |
1168 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1169 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1170 | 0 | return ssl_hs_error; |
1171 | 0 | } |
1172 | | |
1173 | 0 | if (!hs->certificate_types.CopyFrom(certificate_types)) { |
1174 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1175 | 0 | return ssl_hs_error; |
1176 | 0 | } |
1177 | | |
1178 | 0 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
1179 | 0 | CBS supported_signature_algorithms; |
1180 | 0 | if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) || |
1181 | 0 | !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) { |
1182 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1183 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1184 | 0 | return ssl_hs_error; |
1185 | 0 | } |
1186 | 0 | } |
1187 | | |
1188 | 0 | uint8_t alert = SSL_AD_DECODE_ERROR; |
1189 | 0 | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names = |
1190 | 0 | SSL_parse_CA_list(ssl, &alert, &body); |
1191 | 0 | if (!ca_names) { |
1192 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
1193 | 0 | return ssl_hs_error; |
1194 | 0 | } |
1195 | | |
1196 | 0 | if (CBS_len(&body) != 0) { |
1197 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1198 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1199 | 0 | return ssl_hs_error; |
1200 | 0 | } |
1201 | | |
1202 | 0 | hs->cert_request = true; |
1203 | 0 | hs->ca_names = std::move(ca_names); |
1204 | 0 | ssl->ctx->x509_method->hs_flush_cached_ca_names(hs); |
1205 | |
|
1206 | 0 | ssl->method->next_message(ssl); |
1207 | 0 | hs->state = state_read_server_hello_done; |
1208 | 0 | return ssl_hs_ok; |
1209 | 0 | } |
1210 | | |
1211 | 0 | static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) { |
1212 | 0 | SSL *const ssl = hs->ssl; |
1213 | 0 | SSLMessage msg; |
1214 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
1215 | 0 | return ssl_hs_read_message; |
1216 | 0 | } |
1217 | | |
1218 | 0 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) || |
1219 | 0 | !ssl_hash_message(hs, msg)) { |
1220 | 0 | return ssl_hs_error; |
1221 | 0 | } |
1222 | | |
1223 | | // ServerHelloDone is empty. |
1224 | 0 | if (CBS_len(&msg.body) != 0) { |
1225 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1226 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1227 | 0 | return ssl_hs_error; |
1228 | 0 | } |
1229 | | |
1230 | | // ServerHelloDone should be the end of the flight. |
1231 | 0 | if (ssl->method->has_unprocessed_handshake_data(ssl)) { |
1232 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
1233 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA); |
1234 | 0 | return ssl_hs_error; |
1235 | 0 | } |
1236 | | |
1237 | 0 | ssl->method->next_message(ssl); |
1238 | 0 | hs->state = state_send_client_certificate; |
1239 | 0 | return ssl_hs_ok; |
1240 | 0 | } |
1241 | | |
1242 | | static bool check_credential(SSL_HANDSHAKE *hs, const SSL_CREDENTIAL *cred, |
1243 | 0 | uint16_t *out_sigalg) { |
1244 | 0 | if (cred->type != SSLCredentialType::kX509) { |
1245 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
1246 | 0 | return false; |
1247 | 0 | } |
1248 | | |
1249 | | // Check the certificate types advertised by the peer. |
1250 | 0 | uint8_t cert_type; |
1251 | 0 | switch (EVP_PKEY_id(cred->pubkey.get())) { |
1252 | 0 | case EVP_PKEY_RSA: |
1253 | 0 | cert_type = SSL3_CT_RSA_SIGN; |
1254 | 0 | break; |
1255 | 0 | case EVP_PKEY_EC: |
1256 | 0 | case EVP_PKEY_ED25519: |
1257 | 0 | cert_type = TLS_CT_ECDSA_SIGN; |
1258 | 0 | break; |
1259 | 0 | default: |
1260 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
1261 | 0 | return false; |
1262 | 0 | } |
1263 | 0 | if (std::find(hs->certificate_types.begin(), hs->certificate_types.end(), |
1264 | 0 | cert_type) == hs->certificate_types.end()) { |
1265 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
1266 | 0 | return false; |
1267 | 0 | } |
1268 | | |
1269 | | // All currently supported credentials require a signature. Note this does not |
1270 | | // check the ECDSA curve. Prior to TLS 1.3, there is no way to determine which |
