/src/boringssl/crypto/fipsmodule/ec/p224-64.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2015, Google Inc. |
2 | | * |
3 | | * Permission to use, copy, modify, and/or distribute this software for any |
4 | | * purpose with or without fee is hereby granted, provided that the above |
5 | | * copyright notice and this permission notice appear in all copies. |
6 | | * |
7 | | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | | |
15 | | // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication |
16 | | // |
17 | | // Inspired by Daniel J. Bernstein's public domain nistp224 implementation |
18 | | // and Adam Langley's public domain 64-bit C implementation of curve25519. |
19 | | |
20 | | #include <openssl/base.h> |
21 | | |
22 | | #include <openssl/bn.h> |
23 | | #include <openssl/ec.h> |
24 | | #include <openssl/err.h> |
25 | | #include <openssl/mem.h> |
26 | | |
27 | | #include <string.h> |
28 | | |
29 | | #include "internal.h" |
30 | | #include "../delocate.h" |
31 | | #include "../../internal.h" |
32 | | |
33 | | |
34 | | #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) |
35 | | |
36 | | // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 |
37 | | // using 64-bit coefficients called 'limbs', and sometimes (for multiplication |
38 | | // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + |
39 | | // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb |
40 | | // representation is an 'p224_felem'; a 7-p224_widelimb representation is a |
41 | | // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we |
42 | | // don't always reduce the representations: we ensure that inputs to each |
43 | | // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i < |
44 | | // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients |
45 | | // are then again partially reduced to obtain an p224_felem satisfying a_i < |
46 | | // 2^57. We only reduce to the unique minimal representation at the end of the |
47 | | // computation. |
48 | | |
49 | | typedef uint64_t p224_limb; |
50 | | typedef uint128_t p224_widelimb; |
51 | | |
52 | | typedef p224_limb p224_felem[4]; |
53 | | typedef p224_widelimb p224_widefelem[7]; |
54 | | |
55 | | // Precomputed multiples of the standard generator |
56 | | // Points are given in coordinates (X, Y, Z) where Z normally is 1 |
57 | | // (0 for the point at infinity). |
58 | | // For each field element, slice a_0 is word 0, etc. |
59 | | // |
60 | | // The table has 2 * 16 elements, starting with the following: |
61 | | // index | bits | point |
62 | | // ------+---------+------------------------------ |
63 | | // 0 | 0 0 0 0 | 0G |
64 | | // 1 | 0 0 0 1 | 1G |
65 | | // 2 | 0 0 1 0 | 2^56G |
66 | | // 3 | 0 0 1 1 | (2^56 + 1)G |
67 | | // 4 | 0 1 0 0 | 2^112G |
68 | | // 5 | 0 1 0 1 | (2^112 + 1)G |
69 | | // 6 | 0 1 1 0 | (2^112 + 2^56)G |
70 | | // 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G |
71 | | // 8 | 1 0 0 0 | 2^168G |
72 | | // 9 | 1 0 0 1 | (2^168 + 1)G |
73 | | // 10 | 1 0 1 0 | (2^168 + 2^56)G |
74 | | // 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G |
75 | | // 12 | 1 1 0 0 | (2^168 + 2^112)G |
76 | | // 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G |
77 | | // 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G |
78 | | // 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G |
79 | | // followed by a copy of this with each element multiplied by 2^28. |
80 | | // |
81 | | // The reason for this is so that we can clock bits into four different |
82 | | // locations when doing simple scalar multiplies against the base point, |
83 | | // and then another four locations using the second 16 elements. |
84 | | static const p224_felem g_p224_pre_comp[2][16][3] = { |
85 | | {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, |
86 | | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, |
87 | | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, |
88 | | {1, 0, 0, 0}}, |
89 | | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, |
90 | | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, |
91 | | {1, 0, 0, 0}}, |
92 | | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, |
93 | | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, |
94 | | {1, 0, 0, 0}}, |
95 | | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, |
96 | | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, |
97 | | {1, 0, 0, 0}}, |
98 | | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, |
99 | | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, |
100 | | {1, 0, 0, 0}}, |
101 | | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, |
102 | | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, |
103 | | {1, 0, 0, 0}}, |
104 | | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, |
105 | | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, |
106 | | {1, 0, 0, 0}}, |
107 | | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, |
108 | | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, |
109 | | {1, 0, 0, 0}}, |
110 | | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, |
111 | | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, |
112 | | {1, 0, 0, 0}}, |
113 | | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, |
114 | | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, |
115 | | {1, 0, 0, 0}}, |
116 | | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, |
117 | | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, |
118 | | {1, 0, 0, 0}}, |
119 | | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, |
120 | | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, |
121 | | {1, 0, 0, 0}}, |
122 | | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, |
123 | | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, |
124 | | {1, 0, 0, 0}}, |
125 | | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, |
126 | | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, |
127 | | {1, 0, 0, 0}}, |
128 | | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, |
129 | | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, |
130 | | {1, 0, 0, 0}}}, |
131 | | {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, |
132 | | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, |
133 | | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, |
134 | | {1, 0, 0, 0}}, |
135 | | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, |
136 | | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, |
137 | | {1, 0, 0, 0}}, |
138 | | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, |
139 | | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, |
