Coverage Report

Created: 2023-06-07 07:13

/src/boringssl/crypto/base64/base64.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.] */
56
57
#include <openssl/base64.h>
58
59
#include <assert.h>
60
#include <limits.h>
61
#include <string.h>
62
63
#include "../internal.h"
64
65
66
// constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t|
67
// arguments for a slightly simpler implementation.
68
4.77M
static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) {
69
4.77M
  crypto_word_t aw = a;
70
4.77M
  crypto_word_t bw = b;
71
  // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same
72
  // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1.
73
4.77M
  return constant_time_msb_w(aw - bw);
74
4.77M
}
75
76
// constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max|
77
// and |CONSTTIME_FALSE_8| otherwise.
78
static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min,
79
4.77M
                                               uint8_t max) {
80
4.77M
  a -= min;
81
4.77M
  return constant_time_lt_args_8(a, max - min + 1);
82
4.77M
}
83
84
// Encoding.
85
86
0
static uint8_t conv_bin2ascii(uint8_t a) {
87
  // Since PEM is sometimes used to carry private keys, we encode base64 data
88
  // itself in constant-time.
89
0
  a &= 0x3f;
90
0
  uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/');
91
0
  ret =
92
0
      constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret);
93
0
  ret =
94
0
      constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret);
95
0
  ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret);
96
0
  return ret;
97
0
}
98
99
static_assert(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0,
100
              "data length must be a multiple of base64 chunk size");
101
102
0
int EVP_EncodedLength(size_t *out_len, size_t len) {
103
0
  if (len + 2 < len) {
104
0
    return 0;
105
0
  }
106
0
  len += 2;
107
0
  len /= 3;
108
109
0
  if (((len << 2) >> 2) != len) {
110
0
    return 0;
111
0
  }
112
0
  len <<= 2;
113
114
0
  if (len + 1 < len) {
115
0
    return 0;
116
0
  }
117
0
  len++;
118
119
0
  *out_len = len;
120
0
  return 1;
121
0
}
122
123
0
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) {
124
0
  EVP_ENCODE_CTX *ret = OPENSSL_malloc(sizeof(EVP_ENCODE_CTX));
125
0
  if (ret == NULL) {
126
0
    return NULL;
127
0
  }
128
0
  OPENSSL_memset(ret, 0, sizeof(EVP_ENCODE_CTX));
129
0
  return ret;
130
0
}
131
132
0
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) {
133
0
  OPENSSL_free(ctx);
134
0
}
135
136
0
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) {
137
0
  OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
138
0
}
139
140
void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
141
0
                      const uint8_t *in, size_t in_len) {
142
0
  size_t total = 0;
143
144
0
  *out_len = 0;
145
0
  if (in_len == 0) {
146
0
    return;
147
0
  }
148
149
0
  assert(ctx->data_used < sizeof(ctx->data));
150
151
0
  if (sizeof(ctx->data) - ctx->data_used > in_len) {
152
0
    OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len);
153
0
    ctx->data_used += (unsigned)in_len;
154
0
    return;
155
0
  }
156
157
0
  if (ctx->data_used != 0) {
158
0
    const size_t todo = sizeof(ctx->data) - ctx->data_used;
159
0
    OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo);
160
0
    in += todo;
161
0
    in_len -= todo;
162
163
0
    size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data));
164
0
    ctx->data_used = 0;
165
166
0
    out += encoded;
167
0
    *(out++) = '\n';
168
0
    *out = '\0';
169
170
0
    total = encoded + 1;
171
0
  }
172
173
0
  while (in_len >= sizeof(ctx->data)) {
174
0
    size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data));
175
0
    in += sizeof(ctx->data);
176
0
    in_len -= sizeof(ctx->data);
177
178
0
    out += encoded;
179
0
    *(out++) = '\n';
180
0
    *out = '\0';
181
182
0
    if (total + encoded + 1 < total) {
183
0
      *out_len = 0;
184
0
      return;
185
0
    }
186
187
0
    total += encoded + 1;
188
0
  }
189
190
0
  if (in_len != 0) {
191
0
    OPENSSL_memcpy(ctx->data, in, in_len);
192
0
  }
193
194
0
  ctx->data_used = (unsigned)in_len;
195
196
0
  if (total > INT_MAX) {
197
    // We cannot signal an error, but we can at least avoid making *out_len
198
    // negative.
199
0
    total = 0;
200
0
  }
201
0
  *out_len = (int)total;
202
0
}
203
204
0
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
205
0
  if (ctx->data_used == 0) {
206
0
    *out_len = 0;
207
0
    return;
208
0
  }
209
210
0
  size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used);
211
0
  out[encoded++] = '\n';
212
0
  out[encoded] = '\0';
213
0
  ctx->data_used = 0;
214
215
  // ctx->data_used is bounded by sizeof(ctx->data), so this does not
216
  // overflow.