1271 | | // ECDSA curves are supported by the peer, so we must assume all curves are |
1272 | | // supported. |
1273 | 0 | return tls1_choose_signature_algorithm(hs, cred, out_sigalg) && |
1274 | 0 | ssl_credential_matches_requested_issuers(hs, cred); |
1275 | 0 | } |
1276 | | |
1277 | 0 | static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) { |
1278 | 0 | SSL *const ssl = hs->ssl; |
1279 | | |
1280 | | // The peer didn't request a certificate. |
1281 | 0 | if (!hs->cert_request) { |
1282 | 0 | hs->state = state_send_client_key_exchange; |
1283 | 0 | return ssl_hs_ok; |
1284 | 0 | } |
1285 | | |
1286 | 0 | if (ssl->s3->ech_status == ssl_ech_rejected) { |
1287 | | // Do not send client certificates on ECH reject. We have not authenticated |
1288 | | // the server for the name that can learn the certificate. |
1289 | 0 | SSL_certs_clear(ssl); |
1290 | 0 | } else if (hs->config->cert->cert_cb != nullptr) { |
1291 | | // Call cert_cb to update the certificate. |
1292 | 0 | int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg); |
1293 | 0 | if (rv == 0) { |
1294 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
1295 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); |
1296 | 0 | return ssl_hs_error; |
1297 | 0 | } |
1298 | 0 | if (rv < 0) { |
1299 | 0 | hs->state = state_send_client_certificate; |
1300 | 0 | return ssl_hs_x509_lookup; |
1301 | 0 | } |
1302 | 0 | } |
1303 | | |
1304 | 0 | Array<SSL_CREDENTIAL *> creds; |
1305 | 0 | if (!ssl_get_full_credential_list(hs, &creds)) { |
1306 | 0 | return ssl_hs_error; |
1307 | 0 | } |
1308 | | |
1309 | 0 | if (creds.empty()) { |
1310 | | // If there were no credentials, proceed without a client certificate. In |
1311 | | // this case, the handshake buffer may be released early. |
1312 | 0 | hs->transcript.FreeBuffer(); |
1313 | 0 | } else { |
1314 | | // Select the credential to use. |
1315 | 0 | for (SSL_CREDENTIAL *cred : creds) { |
1316 | 0 | ERR_clear_error(); |
1317 | 0 | uint16_t sigalg; |
1318 | 0 | if (check_credential(hs, cred, &sigalg)) { |
1319 | 0 | hs->credential = UpRef(cred); |
1320 | 0 | hs->signature_algorithm = sigalg; |
1321 | 0 | break; |
1322 | 0 | } |
1323 | 0 | } |
1324 | 0 | if (hs->credential == nullptr) { |
1325 | | // The error from the last attempt is in the error queue. |
1326 | 0 | assert(ERR_peek_error() != 0); |
1327 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
1328 | 0 | return ssl_hs_error; |
1329 | 0 | } |
1330 | 0 | } |
1331 | | |
1332 | 0 | if (!ssl_send_tls12_certificate(hs)) { |
1333 | 0 | return ssl_hs_error; |
1334 | 0 | } |
1335 | | |
1336 | 0 | hs->state = state_send_client_key_exchange; |
1337 | 0 | return ssl_hs_ok; |
1338 | 0 | } |
1339 | | |
1340 | | static_assert(sizeof(size_t) >= sizeof(unsigned), |
1341 | | "size_t is smaller than unsigned"); |
1342 | | |
1343 | 0 | static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) { |
1344 | 0 | SSL *const ssl = hs->ssl; |
1345 | 0 | ScopedCBB cbb; |
1346 | 0 | CBB body; |
1347 | 0 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
1348 | 0 | SSL3_MT_CLIENT_KEY_EXCHANGE)) { |
1349 | 0 | return ssl_hs_error; |
1350 | 0 | } |
1351 | | |
1352 | 0 | Array<uint8_t> pms; |
1353 | 0 | uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
1354 | 0 | uint32_t alg_a = hs->new_cipher->algorithm_auth; |
1355 | 0 | if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
1356 | 0 | const CRYPTO_BUFFER *leaf = |
1357 | 0 | sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0); |
1358 | 0 | CBS leaf_cbs; |
1359 | 0 | CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs); |
1360 | | |
1361 | | // Check the key usage matches the cipher suite. We do this unconditionally |
1362 | | // for non-RSA certificates. In particular, it's needed to distinguish ECDH |
1363 | | // certificates, which we do not support, from ECDSA certificates. |
1364 | | // Historically, we have not checked RSA key usages, so it is controlled by |
1365 | | // a flag for now. See https://crbug.com/795089. |
1366 | 0 | ssl_key_usage_t intended_use = (alg_k & SSL_kRSA) |