140 | | {1, 0, 0, 0}}, |
141 | | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, |
142 | | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, |
143 | | {1, 0, 0, 0}}, |
144 | | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, |
145 | | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, |
146 | | {1, 0, 0, 0}}, |
147 | | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, |
148 | | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, |
149 | | {1, 0, 0, 0}}, |
150 | | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, |
151 | | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, |
152 | | {1, 0, 0, 0}}, |
153 | | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, |
154 | | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, |
155 | | {1, 0, 0, 0}}, |
156 | | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, |
157 | | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, |
158 | | {1, 0, 0, 0}}, |
159 | | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, |
160 | | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, |
161 | | {1, 0, 0, 0}}, |
162 | | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, |
163 | | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, |
164 | | {1, 0, 0, 0}}, |
165 | | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, |
166 | | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, |
167 | | {1, 0, 0, 0}}, |
168 | | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, |
169 | | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, |
170 | | {1, 0, 0, 0}}, |
171 | | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, |
172 | | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, |
173 | | {1, 0, 0, 0}}, |
174 | | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, |
175 | | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, |
176 | | {1, 0, 0, 0}}}}; |
177 | | |
178 | | |
179 | | // Helper functions to convert field elements to/from internal representation |
180 | | |
181 | 48.6k | static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) { |
182 | | // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM| |
183 | | // uses four 64-bit words. (The top-most word only has 32 bits.) |
184 | 48.6k | out[0] = in->words[0] & 0x00ffffffffffffff; |
185 | 48.6k | out[1] = ((in->words[0] >> 56) | (in->words[1] << 8)) & 0x00ffffffffffffff; |
186 | 48.6k | out[2] = ((in->words[1] >> 48) | (in->words[2] << 16)) & 0x00ffffffffffffff; |
187 | 48.6k | out[3] = ((in->words[2] >> 40) | (in->words[3] << 24)) & 0x00ffffffffffffff; |
188 | 48.6k | } |
189 | | |
190 | | // Requires 0 <= in < 2*p (always call p224_felem_reduce first) |
191 | 36.5k | static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) { |
192 | | // Reduce to unique minimal representation. |
193 | 36.5k | static const int64_t two56 = ((p224_limb)1) << 56; |
194 | | // 0 <= in < 2*p, p = 2^224 - 2^96 + 1 |
195 | | // if in > p , reduce in = in - 2^224 + 2^96 - 1 |
196 | 36.5k | int64_t tmp[4], a; |
197 | 36.5k | tmp[0] = in[0]; |
198 | 36.5k | tmp[1] = in[1]; |
199 | 36.5k | tmp[2] = in[2]; |
200 | 36.5k | tmp[3] = in[3]; |
201 | | // Case 1: a = 1 iff in >= 2^224 |
202 | 36.5k | a = (in[3] >> 56); |
203 | 36.5k | tmp[0] -= a; |
204 | 36.5k | tmp[1] += a << 40; |
205 | 36.5k | tmp[3] &= 0x00ffffffffffffff; |
206 | | // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and |
207 | | // the lower part is non-zero |
208 | 36.5k | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | |
209 | 36.5k | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); |
210 | 36.5k | a &= 0x00ffffffffffffff; |
211 | | // turn a into an all-one mask (if a = 0) or an all-zero mask |
212 | 36.5k | a = (a - 1) >> 63; |
213 | | // subtract 2^224 - 2^96 + 1 if a is all-one |
214 | 36.5k | tmp[3] &= a ^ 0xffffffffffffffff; |
215 | 36.5k | tmp[2] &= a ^ 0xffffffffffffffff; |
216 | 36.5k | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; |
217 | 36.5k | tmp[0] -= 1 & a; |
218 | | |
219 | | // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must |
220 | | // be non-zero, so we only need one step |
221 | 36.5k | a = tmp[0] >> 63; |
222 | 36.5k | tmp[0] += two56 & a; |
223 | 36.5k | tmp[1] -= 1 & a; |
224 | | |
225 | | // carry 1 -> 2 -> 3 |
226 | 36.5k | tmp[2] += tmp[1] >> 56; |
227 | 36.5k | tmp[1] &= 0x00ffffffffffffff; |
228 | | |
229 | 36.5k | tmp[3] += tmp[2] >> 56; |
230 | 36.5k | tmp[2] &= 0x00ffffffffffffff; |
231 | | |
232 | | // Now 0 <= tmp < p |
233 | 36.5k | p224_felem tmp2; |
234 | 36.5k | tmp2[0] = tmp[0]; |
235 | 36.5k | tmp2[1] = tmp[1]; |
236 | 36.5k | tmp2[2] = tmp[2]; |
237 | 36.5k | tmp2[3] = tmp[3]; |
238 | | |
239 | | // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM| |
240 | | // uses four 64-bit words. (The top-most word only has 32 bits.) |
241 | 36.5k | out->words[0] = tmp2[0] | (tmp2[1] << 56); |
242 | 36.5k | out->words[1] = (tmp2[1] >> 8) | (tmp2[2] << 48); |
243 | 36.5k | out->words[2] = (tmp2[2] >> 16) | (tmp2[3] << 40); |
244 | 36.5k | out->words[3] = tmp2[3] >> 24; |
245 | 36.5k | } |
246 | | |
247 | | |
248 | | // Field operations, using the internal representation of field elements. |
249 | | // NB! These operations are specific to our point multiplication and cannot be |
250 | | // expected to be correct in general - e.g., multiplication with a large scalar |
251 | | // will cause an overflow. |
252 | | |
253 | 926k | static void p224_felem_assign(p224_felem out, const p224_felem in) { |
254 | 926k | out[0] = in[0]; |
255 | 926k | out[1] = in[1]; |
256 | 926k | out[2] = in[2]; |
257 | 926k | out[3] = in[3]; |
258 | 926k | } |
259 | | |
260 | | // Sum two field elements: out += in |
261 | 193k | static void p224_felem_sum(p224_felem out, const p224_felem in) { |
262 | 193k | out[0] += in[0]; |
263 | 193k | out[1] += in[1]; |
264 | 193k | out[2] += in[2]; |
265 | 193k | out[3] += in[3]; |
266 | 193k | } |
267 | | |
268 | | // Subtract field elements: out -= in |
269 | | // Assumes in[i] < 2^57 |
270 | 215k | static void p224_felem_diff(p224_felem out, const p224_felem in) { |
271 | 215k | static const p224_limb two58p2 = |
272 | 215k | (((p224_limb)1) << 58) + (((p224_limb)1) << 2); |
273 | 215k | static const p224_limb two58m2 = |
274 | 215k | (((p224_limb)1) << 58) - (((p224_limb)1) << 2); |
275 | 215k | static const p224_limb two58m42m2 = |
276 | 215k | (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2); |
277 | | |
278 | | // Add 0 mod 2^224-2^96+1 to ensure out > in |
279 | 215k | out[0] += two58p2; |