217
0
  assert(encoded <= INT_MAX);
218
0
  *out_len = (int)encoded;
219
0
}
220
221
0
size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
222
0
  uint32_t l;
223
0
  size_t remaining = src_len, ret = 0;
224
225
0
  while (remaining) {
226
0
    if (remaining >= 3) {
227
0
      l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2];
228
0
      *(dst++) = conv_bin2ascii(l >> 18L);
229
0
      *(dst++) = conv_bin2ascii(l >> 12L);
230
0
      *(dst++) = conv_bin2ascii(l >> 6L);
231
0
      *(dst++) = conv_bin2ascii(l);
232
0
      remaining -= 3;
233
0
    } else {
234
0
      l = ((uint32_t)src[0]) << 16L;
235
0
      if (remaining == 2) {
236
0
        l |= ((uint32_t)src[1] << 8L);
237
0
      }
238
239
0
      *(dst++) = conv_bin2ascii(l >> 18L);
240
0
      *(dst++) = conv_bin2ascii(l >> 12L);
241
0
      *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L);
242
0
      *(dst++) = '=';
243
0
      remaining = 0;
244
0
    }
245
0
    ret += 4;
246
0
    src += 3;
247
0
  }
248
249
0
  *dst = '\0';
250
0
  return ret;
251
0
}
252
253
254
// Decoding.
255
256
0
int EVP_DecodedLength(size_t *out_len, size_t len) {
257
0
  if (len % 4 != 0) {
258
0
    return 0;
259
0
  }
260
261
0
  *out_len = (len / 4) * 3;
262
0
  return 1;
263
0
}
264
265
166
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) {
266
166
  OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
267
166
}
268
269
1.59M
static uint8_t base64_ascii_to_bin(uint8_t a) {
270
  // Since PEM is sometimes used to carry private keys, we decode base64 data
271
  // itself in constant-time.
272
1.59M
  const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z');
273
1.59M
  const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z');
274
1.59M
  const uint8_t is_digit = constant_time_in_range_8(a, '0', '9');
275
1.59M
  const uint8_t is_plus = constant_time_eq_8(a, '+');
276
1.59M
  const uint8_t is_slash = constant_time_eq_8(a, '/');
277
1.59M
  const uint8_t is_equals = constant_time_eq_8(a, '=');
278
279
1.59M
  uint8_t ret = 0;
280
1.59M
  ret |= is_upper & (a - 'A');       // [0,26)
281
1.59M
  ret |= is_lower & (a - 'a' + 26);  // [26,52)
282
1.59M
  ret |= is_digit & (a - '0' + 52);  // [52,62)
283
1.59M
  ret |= is_plus & 62;
284
1.59M
  ret |= is_slash & 63;
285
  // Invalid inputs, 'A', and '=' have all been mapped to zero. Map invalid
286
  // inputs to 0xff. Note '=' is padding and handled separately by the caller.
287
1.59M
  const uint8_t is_valid =
288
1.59M
      is_upper | is_lower | is_digit | is_plus | is_slash | is_equals;
289
1.59M
  ret |= ~is_valid;
290
1.59M
  return ret;
291
1.59M
}
292
293
// base64_decode_quad decodes a single “quad” (i.e. four characters) of base64
294
// data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the
295
// number of bytes written, which will be less than three if the quad ended
296
// with padding.  It returns one on success or zero on error.
297
static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes,
298
398k
                              const uint8_t *in) {
299
398k
  const uint8_t a = base64_ascii_to_bin(in[0]);
300
398k
  const uint8_t b = base64_ascii_to_bin(in[1]);
301
398k
  const uint8_t c = base64_ascii_to_bin(in[2]);
302
398k
  const uint8_t d = base64_ascii_to_bin(in[3]);
303
398k
  if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) {
304
60
    return 0;
305
60
  }
306
307
398k
  const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 |
308
398k
                     ((uint32_t)c) << 6 | (uint32_t)d;
309
310
398k
  const unsigned padding_pattern = (in[0] == '=') << 3 |
311
398k
                                   (in[1] == '=') << 2 |
312
398k
                                   (in[2] == '=') << 1 |
313
398k
                                   (in[3] == '=');
314
315
398k
  switch (padding_pattern) {
316
398k
    case 0:
317
      // The common case of no padding.