1367 | 0 | ? key_usage_encipherment |
1368 | 0 | : key_usage_digital_signature; |
1369 | 0 | if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) { |
1370 | 0 | if (hs->config->enforce_rsa_key_usage || |
1371 | 0 | EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) { |
1372 | 0 | return ssl_hs_error; |
1373 | 0 | } |
1374 | 0 | ERR_clear_error(); |
1375 | 0 | ssl->s3->was_key_usage_invalid = true; |
1376 | 0 | } |
1377 | 0 | } |
1378 | | |
1379 | | // If using a PSK key exchange, prepare the pre-shared key. |
1380 | 0 | unsigned psk_len = 0; |
1381 | 0 | uint8_t psk[PSK_MAX_PSK_LEN]; |
1382 | 0 | if (alg_a & SSL_aPSK) { |
1383 | 0 | if (hs->config->psk_client_callback == NULL) { |
1384 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB); |
1385 | 0 | return ssl_hs_error; |
1386 | 0 | } |
1387 | | |
1388 | 0 | char identity[PSK_MAX_IDENTITY_LEN + 1]; |
1389 | 0 | OPENSSL_memset(identity, 0, sizeof(identity)); |
1390 | 0 | psk_len = hs->config->psk_client_callback( |
1391 | 0 | ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk, |
1392 | 0 | sizeof(psk)); |
1393 | 0 | if (psk_len == 0) { |
1394 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
1395 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
1396 | 0 | return ssl_hs_error; |
1397 | 0 | } |
1398 | 0 | assert(psk_len <= PSK_MAX_PSK_LEN); |
1399 | | |
1400 | 0 | hs->new_session->psk_identity.reset(OPENSSL_strdup(identity)); |
1401 | 0 | if (hs->new_session->psk_identity == nullptr) { |
1402 | 0 | return ssl_hs_error; |
1403 | 0 | } |
1404 | | |
1405 | | // Write out psk_identity. |
1406 | 0 | CBB child; |
1407 | 0 | if (!CBB_add_u16_length_prefixed(&body, &child) || |
1408 | 0 | !CBB_add_bytes(&child, (const uint8_t *)identity, |
1409 | 0 | OPENSSL_strnlen(identity, sizeof(identity))) || |
1410 | 0 | !CBB_flush(&body)) { |
1411 | 0 | return ssl_hs_error; |
1412 | 0 | } |
1413 | 0 | } |
1414 | | |
1415 | | // Depending on the key exchange method, compute |pms|. |
1416 | 0 | if (alg_k & SSL_kRSA) { |
1417 | 0 | RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get()); |
1418 | 0 | if (rsa == NULL) { |
1419 | 0 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1420 | 0 | return ssl_hs_error; |
1421 | 0 | } |
1422 | | |
1423 | 0 | if (!pms.InitForOverwrite(SSL_MAX_MASTER_KEY_LENGTH)) { |
1424 | 0 | return ssl_hs_error; |
1425 | 0 | } |
1426 | 0 | pms[0] = hs->client_version >> 8; |
1427 | 0 | pms[1] = hs->client_version & 0xff; |
1428 | 0 | if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) { |
1429 | 0 | return ssl_hs_error; |
1430 | 0 | } |
1431 | | |
1432 | 0 | CBB enc_pms; |
1433 | 0 | uint8_t *ptr; |
1434 | 0 | size_t enc_pms_len; |
1435 | 0 | if (!CBB_add_u16_length_prefixed(&body, &enc_pms) || // |
1436 | 0 | !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) || // |
1437 | 0 | !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(), |
1438 | 0 | pms.size(), RSA_PKCS1_PADDING) || // |
1439 | 0 | !CBB_did_write(&enc_pms, enc_pms_len) || // |
1440 | 0 | !CBB_flush(&body)) { |
1441 | 0 | return ssl_hs_error; |
1442 | 0 | } |
1443 | 0 | } else if (alg_k & SSL_kECDHE) { |
1444 | 0 | CBB child; |
1445 | 0 | if (!CBB_add_u8_length_prefixed(&body, &child)) { |
1446 | 0 | return ssl_hs_error; |
1447 | 0 | } |
1448 | | |
1449 | | // Generate a premaster secret and encapsulate it. |
1450 | 0 | bssl::UniquePtr<SSLKeyShare> kem = |
1451 | 0 | SSLKeyShare::Create(hs->new_session->group_id); |
1452 | 0 | uint8_t alert = SSL_AD_DECODE_ERROR; |
1453 | 0 | if (!kem || !kem->Encap(&child, &pms, &alert, hs->peer_key)) { |
1454 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
1455 | 0 | return ssl_hs_error; |
1456 | 0 | } |
1457 | 0 | if (!CBB_flush(&body)) { |
1458 | 0 | return ssl_hs_error; |
1459 | 0 | } |
1460 | | |
1461 | | // The peer key can now be discarded. |
1462 | 0 | hs->peer_key.Reset(); |
1463 | 0 | } else if (alg_k & SSL_kPSK) { |
1464 | | // For plain PSK, other_secret is a block of 0s with the same length as |
1465 | | // the pre-shared key. |
1466 | 0 | if (!pms.Init(psk_len)) { |