280 | 215k | out[1] += two58m42m2; |
281 | 215k | out[2] += two58m2; |
282 | 215k | out[3] += two58m2; |
283 | | |
284 | 215k | out[0] -= in[0]; |
285 | 215k | out[1] -= in[1]; |
286 | 215k | out[2] -= in[2]; |
287 | 215k | out[3] -= in[3]; |
288 | 215k | } |
289 | | |
290 | | // Subtract in unreduced 128-bit mode: out -= in |
291 | | // Assumes in[i] < 2^119 |
292 | 150k | static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) { |
293 | 150k | static const p224_widelimb two120 = ((p224_widelimb)1) << 120; |
294 | 150k | static const p224_widelimb two120m64 = |
295 | 150k | (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64); |
296 | 150k | static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) - |
297 | 150k | (((p224_widelimb)1) << 104) - |
298 | 150k | (((p224_widelimb)1) << 64); |
299 | | |
300 | | // Add 0 mod 2^224-2^96+1 to ensure out > in |
301 | 150k | out[0] += two120; |
302 | 150k | out[1] += two120m64; |
303 | 150k | out[2] += two120m64; |
304 | 150k | out[3] += two120; |
305 | 150k | out[4] += two120m104m64; |
306 | 150k | out[5] += two120m64; |
307 | 150k | out[6] += two120m64; |
308 | | |
309 | 150k | out[0] -= in[0]; |
310 | 150k | out[1] -= in[1]; |
311 | 150k | out[2] -= in[2]; |
312 | 150k | out[3] -= in[3]; |
313 | 150k | out[4] -= in[4]; |
314 | 150k | out[5] -= in[5]; |
315 | 150k | out[6] -= in[6]; |
316 | 150k | } |
317 | | |
318 | | // Subtract in mixed mode: out128 -= in64 |
319 | | // in[i] < 2^63 |
320 | 475k | static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) { |
321 | 475k | static const p224_widelimb two64p8 = |
322 | 475k | (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8); |
323 | 475k | static const p224_widelimb two64m8 = |
324 | 475k | (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8); |
325 | 475k | static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) - |
326 | 475k | (((p224_widelimb)1) << 48) - |
327 | 475k | (((p224_widelimb)1) << 8); |
328 | | |
329 | | // Add 0 mod 2^224-2^96+1 to ensure out > in |
330 | 475k | out[0] += two64p8; |
331 | 475k | out[1] += two64m48m8; |
332 | 475k | out[2] += two64m8; |
333 | 475k | out[3] += two64m8; |
334 | | |
335 | 475k | out[0] -= in[0]; |
336 | 475k | out[1] -= in[1]; |
337 | 475k | out[2] -= in[2]; |
338 | 475k | out[3] -= in[3]; |
339 | 475k | } |
340 | | |
341 | | // Multiply a field element by a scalar: out = out * scalar |
342 | | // The scalars we actually use are small, so results fit without overflow |
343 | 279k | static void p224_felem_scalar(p224_felem out, const p224_limb scalar) { |
344 | 279k | out[0] *= scalar; |
345 | 279k | out[1] *= scalar; |
346 | 279k | out[2] *= scalar; |
347 | 279k | out[3] *= scalar; |
348 | 279k | } |
349 | | |
350 | | // Multiply an unreduced field element by a scalar: out = out * scalar |
351 | | // The scalars we actually use are small, so results fit without overflow |
352 | | static void p224_widefelem_scalar(p224_widefelem out, |
353 | 64.5k | const p224_widelimb scalar) { |
354 | 64.5k | out[0] *= scalar; |
355 | 64.5k | out[1] *= scalar; |
356 | 64.5k | out[2] *= scalar; |
357 | 64.5k | out[3] *= scalar; |
358 | 64.5k | out[4] *= scalar; |
359 | 64.5k | out[5] *= scalar; |
360 | 64.5k | out[6] *= scalar; |
361 | 64.5k | } |
362 | | |
363 | | // Square a field element: out = in^2 |
364 | 722k | static void p224_felem_square(p224_widefelem out, const p224_felem in) { |
365 | 722k | p224_limb tmp0, tmp1, tmp2; |
366 | 722k | tmp0 = 2 * in[0]; |
367 | 722k | tmp1 = 2 * in[1]; |
368 | 722k | tmp2 = 2 * in[2]; |
369 | 722k | out[0] = ((p224_widelimb)in[0]) * in[0]; |
370 | 722k | out[1] = ((p224_widelimb)in[0]) * tmp1; |
371 | 722k | out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1]; |
372 | 722k | out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2; |
373 | 722k | out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2]; |
374 | 722k | out[5] = ((p224_widelimb)in[3]) * tmp2; |
375 | 722k | out[6] = ((p224_widelimb)in[3]) * in[3]; |
376 | 722k | } |
377 | | |
378 | | // Multiply two field elements: out = in1 * in2 |
379 | | static void p224_felem_mul(p224_widefelem out, const p224_felem in1, |
380 | 930k | const p224_felem in2) { |
381 | 930k | out[0] = ((p224_widelimb)in1[0]) * in2[0]; |
382 | 930k | out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0]; |
383 | 930k | out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] + |
384 | 930k | ((p224_widelimb)in1[2]) * in2[0]; |
385 | 930k | out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] + |
386 | 930k | ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0]; |
387 | 930k | out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] + |
388 | 930k | ((p224_widelimb)in1[3]) * in2[1]; |
389 | 930k | out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2]; |
390 | 930k | out[6] = ((p224_widelimb)in1[3]) * in2[3]; |
391 | 930k | } |
392 | | |
393 | | // Reduce seven 128-bit coefficients to four 64-bit coefficients. |
394 | | // Requires in[i] < 2^126, |
395 | | // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
396 | 1.50M | static void p224_felem_reduce(p224_felem out, const p224_widefelem in) { |
397 | 1.50M | static const p224_widelimb two127p15 = |
398 | 1.50M | (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15); |
399 | 1.50M | static const p224_widelimb two127m71 = |
400 | 1.50M | (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71); |
401 | 1.50M | static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) - |
402 | 1.50M | (((p224_widelimb)1) << 71) - |
403 | 1.50M | (((p224_widelimb)1) << 55); |
404 | 1.50M | p224_widelimb output[5]; |
405 | | |
406 | | // Add 0 mod 2^224-2^96+1 to ensure all differences are positive |
407 | 1.50M | output[0] = in[0] + two127p15; |
408 | 1.50M | output[1] = in[1] + two127m71m55; |
409 | 1.50M | output[2] = in[2] + two127m71; |
410 | 1.50M | output[3] = in[3]; |
411 | 1.50M | output[4] = in[4]; |
412 | | |
413 | | // Eliminate in[4], in[5], in[6] |
414 | 1.50M | output[4] += in[6] >> 16; |
415 | 1.50M | output[3] += (in[6] & 0xffff) << 40; |
416 | 1.50M | output[2] -= in[6]; |
417 | | |
418 | 1.50M | output[3] += in[5] >> 16; |
419 | 1.50M | output[2] += (in[5] & 0xffff) << 40; |
420 | 1.50M | output[1] -= in[5]; |
421 | | |
422 | 1.50M | output[2] += output[4] >> 16; |
423 | 1.50M | output[1] += (output[4] & 0xffff) << 40; |
424 | 1.50M | output[0] -= output[4]; |
425 | | |
426 | | // Carry 2 -> 3 -> 4 |
427 | 1.50M | output[3] += output[2] >> 56; |
428 | 1.50M | output[2] &= 0x00ffffffffffffff; |
429 | | |