318
398k
      *out_num_bytes = 3;
319
398k
      out[0] = v >> 16;
320
398k
      out[1] = v >> 8;
321
398k
      out[2] = v;
322
398k
      break;
323
324
4
    case 1:  // xxx=
325
4
      *out_num_bytes = 2;
326
4
      out[0] = v >> 16;
327
4
      out[1] = v >> 8;
328
4
      break;
329
330
10
    case 3:  // xx==
331
10
      *out_num_bytes = 1;
332
10
      out[0] = v >> 16;
333
10
      break;
334
335
7
    default:
336
7
      return 0;
337
398k
  }
338
339
398k
  return 1;
340
398k
}
341
342
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
343
166
                     const uint8_t *in, size_t in_len) {
344
166
  *out_len = 0;
345
346
166
  if (ctx->error_encountered) {
347
0
    return -1;
348
0
  }
349
350
166
  size_t bytes_out = 0, i;
351
1.60M
  for (i = 0; i < in_len; i++) {
352
1.60M
    const char c = in[i];
353
1.60M
    switch (c) {
354
385
      case ' ':
355
630
      case '\t':
356
849
      case '\r':
357
7.42k
      case '\n':
358
7.42k
        continue;
359
1.60M
    }
360
361
1.59M
    if (ctx->eof_seen) {
362
1
      ctx->error_encountered = 1;
363
1
      return -1;
364
1
    }
365
366
1.59M
    ctx->data[ctx->data_used++] = c;
367
1.59M
    if (ctx->data_used == 4) {
368
398k
      size_t num_bytes_resulting;
369
398k
      if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) {
370
67
        ctx->error_encountered = 1;
371
67
        return -1;
372
67
      }
373
374
398k
      ctx->data_used = 0;
375
398k
      bytes_out += num_bytes_resulting;
376
398k
      out += num_bytes_resulting;
377
378
398k
      if (num_bytes_resulting < 3) {
379
14
        ctx->eof_seen = 1;
380
14
      }
381
398k
    }
382
1.59M
  }
383
384
98
  if (bytes_out > INT_MAX) {
385
0
    ctx->error_encountered = 1;
386
0
    *out_len = 0;
387
0
    return -1;
388
0
  }
389
98
  *out_len = (int)bytes_out;
390
391
98
  if (ctx->eof_seen) {
392
13
    return 0;
393
13
  }
394
395
85
  return 1;
396
98
}
397
398
98
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
399
98
  *out_len = 0;
400
98
  if (ctx->error_encountered || ctx->data_used != 0) {
401
43
    return -1;
402
43
  }
403
404
55
  return 1;
405
98
}
406
407
int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out,
408
0
                     const uint8_t *in, size_t in_len) {
409
0
  *out_len = 0;
410
411
0
  if (in_len % 4 != 0) {
412
0
    return 0;
413
0
  }
414
415
0
  size_t max_len;
416
0
  if (!EVP_DecodedLength(&max_len, in_len) ||
417
0
      max_out < max_len) {
418
0
    return 0;
419
0
  }
420
421
0
  size_t i, bytes_out = 0;
422
0
  for (i = 0; i < in_len; i += 4) {
423
0
    size_t num_bytes_resulting;
424
425
0
    if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) {
426
0
      return 0;
427
0
    }
428
429
0
    bytes_out += num_bytes_resulting;
430
0
    out += num_bytes_resulting;
431
0
    if (num_bytes_resulting != 3 && i != in_len - 4) {
432
0
      return 0;
433
0
    }
434
0
  }
435
436
0
  *out_len = bytes_out;
437
0
  return 1;
438
0
}
439
440
0
int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
441
  // Trim spaces and tabs from the beginning of the input.
442
0
  while (src_len > 0) {
443
0
    if (src[0] != ' ' && src[0] != '\t') {
444
0
      break;
445
0
    }
446
447
0
    src++;
448
0
    src_len--;
449
0
  }
450
451
  // Trim newlines, spaces and tabs from the end of the line.
452
0
  while (src_len > 0) {
453
0
    switch (src[src_len-1]) {
454
0
      case ' ':
455
0
      case '\t':
456
0
      case '\r':
457
0
      case '\n':
458
0
        src_len--;
459
0
        continue;
460
0
    }
461
462
0
    break;
463
0
  }
464
465
0
  size_t dst_len;
466
0
  if (!EVP_DecodedLength(&dst_len, src_len) ||
467
0
      dst_len > INT_MAX ||
468
0
      !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) {
469
0
    return -1;
470
0
  }
471
472
  // EVP_DecodeBlock does not take padding into account, so put the
473
  // NULs back in... so the caller can strip them back out.
474
0
  while (dst_len % 3 != 0) {
475
0
    dst[dst_len++] = '\0';
476
0
  }
477
0
  assert(dst_len <= INT_MAX);
478
479
0
  return (int)dst_len;
480
0
}