1467 | 0 | return ssl_hs_error; |
1468 | 0 | } |
1469 | 0 | } else { |
1470 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
1471 | 0 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1472 | 0 | return ssl_hs_error; |
1473 | 0 | } |
1474 | | |
1475 | | // For a PSK cipher suite, other_secret is combined with the pre-shared |
1476 | | // key. |
1477 | 0 | if (alg_a & SSL_aPSK) { |
1478 | 0 | ScopedCBB pms_cbb; |
1479 | 0 | CBB child; |
1480 | 0 | if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) || |
1481 | 0 | !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) || |
1482 | 0 | !CBB_add_bytes(&child, pms.data(), pms.size()) || |
1483 | 0 | !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) || |
1484 | 0 | !CBB_add_bytes(&child, psk, psk_len) || |
1485 | 0 | !CBBFinishArray(pms_cbb.get(), &pms)) { |
1486 | 0 | return ssl_hs_error; |
1487 | 0 | } |
1488 | 0 | } |
1489 | | |
1490 | | // The message must be added to the finished hash before calculating the |
1491 | | // master secret. |
1492 | 0 | if (!ssl_add_message_cbb(ssl, cbb.get())) { |
1493 | 0 | return ssl_hs_error; |
1494 | 0 | } |
1495 | | |
1496 | 0 | hs->new_session->secret.ResizeForOverwrite(SSL3_MASTER_SECRET_SIZE); |
1497 | 0 | if (!tls1_generate_master_secret(hs, Span(hs->new_session->secret), pms)) { |
1498 | 0 | return ssl_hs_error; |
1499 | 0 | } |
1500 | | |
1501 | 0 | hs->new_session->extended_master_secret = hs->extended_master_secret; |
1502 | 0 | hs->state = state_send_client_certificate_verify; |
1503 | 0 | return ssl_hs_ok; |
1504 | 0 | } |
1505 | | |
1506 | 0 | static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) { |
1507 | 0 | SSL *const ssl = hs->ssl; |
1508 | |
|
1509 | 0 | if (!hs->cert_request || hs->credential == nullptr) { |
1510 | 0 | hs->state = state_send_client_finished; |
1511 | 0 | return ssl_hs_ok; |
1512 | 0 | } |
1513 | | |
1514 | 0 | ScopedCBB cbb; |
1515 | 0 | CBB body, child; |
1516 | 0 | if (!ssl->method->init_message(ssl, cbb.get(), &body, |
1517 | 0 | SSL3_MT_CERTIFICATE_VERIFY)) { |
1518 | 0 | return ssl_hs_error; |
1519 | 0 | } |
1520 | | |
1521 | 0 | assert(hs->signature_algorithm != 0); |
1522 | 0 | if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
1523 | | // Write out the digest type in TLS 1.2. |
1524 | 0 | if (!CBB_add_u16(&body, hs->signature_algorithm)) { |
1525 | 0 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1526 | 0 | return ssl_hs_error; |
1527 | 0 | } |
1528 | 0 | } |
1529 | | |
1530 | | // Set aside space for the signature. |
1531 | 0 | const size_t max_sig_len = EVP_PKEY_size(hs->credential->pubkey.get()); |
1532 | 0 | uint8_t *ptr; |
1533 | 0 | if (!CBB_add_u16_length_prefixed(&body, &child) || |
1534 | 0 | !CBB_reserve(&child, &ptr, max_sig_len)) { |
1535 | 0 | return ssl_hs_error; |
1536 | 0 | } |
1537 | | |
1538 | 0 | size_t sig_len = max_sig_len; |
1539 | 0 | switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, |
1540 | 0 | hs->signature_algorithm, |
1541 | 0 | hs->transcript.buffer())) { |
1542 | 0 | case ssl_private_key_success: |
1543 | 0 | break; |
1544 | 0 | case ssl_private_key_failure: |
1545 | 0 | return ssl_hs_error; |
1546 | 0 | case ssl_private_key_retry: |
1547 | 0 | hs->state = state_send_client_certificate_verify; |
1548 | 0 | return ssl_hs_private_key_operation; |
1549 | 0 | } |
1550 | | |
1551 | 0 | if (!CBB_did_write(&child, sig_len) || // |
1552 | 0 | !ssl_add_message_cbb(ssl, cbb.get())) { |
1553 | 0 | return ssl_hs_error; |
1554 | 0 | } |
1555 | | |
1556 | | // The handshake buffer is no longer necessary. |
1557 | 0 | hs->transcript.FreeBuffer(); |
1558 | |
|
1559 | 0 | hs->state = state_send_client_finished; |
1560 | 0 | return ssl_hs_ok; |
1561 | 0 | } |
1562 | | |
1563 | 0 | static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) { |
1564 | 0 | SSL *const ssl = hs->ssl; |
1565 | 0 | hs->can_release_private_key = true; |
1566 | 0 | if (!ssl->method->add_change_cipher_spec(ssl) || |
1567 | 0 | !tls1_change_cipher_state(hs, evp_aead_seal)) { |
1568 | 0 | return ssl_hs_error; |