430 | 1.50M | output[4] = output[3] >> 56; |
431 | 1.50M | output[3] &= 0x00ffffffffffffff; |
432 | | |
433 | | // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 |
434 | | |
435 | | // Eliminate output[4] |
436 | 1.50M | output[2] += output[4] >> 16; |
437 | | // output[2] < 2^56 + 2^56 = 2^57 |
438 | 1.50M | output[1] += (output[4] & 0xffff) << 40; |
439 | 1.50M | output[0] -= output[4]; |
440 | | |
441 | | // Carry 0 -> 1 -> 2 -> 3 |
442 | 1.50M | output[1] += output[0] >> 56; |
443 | 1.50M | out[0] = output[0] & 0x00ffffffffffffff; |
444 | | |
445 | 1.50M | output[2] += output[1] >> 56; |
446 | | // output[2] < 2^57 + 2^72 |
447 | 1.50M | out[1] = output[1] & 0x00ffffffffffffff; |
448 | 1.50M | output[3] += output[2] >> 56; |
449 | | // output[3] <= 2^56 + 2^16 |
450 | 1.50M | out[2] = output[2] & 0x00ffffffffffffff; |
451 | | |
452 | | // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, |
453 | | // out[3] <= 2^56 + 2^16 (due to final carry), |
454 | | // so out < 2*p |
455 | 1.50M | out[3] = output[3]; |
456 | 1.50M | } |
457 | | |
458 | | // Get negative value: out = -in |
459 | | // Requires in[i] < 2^63, |
460 | | // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
461 | 2.79k | static void p224_felem_neg(p224_felem out, const p224_felem in) { |
462 | 2.79k | p224_widefelem tmp = {0}; |
463 | 2.79k | p224_felem_diff_128_64(tmp, in); |
464 | 2.79k | p224_felem_reduce(out, tmp); |
465 | 2.79k | } |
466 | | |
467 | | // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field |
468 | | // elements are reduced to in < 2^225, so we only need to check three cases: 0, |
469 | | // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 |
470 | 344k | static p224_limb p224_felem_is_zero(const p224_felem in) { |
471 | 344k | p224_limb zero = in[0] | in[1] | in[2] | in[3]; |
472 | 344k | zero = (((int64_t)(zero)-1) >> 63) & 1; |
473 | | |
474 | 344k | p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | |
475 | 344k | (in[2] ^ 0x00ffffffffffffff) | |
476 | 344k | (in[3] ^ 0x00ffffffffffffff); |
477 | 344k | two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1; |
478 | 344k | p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | |
479 | 344k | (in[2] ^ 0x00ffffffffffffff) | |
480 | 344k | (in[3] ^ 0x01ffffffffffffff); |
481 | 344k | two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1; |
482 | 344k | return (zero | two224m96p1 | two225m97p2); |
483 | 344k | } |
484 | | |
485 | | // Invert a field element |
486 | | // Computation chain copied from djb's code |
487 | 533 | static void p224_felem_inv(p224_felem out, const p224_felem in) { |
488 | 533 | p224_felem ftmp, ftmp2, ftmp3, ftmp4; |
489 | 533 | p224_widefelem tmp; |
490 | | |
491 | 533 | p224_felem_square(tmp, in); |
492 | 533 | p224_felem_reduce(ftmp, tmp); // 2 |
493 | 533 | p224_felem_mul(tmp, in, ftmp); |
494 | 533 | p224_felem_reduce(ftmp, tmp); // 2^2 - 1 |
495 | 533 | p224_felem_square(tmp, ftmp); |
496 | 533 | p224_felem_reduce(ftmp, tmp); // 2^3 - 2 |
497 | 533 | p224_felem_mul(tmp, in, ftmp); |
498 | 533 | p224_felem_reduce(ftmp, tmp); // 2^3 - 1 |
499 | 533 | p224_felem_square(tmp, ftmp); |
500 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^4 - 2 |
501 | 533 | p224_felem_square(tmp, ftmp2); |
502 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^5 - 4 |
503 | 533 | p224_felem_square(tmp, ftmp2); |
504 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^6 - 8 |
505 | 533 | p224_felem_mul(tmp, ftmp2, ftmp); |
506 | 533 | p224_felem_reduce(ftmp, tmp); // 2^6 - 1 |
507 | 533 | p224_felem_square(tmp, ftmp); |
508 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^7 - 2 |
509 | 3.19k | for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6 |
510 | 2.66k | p224_felem_square(tmp, ftmp2); |
511 | 2.66k | p224_felem_reduce(ftmp2, tmp); |
512 | 2.66k | } |
513 | 533 | p224_felem_mul(tmp, ftmp2, ftmp); |
514 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^12 - 1 |
515 | 533 | p224_felem_square(tmp, ftmp2); |
516 | 533 | p224_felem_reduce(ftmp3, tmp); // 2^13 - 2 |
517 | 6.39k | for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12 |
518 | 5.86k | p224_felem_square(tmp, ftmp3); |
519 | 5.86k | p224_felem_reduce(ftmp3, tmp); |
520 | 5.86k | } |
521 | 533 | p224_felem_mul(tmp, ftmp3, ftmp2); |
522 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^24 - 1 |
523 | 533 | p224_felem_square(tmp, ftmp2); |
524 | 533 | p224_felem_reduce(ftmp3, tmp); // 2^25 - 2 |
525 | 12.7k | for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24 |
526 | 12.2k | p224_felem_square(tmp, ftmp3); |
527 | 12.2k | p224_felem_reduce(ftmp3, tmp); |
528 | 12.2k | } |
529 | 533 | p224_felem_mul(tmp, ftmp3, ftmp2); |
530 | 533 | p224_felem_reduce(ftmp3, tmp); // 2^48 - 1 |
531 | 533 | p224_felem_square(tmp, ftmp3); |
532 | 533 | p224_felem_reduce(ftmp4, tmp); // 2^49 - 2 |
533 | 25.5k | for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48 |
534 | 25.0k | p224_felem_square(tmp, ftmp4); |
535 | 25.0k | p224_felem_reduce(ftmp4, tmp); |
536 | 25.0k | } |
537 | 533 | p224_felem_mul(tmp, ftmp3, ftmp4); |
538 | 533 | p224_felem_reduce(ftmp3, tmp); // 2^96 - 1 |
539 | 533 | p224_felem_square(tmp, ftmp3); |
540 | 533 | p224_felem_reduce(ftmp4, tmp); // 2^97 - 2 |
541 | 12.7k | for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24 |
542 | 12.2k | p224_felem_square(tmp, ftmp4); |
543 | 12.2k | p224_felem_reduce(ftmp4, tmp); |
544 | 12.2k | } |
545 | 533 | p224_felem_mul(tmp, ftmp2, ftmp4); |
546 | 533 | p224_felem_reduce(ftmp2, tmp); // 2^120 - 1 |
547 | 3.73k | for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6 |
548 | 3.19k | p224_felem_square(tmp, ftmp2); |
549 | 3.19k | p224_felem_reduce(ftmp2, tmp); |
550 | 3.19k | } |
551 | 533 | p224_felem_mul(tmp, ftmp2, ftmp); |
552 | 533 | p224_felem_reduce(ftmp, tmp); // 2^126 - 1 |
553 | 533 | p224_felem_square(tmp, ftmp); |
554 | 533 | p224_felem_reduce(ftmp, tmp); // 2^127 - 2 |
555 | 533 | p224_felem_mul(tmp, ftmp, in); |
556 | 533 | p224_felem_reduce(ftmp, tmp); // 2^127 - 1 |
557 | 52.2k | for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97 |
558 | 51.7k | p224_felem_square(tmp, ftmp); |
559 | 51.7k | p224_felem_reduce(ftmp, tmp); |
560 | 51.7k | } |
561 | 533 | p224_felem_mul(tmp, ftmp, ftmp3); |
562 | 533 | p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1 |
563 | 533 | } |
564 | | |
565 | | // Copy in constant time: |
566 | | // if icopy == 1, copy in to out, |
567 | | // if icopy == 0, copy out to itself. |
568 | | static void p224_copy_conditional(p224_felem out, const p224_felem in, |