1569 | 0 | } |
1570 | | |
1571 | 0 | if (hs->next_proto_neg_seen) { |
1572 | 0 | static const uint8_t kZero[32] = {0}; |
1573 | 0 | size_t padding_len = |
1574 | 0 | 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32); |
1575 | |
|
1576 | 0 | ScopedCBB cbb; |
1577 | 0 | CBB body, child; |
1578 | 0 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) || |
1579 | 0 | !CBB_add_u8_length_prefixed(&body, &child) || |
1580 | 0 | !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(), |
1581 | 0 | ssl->s3->next_proto_negotiated.size()) || |
1582 | 0 | !CBB_add_u8_length_prefixed(&body, &child) || |
1583 | 0 | !CBB_add_bytes(&child, kZero, padding_len) || |
1584 | 0 | !ssl_add_message_cbb(ssl, cbb.get())) { |
1585 | 0 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1586 | 0 | return ssl_hs_error; |
1587 | 0 | } |
1588 | 0 | } |
1589 | | |
1590 | 0 | if (hs->channel_id_negotiated) { |
1591 | 0 | ScopedCBB cbb; |
1592 | 0 | CBB body; |
1593 | 0 | if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) || |
1594 | 0 | !tls1_write_channel_id(hs, &body) || |
1595 | 0 | !ssl_add_message_cbb(ssl, cbb.get())) { |
1596 | 0 | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
1597 | 0 | return ssl_hs_error; |
1598 | 0 | } |
1599 | 0 | } |
1600 | | |
1601 | 0 | if (!ssl_send_finished(hs)) { |
1602 | 0 | return ssl_hs_error; |
1603 | 0 | } |
1604 | | |
1605 | 0 | hs->state = state_finish_flight; |
1606 | 0 | return ssl_hs_flush; |
1607 | 0 | } |
1608 | | |
1609 | 0 | static bool can_false_start(const SSL_HANDSHAKE *hs) { |
1610 | 0 | const SSL *const ssl = hs->ssl; |
1611 | | |
1612 | | // False Start bypasses the Finished check's downgrade protection. This can |
1613 | | // enable attacks where we send data under weaker settings than supported |
1614 | | // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD |
1615 | | // cipher, our strongest settings before TLS 1.3. |
1616 | | // |
1617 | | // Now that TLS 1.3 exists, we would like to avoid similar attacks between |
1618 | | // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to |
1619 | | // sacrifice False Start on them. Instead, we rely on the ServerHello.random |
1620 | | // downgrade signal, which we unconditionally enforce. |
1621 | 0 | if (SSL_is_dtls(ssl) || // |
1622 | 0 | SSL_version(ssl) != TLS1_2_VERSION || // |
1623 | 0 | hs->new_cipher->algorithm_mkey != SSL_kECDHE || // |
1624 | 0 | hs->new_cipher->algorithm_mac != SSL_AEAD) { |
1625 | 0 | return false; |
1626 | 0 | } |
1627 | | |
1628 | | // If ECH was rejected, disable False Start. We run the handshake to |
1629 | | // completion, including the Finished downgrade check, to authenticate the |
1630 | | // recovery flow. |
1631 | 0 | if (ssl->s3->ech_status == ssl_ech_rejected) { |
1632 | 0 | return false; |
1633 | 0 | } |
1634 | | |
1635 | | // Additionally require ALPN or NPN by default. |
1636 | | // |
1637 | | // TODO(davidben): Can this constraint be relaxed globally now that cipher |
1638 | | // suite requirements have been tightened? |
1639 | 0 | if (!ssl->ctx->false_start_allowed_without_alpn && |
1640 | 0 | ssl->s3->alpn_selected.empty() && |
1641 | 0 | ssl->s3->next_proto_negotiated.empty()) { |
1642 | 0 | return false; |
1643 | 0 | } |
1644 | | |
1645 | 0 | return true; |
1646 | 0 | } |
1647 | | |
1648 | 0 | static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) { |
1649 | 0 | SSL *const ssl = hs->ssl; |
1650 | 0 | if (ssl->session != NULL) { |
1651 | 0 | hs->state = state_finish_client_handshake; |
1652 | 0 | return ssl_hs_ok; |
1653 | 0 | } |
1654 | | |
1655 | | // This is a full handshake. If it involves ChannelID, then record the |
1656 | | // handshake hashes at this point in the session so that any resumption of |
1657 | | // this session with ChannelID can sign those hashes. |
1658 | 0 | if (!tls1_record_handshake_hashes_for_channel_id(hs)) { |
1659 | 0 | return ssl_hs_error; |
1660 | 0 | } |
1661 | | |
1662 | 0 | hs->state = state_read_session_ticket; |
1663 | |
|
1664 | 0 | if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) && |