569 | 516k | p224_limb icopy) { |
570 | | // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one |
571 | 516k | const p224_limb copy = -icopy; |
572 | 2.58M | for (size_t i = 0; i < 4; ++i) { |
573 | 2.06M | const p224_limb tmp = copy & (in[i] ^ out[i]); |
574 | 2.06M | out[i] ^= tmp; |
575 | 2.06M | } |
576 | 516k | } |
577 | | |
578 | | // ELLIPTIC CURVE POINT OPERATIONS |
579 | | // |
580 | | // Points are represented in Jacobian projective coordinates: |
581 | | // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), |
582 | | // or to the point at infinity if Z == 0. |
583 | | |
584 | | // Double an elliptic curve point: |
585 | | // (X', Y', Z') = 2 * (X, Y, Z), where |
586 | | // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 |
587 | | // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 |
588 | | // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z |
589 | | // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, |
590 | | // while x_out == y_in is not (maybe this works, but it's not tested). |
591 | | static void p224_point_double(p224_felem x_out, p224_felem y_out, |
592 | | p224_felem z_out, const p224_felem x_in, |
593 | 64.5k | const p224_felem y_in, const p224_felem z_in) { |
594 | 64.5k | p224_widefelem tmp, tmp2; |
595 | 64.5k | p224_felem delta, gamma, beta, alpha, ftmp, ftmp2; |
596 | | |
597 | 64.5k | p224_felem_assign(ftmp, x_in); |
598 | 64.5k | p224_felem_assign(ftmp2, x_in); |
599 | | |
600 | | // delta = z^2 |
601 | 64.5k | p224_felem_square(tmp, z_in); |
602 | 64.5k | p224_felem_reduce(delta, tmp); |
603 | | |
604 | | // gamma = y^2 |
605 | 64.5k | p224_felem_square(tmp, y_in); |
606 | 64.5k | p224_felem_reduce(gamma, tmp); |
607 | | |
608 | | // beta = x*gamma |
609 | 64.5k | p224_felem_mul(tmp, x_in, gamma); |
610 | 64.5k | p224_felem_reduce(beta, tmp); |
611 | | |
612 | | // alpha = 3*(x-delta)*(x+delta) |
613 | 64.5k | p224_felem_diff(ftmp, delta); |
614 | | // ftmp[i] < 2^57 + 2^58 + 2 < 2^59 |
615 | 64.5k | p224_felem_sum(ftmp2, delta); |
616 | | // ftmp2[i] < 2^57 + 2^57 = 2^58 |
617 | 64.5k | p224_felem_scalar(ftmp2, 3); |
618 | | // ftmp2[i] < 3 * 2^58 < 2^60 |
619 | 64.5k | p224_felem_mul(tmp, ftmp, ftmp2); |
620 | | // tmp[i] < 2^60 * 2^59 * 4 = 2^121 |
621 | 64.5k | p224_felem_reduce(alpha, tmp); |
622 | | |
623 | | // x' = alpha^2 - 8*beta |
624 | 64.5k | p224_felem_square(tmp, alpha); |
625 | | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
626 | 64.5k | p224_felem_assign(ftmp, beta); |
627 | 64.5k | p224_felem_scalar(ftmp, 8); |
628 | | // ftmp[i] < 8 * 2^57 = 2^60 |
629 | 64.5k | p224_felem_diff_128_64(tmp, ftmp); |
630 | | // tmp[i] < 2^116 + 2^64 + 8 < 2^117 |
631 | 64.5k | p224_felem_reduce(x_out, tmp); |
632 | | |
633 | | // z' = (y + z)^2 - gamma - delta |
634 | 64.5k | p224_felem_sum(delta, gamma); |
635 | | // delta[i] < 2^57 + 2^57 = 2^58 |
636 | 64.5k | p224_felem_assign(ftmp, y_in); |
637 | 64.5k | p224_felem_sum(ftmp, z_in); |
638 | | // ftmp[i] < 2^57 + 2^57 = 2^58 |
639 | 64.5k | p224_felem_square(tmp, ftmp); |
640 | | // tmp[i] < 4 * 2^58 * 2^58 = 2^118 |
641 | 64.5k | p224_felem_diff_128_64(tmp, delta); |
642 | | // tmp[i] < 2^118 + 2^64 + 8 < 2^119 |
643 | 64.5k | p224_felem_reduce(z_out, tmp); |
644 | | |
645 | | // y' = alpha*(4*beta - x') - 8*gamma^2 |
646 | 64.5k | p224_felem_scalar(beta, 4); |
647 | | // beta[i] < 4 * 2^57 = 2^59 |
648 | 64.5k | p224_felem_diff(beta, x_out); |
649 | | // beta[i] < 2^59 + 2^58 + 2 < 2^60 |
650 | 64.5k | p224_felem_mul(tmp, alpha, beta); |
651 | | // tmp[i] < 4 * 2^57 * 2^60 = 2^119 |
652 | 64.5k | p224_felem_square(tmp2, gamma); |
653 | | // tmp2[i] < 4 * 2^57 * 2^57 = 2^116 |
654 | 64.5k | p224_widefelem_scalar(tmp2, 8); |
655 | | // tmp2[i] < 8 * 2^116 = 2^119 |
656 | 64.5k | p224_widefelem_diff(tmp, tmp2); |
657 | | // tmp[i] < 2^119 + 2^120 < 2^121 |
658 | 64.5k | p224_felem_reduce(y_out, tmp); |
659 | 64.5k | } |
660 | | |
661 | | // Add two elliptic curve points: |
662 | | // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where |
663 | | // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - |
664 | | // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 |
665 | | // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * |
666 | | // X_1)^2 - X_3) - |
667 | | // Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 |
668 | | // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) |
669 | | // |
670 | | // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. |
671 | | |
672 | | // This function is not entirely constant-time: it includes a branch for |
673 | | // checking whether the two input points are equal, (while not equal to the |
674 | | // point at infinity). This case never happens during single point |
675 | | // multiplication, so there is no timing leak for ECDH or ECDSA signing. |
676 | | static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3, |
677 | | const p224_felem x1, const p224_felem y1, |
678 | | const p224_felem z1, const int mixed, |
679 | | const p224_felem x2, const p224_felem y2, |
680 | 86.0k | const p224_felem z2) { |
681 | 86.0k | p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; |
682 | 86.0k | p224_widefelem tmp, tmp2; |
683 | 86.0k | p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal; |
684 | | |
685 | 86.0k | if (!mixed) { |
686 | | // ftmp2 = z2^2 |
687 | 6.47k | p224_felem_square(tmp, z2); |
688 | 6.47k | p224_felem_reduce(ftmp2, tmp); |
689 | | |
690 | | // ftmp4 = z2^3 |
691 | 6.47k | p224_felem_mul(tmp, ftmp2, z2); |
692 | 6.47k | p224_felem_reduce(ftmp4, tmp); |
693 | | |
694 | | // ftmp4 = z2^3*y1 |
695 | 6.47k | p224_felem_mul(tmp2, ftmp4, y1); |
696 | 6.47k | p224_felem_reduce(ftmp4, tmp2); |
697 | | |
698 | | // ftmp2 = z2^2*x1 |
699 | 6.47k | p224_felem_mul(tmp2, ftmp2, x1); |
700 | 6.47k | p224_felem_reduce(ftmp2, tmp2); |
701 | 79.5k | } else { |
702 | | // We'll assume z2 = 1 (special case z2 = 0 is handled later) |
703 | | |
704 | | // ftmp4 = z2^3*y1 |
705 | 79.5k | p224_felem_assign(ftmp4, y1); |
706 | | |
707 | | // ftmp2 = z2^2*x1 |
708 | 79.5k | p224_felem_assign(ftmp2, x1); |
709 | 79.5k | } |
710 | | |
711 | | // ftmp = z1^2 |
712 | 86.0k | p224_felem_square(tmp, z1); |
713 | 86.0k | p224_felem_reduce(ftmp, tmp); |
714 | | |
715 | | // ftmp3 = z1^3 |
716 | 86.0k | p224_felem_mul(tmp, ftmp, z1); |
717 | 86.0k | p224_felem_reduce(ftmp3, tmp); |
718 | | |
719 | | // tmp = z1^3*y2 |
720 | 86.0k | p224_felem_mul(tmp, ftmp3, y2); |
721 | | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
722 | | |
723 | | // ftmp3 = z1^3*y2 - z2^3*y1 |
724 | 86.0k | p224_felem_diff_128_64(tmp, ftmp4); |
725 | | // tmp[i] < 2^116 + 2^64 + 8 < 2^117 |
726 | 86.0k | p224_felem_reduce(ftmp3, tmp); |
727 | | |
728 | | // tmp = z1^2*x2 |
729 | 86.0k | p224_felem_mul(tmp, ftmp, x2); |
730 | | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
731 | | |
732 | | // ftmp = z1^2*x2 - z2^2*x1 |
733 | 86.0k | p224_felem_diff_128_64(tmp, ftmp2); |
734 | | // tmp[i] < 2^116 + 2^64 + 8 < 2^117 |
735 | 86.0k | p224_felem_reduce(ftmp, tmp); |
736 | | |
737 | | // The formulae are incorrect if the points are equal, so we check for this |
738 | | // and do doubling if this happens. |
739 | 86.0k | x_equal = p224_felem_is_zero(ftmp); |
740 | 86.0k | y_equal = p224_felem_is_zero(ftmp3); |
741 | 86.0k | z1_is_zero = p224_felem_is_zero(z1); |
742 | 86.0k | z2_is_zero = p224_felem_is_zero(z2); |
743 | | // In affine coordinates, (X_1, Y_1) == (X_2, Y_2) |
744 | 86.0k | p224_limb is_nontrivial_double = |
745 | 86.0k | x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero); |
746 | 86.0k | if (constant_time_declassify_w(is_nontrivial_double)) { |
747 | 0 | p224_point_double(x3, y3, z3, x1, y1, z1); |
748 | 0 | return; |
749 | 0 | } |
750 | | |
751 | | // ftmp5 = z1*z2 |
752 | 86.0k | if (!mixed) { |
753 | 6.47k | p224_felem_mul(tmp, z1, z2); |
754 | 6.47k | p224_felem_reduce(ftmp5, tmp); |
755 | 79.5k | } else { |
756 | | // special case z2 = 0 is handled later |
757 | 79.5k | p224_felem_assign(ftmp5, z1); |
758 | 79.5k | } |
759 | | |
760 | | // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) |
761 | 86.0k | p224_felem_mul(tmp, ftmp, ftmp5); |
762 | 86.0k | p224_felem_reduce(z_out, tmp); |
763 | | |
764 | | // ftmp = (z1^2*x2 - z2^2*x1)^2 |
765 | 86.0k | p224_felem_assign(ftmp5, ftmp); |
766 | 86.0k | p224_felem_square(tmp, ftmp); |
767 | 86.0k | p224_felem_reduce(ftmp, tmp); |
768 | | |
769 | | // ftmp5 = (z1^2*x2 - z2^2*x1)^3 |
770 | 86.0k | p224_felem_mul(tmp, ftmp, ftmp5); |
771 | 86.0k | p224_felem_reduce(ftmp5, tmp); |
772 | | |
773 | | // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
774 | 86.0k | p224_felem_mul(tmp, ftmp2, ftmp); |
775 | 86.0k | p224_felem_reduce(ftmp2, tmp); |
776 | | |
777 | | // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 |
778 | 86.0k | p224_felem_mul(tmp, ftmp4, ftmp5); |
779 | | // tmp[i] < 4 * 2^57 * 2^57 = 2^116 |
780 | | |
781 | | // tmp2 = (z1^3*y2 - z2^3*y1)^2 |
782 | 86.0k | p224_felem_square(tmp2, ftmp3); |
783 | | // tmp2[i] < 4 * 2^57 * 2^57 < 2^116 |
784 | | |
785 | | // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 |
786 | 86.0k | p224_felem_diff_128_64(tmp2, ftmp5); |
787 | | // tmp2[i] < 2^116 + 2^64 + 8 < 2^117 |
788 | | |
789 | | // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
790 | 86.0k | p224_felem_assign(ftmp5, ftmp2); |
791 | 86.0k | p224_felem_scalar(ftmp5, 2); |
792 | | // ftmp5[i] < 2 * 2^57 = 2^58 |
793 | | |
794 | | /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - |
795 | | 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
796 | 86.0k | p224_felem_diff_128_64(tmp2, ftmp5); |
797 | | // tmp2[i] < 2^117 + 2^64 + 8 < 2^118 |
798 | 86.0k | p224_felem_reduce(x_out, tmp2); |
799 | | |
800 | | // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out |
801 | 86.0k | p224_felem_diff(ftmp2, x_out); |
802 | | // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 |
803 | | |
804 | | // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) |
805 | 86.0k | p224_felem_mul(tmp2, ftmp3, ftmp2); |
806 | | // tmp2[i] < 4 * 2^57 * 2^59 = 2^118 |
807 | | |
808 | | /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - |
809 | | z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
810 | 86.0k | p224_widefelem_diff(tmp2, tmp); |
811 | | // tmp2[i] < 2^118 + 2^120 < 2^121 |
812 | 86.0k | p224_felem_reduce(y_out, tmp2); |
813 | | |
814 | | // the result (x_out, y_out, z_out) is incorrect if one of the inputs is |
815 | | // the point at infinity, so we need to check for this separately |
816 | | |
817 | | // if point 1 is at infinity, copy point 2 to output, and vice versa |
818 | 86.0k | p224_copy_conditional(x_out, x2, z1_is_zero); |
819 | 86.0k | p224_copy_conditional(x_out, x1, z2_is_zero); |
820 | 86.0k | p224_copy_conditional(y_out, y2, z1_is_zero); |
821 | 86.0k | p224_copy_conditional(y_out, y1, z2_is_zero); |
822 | 86.0k | p224_copy_conditional(z_out, z2, z1_is_zero); |
823 | 86.0k | p224_copy_conditional(z_out, z1, z2_is_zero); |
824 | 86.0k | p224_felem_assign(x3, x_out); |
825 | 86.0k | p224_felem_assign(y3, y_out); |
826 | 86.0k | p224_felem_assign(z3, z_out); |
827 | 86.0k | } |
828 | | |
829 | | // p224_select_point selects the |idx|th point from a precomputation table and |
830 | | // copies it to out. |
831 | | static void p224_select_point(const uint64_t idx, size_t size, |
832 | | const p224_felem pre_comp[/*size*/][3], |
833 | 73.7k | p224_felem out[3]) { |
834 | 73.7k | p224_limb *outlimbs = &out[0][0]; |
835 | 73.7k | OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem)); |
836 | | |
837 | 1.25M | for (size_t i = 0; i < size; i++) { |
838 | 1.18M | const p224_limb *inlimbs = &pre_comp[i][0][0]; |
839 | 1.18M | uint64_t mask = i ^ idx; |
840 | 1.18M | mask |= mask >> 4; |
841 | 1.18M | mask |= mask >> 2; |
842 | 1.18M | mask |= mask >> 1; |
843 | 1.18M | mask &= 1; |
844 | 1.18M | mask--; |
845 | 15.3M | for (size_t j = 0; j < 4 * 3; j++) { |
846 | 14.1M | outlimbs[j] |= inlimbs[j] & mask; |
847 | 14.1M | } |
848 | 1.18M | } |
849 | 73.7k | } |
850 | | |
851 | | // p224_get_bit returns the |i|th bit in |in|. |
852 | 357k | static crypto_word_t p224_get_bit(const EC_SCALAR *in, size_t i) { |
853 | 357k | if (i >= 224) { |
854 | 254 | return 0; |
855 | 254 | } |
856 | 357k | static_assert(sizeof(in->words[0]) == 8, "BN_ULONG is not 64-bit"); |
857 | 357k | return (in->words[i >> 6] >> (i & 63)) & 1; |
858 | 357k | } |
859 | | |
860 | | // Takes the Jacobian coordinates (X, Y, Z) of a point and returns |
861 | | // (X', Y') = (X/Z^2, Y/Z^3) |
862 | | static int ec_GFp_nistp224_point_get_affine_coordinates( |
863 | | const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x, |
864 | 533 | EC_FELEM *y) { |
865 | 533 | if (constant_time_declassify_int( |
866 | 533 | ec_GFp_simple_is_at_infinity(group, point))) { |
867 | 0 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
868 | 0 | return 0; |
869 | 0 | } |
870 | | |
871 | 533 | p224_felem z1, z2; |
872 | 533 | p224_widefelem tmp; |
873 | 533 | p224_generic_to_felem(z1, &point->Z); |