1665 | 0 | can_false_start(hs) && |
1666 | | // No False Start on renegotiation (would complicate the state machine). |
1667 | 0 | !ssl->s3->initial_handshake_complete) { |
1668 | 0 | hs->in_false_start = true; |
1669 | 0 | hs->can_early_write = true; |
1670 | 0 | return ssl_hs_early_return; |
1671 | 0 | } |
1672 | | |
1673 | 0 | return ssl_hs_ok; |
1674 | 0 | } |
1675 | | |
1676 | 0 | static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) { |
1677 | 0 | SSL *const ssl = hs->ssl; |
1678 | |
|
1679 | 0 | if (!hs->ticket_expected) { |
1680 | 0 | hs->state = state_process_change_cipher_spec; |
1681 | 0 | return ssl_hs_read_change_cipher_spec; |
1682 | 0 | } |
1683 | | |
1684 | 0 | SSLMessage msg; |
1685 | 0 | if (!ssl->method->get_message(ssl, &msg)) { |
1686 | 0 | return ssl_hs_read_message; |
1687 | 0 | } |
1688 | | |
1689 | 0 | if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) || |
1690 | 0 | !ssl_hash_message(hs, msg)) { |
1691 | 0 | return ssl_hs_error; |
1692 | 0 | } |
1693 | | |
1694 | 0 | CBS new_session_ticket = msg.body, ticket; |
1695 | 0 | uint32_t ticket_lifetime_hint; |
1696 | 0 | if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) || |
1697 | 0 | !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) || |
1698 | 0 | CBS_len(&new_session_ticket) != 0) { |
1699 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
1700 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
1701 | 0 | return ssl_hs_error; |
1702 | 0 | } |
1703 | | |
1704 | 0 | if (CBS_len(&ticket) == 0) { |
1705 | | // RFC 5077 allows a server to change its mind and send no ticket after |
1706 | | // negotiating the extension. The value of |ticket_expected| is checked in |
1707 | | // |ssl_update_cache| so is cleared here to avoid an unnecessary update. |
1708 | 0 | hs->ticket_expected = false; |
1709 | 0 | ssl->method->next_message(ssl); |
1710 | 0 | hs->state = state_process_change_cipher_spec; |
1711 | 0 | return ssl_hs_read_change_cipher_spec; |
1712 | 0 | } |
1713 | | |
1714 | 0 | if (ssl->session != nullptr) { |
1715 | | // The server is sending a new ticket for an existing session. Sessions are |
1716 | | // immutable once established, so duplicate all but the ticket of the |
1717 | | // existing session. |
1718 | 0 | assert(!hs->new_session); |
1719 | 0 | hs->new_session = |
1720 | 0 | SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH); |
1721 | 0 | if (!hs->new_session) { |
1722 | 0 | return ssl_hs_error; |
1723 | 0 | } |
1724 | 0 | } |
1725 | | |
1726 | | // |ticket_lifetime_hint| is measured from when the ticket was issued. |
1727 | 0 | ssl_session_rebase_time(ssl, hs->new_session.get()); |
1728 | |
|
1729 | 0 | if (!hs->new_session->ticket.CopyFrom(ticket)) { |
1730 | 0 | return ssl_hs_error; |
1731 | 0 | } |
1732 | 0 | hs->new_session->ticket_lifetime_hint = ticket_lifetime_hint; |
1733 | | |
1734 | | // Historically, OpenSSL filled in fake session IDs for ticket-based sessions. |
1735 | | // TODO(davidben): Are external callers relying on this? Try removing this. |
1736 | 0 | hs->new_session->session_id.ResizeForOverwrite(SHA256_DIGEST_LENGTH); |
1737 | 0 | SHA256(CBS_data(&ticket), CBS_len(&ticket), |
1738 | 0 | hs->new_session->session_id.data()); |
1739 | |
|
1740 | 0 | ssl->method->next_message(ssl); |
1741 | 0 | hs->state = state_process_change_cipher_spec; |
1742 | 0 | return ssl_hs_read_change_cipher_spec; |
1743 | 0 | } |
1744 | | |
1745 | 0 | static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { |
1746 | 0 | if (!tls1_change_cipher_state(hs, evp_aead_open)) { |
1747 | 0 | return ssl_hs_error; |
1748 | 0 | } |
1749 | | |
1750 | 0 | hs->state = state_read_server_finished; |
1751 | 0 | return ssl_hs_ok; |
1752 | 0 | } |
1753 | | |
1754 | 0 | static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) { |
1755 | 0 | SSL *const ssl = hs->ssl; |
1756 | 0 | enum ssl_hs_wait_t wait = ssl_get_finished(hs); |
1757 | 0 | if (wait != ssl_hs_ok) { |
1758 | 0 | return wait; |
1759 | 0 | } |
1760 | | |
1761 | 0 | if (ssl->session != NULL) { |
1762 | 0 | hs->state = state_send_client_finished; |