874 | 533 | p224_felem_inv(z2, z1); |
875 | 533 | p224_felem_square(tmp, z2); |
876 | 533 | p224_felem_reduce(z1, tmp); |
877 | | |
878 | 533 | if (x != NULL) { |
879 | 533 | p224_felem x_in, x_out; |
880 | 533 | p224_generic_to_felem(x_in, &point->X); |
881 | 533 | p224_felem_mul(tmp, x_in, z1); |
882 | 533 | p224_felem_reduce(x_out, tmp); |
883 | 533 | p224_felem_to_generic(x, x_out); |
884 | 533 | } |
885 | | |
886 | 533 | if (y != NULL) { |
887 | 406 | p224_felem y_in, y_out; |
888 | 406 | p224_generic_to_felem(y_in, &point->Y); |
889 | 406 | p224_felem_mul(tmp, z1, z2); |
890 | 406 | p224_felem_reduce(z1, tmp); |
891 | 406 | p224_felem_mul(tmp, y_in, z1); |
892 | 406 | p224_felem_reduce(y_out, tmp); |
893 | 406 | p224_felem_to_generic(y, y_out); |
894 | 406 | } |
895 | | |
896 | 533 | return 1; |
897 | 533 | } |
898 | | |
899 | | static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_JACOBIAN *r, |
900 | 0 | const EC_JACOBIAN *a, const EC_JACOBIAN *b) { |
901 | 0 | p224_felem x1, y1, z1, x2, y2, z2; |
902 | 0 | p224_generic_to_felem(x1, &a->X); |
903 | 0 | p224_generic_to_felem(y1, &a->Y); |
904 | 0 | p224_generic_to_felem(z1, &a->Z); |
905 | 0 | p224_generic_to_felem(x2, &b->X); |
906 | 0 | p224_generic_to_felem(y2, &b->Y); |
907 | 0 | p224_generic_to_felem(z2, &b->Z); |
908 | 0 | p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2); |
909 | | // The outputs are already reduced, but still need to be contracted. |
910 | 0 | p224_felem_to_generic(&r->X, x1); |
911 | 0 | p224_felem_to_generic(&r->Y, y1); |
912 | 0 | p224_felem_to_generic(&r->Z, z1); |
913 | 0 | } |
914 | | |
915 | | static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_JACOBIAN *r, |
916 | 0 | const EC_JACOBIAN *a) { |
917 | 0 | p224_felem x, y, z; |
918 | 0 | p224_generic_to_felem(x, &a->X); |
919 | 0 | p224_generic_to_felem(y, &a->Y); |
920 | 0 | p224_generic_to_felem(z, &a->Z); |
921 | 0 | p224_point_double(x, y, z, x, y, z); |
922 | | // The outputs are already reduced, but still need to be contracted. |
923 | 0 | p224_felem_to_generic(&r->X, x); |
924 | 0 | p224_felem_to_generic(&r->Y, y); |
925 | 0 | p224_felem_to_generic(&r->Z, z); |
926 | 0 | } |
927 | | |
928 | | static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3], |
929 | 127 | const EC_JACOBIAN *p) { |
930 | 127 | OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3); |
931 | | |
932 | 127 | p224_generic_to_felem(out[1][0], &p->X); |
933 | 127 | p224_generic_to_felem(out[1][1], &p->Y); |
934 | 127 | p224_generic_to_felem(out[1][2], &p->Z); |
935 | | |
936 | 2.03k | for (size_t j = 2; j <= 16; ++j) { |
937 | 1.90k | if (j & 1) { |
938 | 889 | p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1], |
939 | 889 | out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]); |
940 | 1.01k | } else { |
941 | 1.01k | p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0], |
942 | 1.01k | out[j / 2][1], out[j / 2][2]); |
943 | 1.01k | } |
944 | 1.90k | } |
945 | 127 | } |
946 | | |
947 | | static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_JACOBIAN *r, |
948 | | const EC_JACOBIAN *p, |
949 | 0 | const EC_SCALAR *scalar) { |
950 | 0 | p224_felem p_pre_comp[17][3]; |
951 | 0 | ec_GFp_nistp224_make_precomp(p_pre_comp, p); |
952 | | |
953 | | // Set nq to the point at infinity. |
954 | 0 | p224_felem nq[3], tmp[4]; |
955 | 0 | OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem)); |
956 | |
|
957 | 0 | int skip = 1; // Save two point operations in the first round. |
958 | 0 | for (size_t i = 220; i < 221; i--) { |
959 | 0 | if (!skip) { |
960 | 0 | p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
961 | 0 | } |
962 | | |
963 | | // Add every 5 doublings. |
964 | 0 | if (i % 5 == 0) { |
965 | 0 | crypto_word_t bits = p224_get_bit(scalar, i + 4) << 5; |
966 | 0 | bits |= p224_get_bit(scalar, i + 3) << 4; |
967 | 0 | bits |= p224_get_bit(scalar, i + 2) << 3; |
968 | 0 | bits |= p224_get_bit(scalar, i + 1) << 2; |
969 | 0 | bits |= p224_get_bit(scalar, i) << 1; |
970 | 0 | bits |= p224_get_bit(scalar, i - 1); |
971 | 0 | crypto_word_t sign, digit; |
972 | 0 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
973 | | |
974 | | // Select the point to add or subtract. |
975 | 0 | p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp); |
976 | 0 | p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point |
977 | 0 | p224_copy_conditional(tmp[1], tmp[3], sign); |
978 | |
|
979 | 0 | if (!skip) { |
980 | 0 | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */, |
981 | 0 | tmp[0], tmp[1], tmp[2]); |
982 | 0 | } else { |
983 | 0 | OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem)); |
984 | 0 | skip = 0; |
985 | 0 | } |
986 | 0 | } |
987 | 0 | } |
988 | | |
989 | | // Reduce the output to its unique minimal representation. |
990 | 0 | p224_felem_to_generic(&r->X, nq[0]); |
991 | 0 | p224_felem_to_generic(&r->Y, nq[1]); |
992 | 0 | p224_felem_to_generic(&r->Z, nq[2]); |
993 | 0 | } |
994 | | |
995 | | static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group, |
996 | | EC_JACOBIAN *r, |
997 | 1.31k | const EC_SCALAR *scalar) { |
998 | | // Set nq to the point at infinity. |
999 | 1.31k | p224_felem nq[3], tmp[3]; |
1000 | 1.31k | OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem)); |
1001 | | |
1002 | 1.31k | int skip = 1; // Save two point operations in the first round. |
1003 | 38.1k | for (size_t i = 27; i < 28; i--) { |
1004 | | // double |
1005 | 36.8k | if (!skip) { |
1006 | 35.5k | p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1007 | 35.5k | } |
1008 | | |
1009 | | // First, look 28 bits upwards. |
1010 | 36.8k | crypto_word_t bits = p224_get_bit(scalar, i + 196) << 3; |
1011 | 36.8k | bits |= p224_get_bit(scalar, i + 140) << 2; |
1012 | 36.8k | bits |= p224_get_bit(scalar, i + 84) << 1; |
1013 | 36.8k | bits |= p224_get_bit(scalar, i + 28); |
1014 | | // Select the point to add, in constant time. |
1015 | 36.8k | p224_select_point(bits, 16, g_p224_pre_comp[1], tmp); |
1016 | | |
1017 | 36.8k | if (!skip) { |
1018 | 35.5k | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1019 | 35.5k | tmp[0], tmp[1], tmp[2]); |
1020 | 35.5k | } else { |
1021 | 1.31k | OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem)); |
1022 | 1.31k | skip = 0; |
1023 | 1.31k | } |
1024 | | |
1025 | | // Second, look at the current position/ |
1026 | 36.8k | bits = p224_get_bit(scalar, i + 168) << 3; |
1027 | 36.8k | bits |= p224_get_bit(scalar, i + 112) << 2; |
1028 | 36.8k | bits |= p224_get_bit(scalar, i + 56) << 1; |
1029 | 36.8k | bits |= p224_get_bit(scalar, i); |
1030 | | // Select the point to add, in constant time. |
1031 | 36.8k | p224_select_point(bits, 16, g_p224_pre_comp[0], tmp); |
1032 | 36.8k | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1033 | 36.8k | tmp[0], tmp[1], tmp[2]); |
1034 | 36.8k | } |
1035 | | |
1036 | | // Reduce the output to its unique minimal representation. |
1037 | 1.31k | p224_felem_to_generic(&r->X, nq[0]); |
1038 | 1.31k | p224_felem_to_generic(&r->Y, nq[1]); |
1039 | 1.31k | p224_felem_to_generic(&r->Z, nq[2]); |
1040 | 1.31k | } |
1041 | | |
1042 | | static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group, |
1043 | | EC_JACOBIAN *r, |
1044 | | const EC_SCALAR *g_scalar, |
1045 | | const EC_JACOBIAN *p, |
1046 | 127 | const EC_SCALAR *p_scalar) { |
1047 | | // TODO(davidben): If P-224 ECDSA verify performance ever matters, using |
1048 | | // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement. |
1049 | 127 | p224_felem p_pre_comp[17][3]; |
1050 | 127 | ec_GFp_nistp224_make_precomp(p_pre_comp, p); |
1051 | | |
1052 | | // Set nq to the point at infinity. |
1053 | 127 | p224_felem nq[3], tmp[3]; |
1054 | 127 | OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem)); |
1055 | | |
1056 | | // Loop over both scalars msb-to-lsb, interleaving additions of multiples of |
1057 | | // the generator (two in each of the last 28 rounds) and additions of p (every |
1058 | | // 5th round). |
1059 | 127 | int skip = 1; // Save two point operations in the first round. |
1060 | 28.1k | for (size_t i = 220; i < 221; i--) { |
1061 | 28.0k | if (!skip) { |
1062 | 27.9k | p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1063 | 27.9k | } |
1064 | | |
1065 | | // Add multiples of the generator. |
1066 | 28.0k | if (i <= 27) { |
1067 | | // First, look 28 bits upwards. |
1068 | 3.55k | crypto_word_t bits = p224_get_bit(g_scalar, i + 196) << 3; |
1069 | 3.55k | bits |= p224_get_bit(g_scalar, i + 140) << 2; |
1070 | 3.55k | bits |= p224_get_bit(g_scalar, i + 84) << 1; |
1071 | 3.55k | bits |= p224_get_bit(g_scalar, i + 28); |
1072 | | |
1073 | 3.55k | size_t index = (size_t)bits; |
1074 | 3.55k | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1075 | 3.55k | g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1], |
1076 | 3.55k | g_p224_pre_comp[1][index][2]); |
1077 | 3.55k | assert(!skip); |
1078 | | |
1079 | | // Second, look at the current position. |
1080 | 3.55k | bits = p224_get_bit(g_scalar, i + 168) << 3; |
1081 | 3.55k | bits |= p224_get_bit(g_scalar, i + 112) << 2; |
1082 | 3.55k | bits |= p224_get_bit(g_scalar, i + 56) << 1; |
1083 | 3.55k | bits |= p224_get_bit(g_scalar, i); |
1084 | 3.55k | index = (size_t)bits; |
1085 | 3.55k | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, |
1086 | 3.55k | g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1], |
1087 | 3.55k | g_p224_pre_comp[0][index][2]); |
1088 | 3.55k | } |
1089 | | |
1090 | | // Incorporate |p_scalar| every 5 doublings. |
1091 | 28.0k | if (i % 5 == 0) { |
1092 | 5.71k | crypto_word_t bits = p224_get_bit(p_scalar, i + 4) << 5; |
1093 | 5.71k | bits |= p224_get_bit(p_scalar, i + 3) << 4; |
1094 | 5.71k | bits |= p224_get_bit(p_scalar, i + 2) << 3; |
1095 | 5.71k | bits |= p224_get_bit(p_scalar, i + 1) << 2; |
1096 | 5.71k | bits |= p224_get_bit(p_scalar, i) << 1; |
1097 | 5.71k | bits |= p224_get_bit(p_scalar, i - 1); |
1098 | 5.71k | crypto_word_t sign, digit; |
1099 | 5.71k | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
1100 | | |
1101 | | // Select the point to add or subtract. |
1102 | 5.71k | OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem)); |
1103 | 5.71k | if (sign) { |
1104 | 2.79k | p224_felem_neg(tmp[1], tmp[1]); // (X, -Y, Z) is the negative point |
1105 | 2.79k | } |
1106 | | |
1107 | 5.71k | if (!skip) { |
1108 | 5.58k | p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */, |
1109 | 5.58k | tmp[0], tmp[1], tmp[2]); |
1110 | 5.58k | } else { |
1111 | 127 | OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem)); |
1112 | 127 | skip = 0; |
1113 | 127 | } |
1114 | 5.71k | } |
1115 | 28.0k | } |
1116 | | |
1117 | | // Reduce the output to its unique minimal representation. |
1118 | 127 | p224_felem_to_generic(&r->X, nq[0]); |
1119 | 127 | p224_felem_to_generic(&r->Y, nq[1]); |
1120 | 127 | p224_felem_to_generic(&r->Z, nq[2]); |
1121 | 127 | } |
1122 | | |
1123 | | static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r, |
1124 | 15.5k | const EC_FELEM *a, const EC_FELEM *b) { |
1125 | 15.5k | p224_felem felem1, felem2; |
1126 | 15.5k | p224_widefelem wide; |
1127 | 15.5k | p224_generic_to_felem(felem1, a); |
1128 | 15.5k | p224_generic_to_felem(felem2, b); |
1129 | 15.5k | p224_felem_mul(wide, felem1, felem2); |
1130 | 15.5k | p224_felem_reduce(felem1, wide); |
1131 | 15.5k | p224_felem_to_generic(r, felem1); |
1132 | 15.5k | } |
1133 | | |
1134 | | static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r, |
1135 | 15.7k | const EC_FELEM *a) { |
1136 | 15.7k | p224_felem felem; |
1137 | 15.7k | p224_generic_to_felem(felem, a); |
1138 | 15.7k | p224_widefelem wide; |
1139 | 15.7k | p224_felem_square(wide, felem); |
1140 | 15.7k | p224_felem_reduce(felem, wide); |
1141 | 15.7k | p224_felem_to_generic(r, felem); |
1142 | 15.7k | } |
1143 | | |
1144 | 15 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) { |
1145 | 15 | out->group_init = ec_GFp_simple_group_init; |
1146 | 15 | out->group_finish = ec_GFp_simple_group_finish; |
1147 | 15 | out->group_set_curve = ec_GFp_simple_group_set_curve; |
1148 | 15 | out->point_get_affine_coordinates = |
1149 | 15 | ec_GFp_nistp224_point_get_affine_coordinates; |
1150 | 15 | out->add = ec_GFp_nistp224_add; |
1151 | 15 | out->dbl = ec_GFp_nistp224_dbl; |
1152 | 15 | out->mul = ec_GFp_nistp224_point_mul; |
1153 | 15 | out->mul_base = ec_GFp_nistp224_point_mul_base; |
1154 | 15 | out->mul_public = ec_GFp_nistp224_point_mul_public; |
1155 | 15 | out->felem_mul = ec_GFp_nistp224_felem_mul; |
1156 | 15 | out->felem_sqr = ec_GFp_nistp224_felem_sqr; |
1157 | 15 | out->felem_to_bytes = ec_GFp_simple_felem_to_bytes; |
1158 | 15 | out->felem_from_bytes = ec_GFp_simple_felem_from_bytes; |
1159 | 15 | out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery; |
1160 | 15 | out->scalar_to_montgomery_inv_vartime = |
1161 | 15 | ec_simple_scalar_to_montgomery_inv_vartime; |
1162 | 15 | out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate; |
1163 | 15 | } |
1164 | | |
1165 | | #endif // BORINGSSL_HAS_UINT128 && !SMALL |