1763 | 0 | return ssl_hs_ok; |
1764 | 0 | } |
1765 | | |
1766 | 0 | hs->state = state_finish_client_handshake; |
1767 | 0 | return ssl_hs_ok; |
1768 | 0 | } |
1769 | | |
1770 | 0 | static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) { |
1771 | 0 | SSL *const ssl = hs->ssl; |
1772 | 0 | if (ssl->s3->ech_status == ssl_ech_rejected) { |
1773 | | // Release the retry configs. |
1774 | 0 | hs->ech_authenticated_reject = true; |
1775 | 0 | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ECH_REQUIRED); |
1776 | 0 | OPENSSL_PUT_ERROR(SSL, SSL_R_ECH_REJECTED); |
1777 | 0 | return ssl_hs_error; |
1778 | 0 | } |
1779 | | |
1780 | 0 | ssl->method->on_handshake_complete(ssl); |
1781 | | |
1782 | | // Note TLS 1.2 resumptions with ticket renewal have both |ssl->session| (the |
1783 | | // resumed session) and |hs->new_session| (the session with the new ticket). |
1784 | 0 | bool has_new_session = hs->new_session != nullptr; |
1785 | 0 | if (has_new_session) { |
1786 | | // When False Start is enabled, the handshake reports completion early. The |
1787 | | // caller may then have passed the (then unresuable) |hs->new_session| to |
1788 | | // another thread via |SSL_get0_session| for resumption. To avoid potential |
1789 | | // race conditions in such callers, we duplicate the session before |
1790 | | // clearing |not_resumable|. |
1791 | 0 | ssl->s3->established_session = |
1792 | 0 | SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL); |
1793 | 0 | if (!ssl->s3->established_session) { |
1794 | 0 | return ssl_hs_error; |
1795 | 0 | } |
1796 | | // Renegotiations do not participate in session resumption. |
1797 | 0 | if (!ssl->s3->initial_handshake_complete) { |
1798 | 0 | ssl->s3->established_session->not_resumable = false; |
1799 | 0 | } |
1800 | |
|
1801 | 0 | hs->new_session.reset(); |
1802 | 0 | } else { |
1803 | 0 | assert(ssl->session != nullptr); |
1804 | 0 | ssl->s3->established_session = UpRef(ssl->session); |
1805 | 0 | } |
1806 | | |
1807 | 0 | hs->handshake_finalized = true; |
1808 | 0 | ssl->s3->initial_handshake_complete = true; |
1809 | 0 | if (has_new_session) { |
1810 | 0 | ssl_update_cache(ssl); |
1811 | 0 | } |
1812 | |
|
1813 | 0 | hs->state = state_done; |
1814 | 0 | return ssl_hs_ok; |
1815 | 0 | } |
1816 | | |
1817 | 0 | enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) { |
1818 | 0 | while (hs->state != state_done) { |
1819 | 0 | enum ssl_hs_wait_t ret = ssl_hs_error; |
1820 | 0 | enum ssl_client_hs_state_t state = |
1821 | 0 | static_cast<enum ssl_client_hs_state_t>(hs->state); |
1822 | 0 | switch (state) { |
1823 | 0 | case state_start_connect: |
1824 | 0 | ret = do_start_connect(hs); |
1825 | 0 | break; |
1826 | 0 | case state_enter_early_data: |
1827 | 0 | ret = do_enter_early_data(hs); |
1828 | 0 | break; |
1829 | 0 | case state_early_reverify_server_certificate: |
1830 | 0 | ret = do_early_reverify_server_certificate(hs); |
1831 | 0 | break; |
1832 | 0 | case state_read_server_hello: |
1833 | 0 | ret = do_read_server_hello(hs); |
1834 | 0 | break; |
1835 | 0 | case state_tls13: |
1836 | 0 | ret = do_tls13(hs); |
1837 | 0 | break; |
1838 | 0 | case state_read_server_certificate: |
1839 | 0 | ret = do_read_server_certificate(hs); |
1840 | 0 | break; |
1841 | 0 | case state_read_certificate_status: |
1842 | 0 | ret = do_read_certificate_status(hs); |
1843 | 0 | break; |
1844 | 0 | case state_verify_server_certificate: |
1845 | 0 | ret = do_verify_server_certificate(hs); |
1846 | 0 | break; |
1847 | 0 | case state_reverify_server_certificate: |
1848 | 0 | ret = do_reverify_server_certificate(hs); |
1849 | 0 | break; |
1850 | 0 | case state_read_server_key_exchange: |
1851 | 0 | ret = do_read_server_key_exchange(hs); |
1852 | 0 | break; |
1853 | 0 | case state_read_certificate_request: |
1854 | 0 | ret = do_read_certificate_request(hs); |
1855 | 0 | break; |
1856 | 0 | case state_read_server_hello_done: |
1857 | 0 | ret = do_read_server_hello_done(hs); |
1858 | 0 | break; |
1859 | 0 | case state_send_client_certificate: |
1860 | 0 | ret = do_send_client_certificate(hs); |
1861 | 0 | break; |
1862 | 0 | case state_send_client_key_exchange: |
1863 | 0 | ret = do_send_client_key_exchange(hs); |
1864 | 0 | break; |
1865 | 0 | case state_send_client_certificate_verify: |
1866 | 0 | ret = do_send_client_certificate_verify(hs); |
1867 | 0 | break; |
1868 | 0 | case state_send_client_finished: |
1869 | 0 | ret = do_send_client_finished(hs); |
1870 | 0 | break; |
1871 | 0 | case state_finish_flight: |
1872 | 0 | ret = do_finish_flight(hs); |
1873 | 0 | break; |
1874 | 0 | case state_read_session_ticket: |
1875 | 0 | ret = do_read_session_ticket(hs); |
1876 | 0 | break; |
1877 | 0 | case state_process_change_cipher_spec: |
1878 | 0 | ret = do_process_change_cipher_spec(hs); |
1879 | 0 | break; |
1880 | 0 | case state_read_server_finished: |
1881 | 0 | ret = do_read_server_finished(hs); |
1882 | 0 | break; |
1883 | 0 | case state_finish_client_handshake: |
1884 | 0 | ret = do_finish_client_handshake(hs); |
1885 | 0 | break; |
1886 | 0 | case state_done: |
1887 | 0 | ret = ssl_hs_ok; |
1888 | 0 | break; |
1889 | 0 | } |
1890 | | |
1891 | 0 | if (hs->state != state) { |
1892 | 0 | ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1); |
1893 | 0 | } |
1894 | |
|
1895 | 0 | if (ret != ssl_hs_ok) { |
1896 | 0 | return ret; |
1897 | 0 | } |
1898 | 0 | } |
1899 | | |
1900 | 0 | ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); |
1901 | 0 | return ssl_hs_ok; |
1902 | 0 | } |
1903 | | |
1904 | 0 | const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) { |
1905 | 0 | enum ssl_client_hs_state_t state = |
1906 | 0 | static_cast<enum ssl_client_hs_state_t>(hs->state); |
1907 | 0 | switch (state) { |
1908 | 0 | case state_start_connect: |
1909 | 0 | return "TLS client start_connect"; |
1910 | 0 | case state_enter_early_data: |
1911 | 0 | return "TLS client enter_early_data"; |
1912 | 0 | case state_early_reverify_server_certificate: |
1913 | 0 | return "TLS client early_reverify_server_certificate"; |
1914 | 0 | case state_read_server_hello: |
1915 | 0 | return "TLS client read_server_hello"; |
1916 | 0 | case state_tls13: |
1917 | 0 | return tls13_client_handshake_state(hs); |
1918 | 0 | case state_read_server_certificate: |
1919 | 0 | return "TLS client read_server_certificate"; |
1920 | 0 | case state_read_certificate_status: |
1921 | 0 | return "TLS client read_certificate_status"; |
1922 | 0 | case state_verify_server_certificate: |
1923 | 0 | return "TLS client verify_server_certificate"; |
1924 | 0 | case state_reverify_server_certificate: |
1925 | 0 | return "TLS client reverify_server_certificate"; |
1926 | 0 | case state_read_server_key_exchange: |
1927 | 0 | return "TLS client read_server_key_exchange"; |
1928 | 0 | case state_read_certificate_request: |
1929 | 0 | return "TLS client read_certificate_request"; |
1930 | 0 | case state_read_server_hello_done: |
1931 | 0 | return "TLS client read_server_hello_done"; |
1932 | 0 | case state_send_client_certificate: |
1933 | 0 | return "TLS client send_client_certificate"; |
1934 | 0 | case state_send_client_key_exchange: |
1935 | 0 | return "TLS client send_client_key_exchange"; |
1936 | 0 | case state_send_client_certificate_verify: |
1937 | 0 | return "TLS client send_client_certificate_verify"; |
1938 | 0 | case state_send_client_finished: |
1939 | 0 | return "TLS client send_client_finished"; |
1940 | 0 | case state_finish_flight: |
1941 | 0 | return "TLS client finish_flight"; |
1942 | 0 | case state_read_session_ticket: |
1943 | 0 | return "TLS client read_session_ticket"; |
1944 | 0 | case state_process_change_cipher_spec: |
1945 | 0 | return "TLS client process_change_cipher_spec"; |
1946 | 0 | case state_read_server_finished: |
1947 | 0 | return "TLS client read_server_finished"; |
1948 | 0 | case state_finish_client_handshake: |
1949 | 0 | return "TLS client finish_client_handshake"; |
1950 | 0 | case state_done: |
1951 | 0 | return "TLS client done"; |
1952 | 0 | } |
1953 | | |
1954 | 0 | return "TLS client unknown"; |
1955 | 0 | } |
1956 | | |
1957 | | BSSL_NAMESPACE_END |