Coverage Report

Created: 2023-06-07 07:13

/src/boringssl/crypto/fipsmodule/ec/p224-64.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2015, Google Inc.
2
 *
3
 * Permission to use, copy, modify, and/or distribute this software for any
4
 * purpose with or without fee is hereby granted, provided that the above
5
 * copyright notice and this permission notice appear in all copies.
6
 *
7
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15
// A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16
//
17
// Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18
// and Adam Langley's public domain 64-bit C implementation of curve25519.
19
20
#include <openssl/base.h>
21
22
#include <openssl/bn.h>
23
#include <openssl/ec.h>
24
#include <openssl/err.h>
25
#include <openssl/mem.h>
26
27
#include <string.h>
28
29
#include "internal.h"
30
#include "../delocate.h"
31
#include "../../internal.h"
32
33
34
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
35
36
// Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
37
// using 64-bit coefficients called 'limbs', and sometimes (for multiplication
38
// results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
39
// 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
40
// representation is an 'p224_felem'; a 7-p224_widelimb representation is a
41
// 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
42
// don't always reduce the representations: we ensure that inputs to each
43
// p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
44
// 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
45
// are then again partially reduced to obtain an p224_felem satisfying a_i <
46
// 2^57. We only reduce to the unique minimal representation at the end of the
47
// computation.
48
49
typedef uint64_t p224_limb;
50
typedef uint128_t p224_widelimb;
51
52
typedef p224_limb p224_felem[4];
53
typedef p224_widelimb p224_widefelem[7];
54
55
// Precomputed multiples of the standard generator
56
// Points are given in coordinates (X, Y, Z) where Z normally is 1
57
// (0 for the point at infinity).
58
// For each field element, slice a_0 is word 0, etc.
59
//
60
// The table has 2 * 16 elements, starting with the following:
61
// index | bits    | point
62
// ------+---------+------------------------------
63
//     0 | 0 0 0 0 | 0G
64
//     1 | 0 0 0 1 | 1G
65
//     2 | 0 0 1 0 | 2^56G
66
//     3 | 0 0 1 1 | (2^56 + 1)G
67
//     4 | 0 1 0 0 | 2^112G
68
//     5 | 0 1 0 1 | (2^112 + 1)G
69
//     6 | 0 1 1 0 | (2^112 + 2^56)G
70
//     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
71
//     8 | 1 0 0 0 | 2^168G
72
//     9 | 1 0 0 1 | (2^168 + 1)G
73
//    10 | 1 0 1 0 | (2^168 + 2^56)G
74
//    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
75
//    12 | 1 1 0 0 | (2^168 + 2^112)G
76
//    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
77
//    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
78
//    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
79
// followed by a copy of this with each element multiplied by 2^28.
80
//
81
// The reason for this is so that we can clock bits into four different
82
// locations when doing simple scalar multiplies against the base point,
83
// and then another four locations using the second 16 elements.
84
static const p224_felem g_p224_pre_comp[2][16][3] = {
85
    {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
86
     {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
87
      {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
88
      {1, 0, 0, 0}},
89
     {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
90
      {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
91
      {1, 0, 0, 0}},
92
     {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
93
      {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
94
      {1, 0, 0, 0}},
95
     {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
96
      {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
97
      {1, 0, 0, 0}},
98
     {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
99
      {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
100
      {1, 0, 0, 0}},
101
     {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
102
      {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
103
      {1, 0, 0, 0}},
104
     {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
105
      {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
106
      {1, 0, 0, 0}},
107
     {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
108
      {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
109
      {1, 0, 0, 0}},
110
     {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
111
      {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
112
      {1, 0, 0, 0}},
113
     {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
114
      {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
115
      {1, 0, 0, 0}},
116
     {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
117
      {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
118
      {1, 0, 0, 0}},
119
     {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
120
      {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
121
      {1, 0, 0, 0}},
122
     {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
123
      {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
124
      {1, 0, 0, 0}},
125
     {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
126
      {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
127
      {1, 0, 0, 0}},
128
     {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
129
      {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
130
      {1, 0, 0, 0}}},
131
    {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
132
     {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
133
      {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
134
      {1, 0, 0, 0}},
135
     {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
136
      {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
137
      {1, 0, 0, 0}},
138
     {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
139
      {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
140
      {1, 0, 0, 0}},
141
     {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
142
      {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
143
      {1, 0, 0, 0}},
144
     {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
145
      {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
146
      {1, 0, 0, 0}},
147
     {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
148
      {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
149
      {1, 0, 0, 0}},
150
     {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
151
      {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
152
      {1, 0, 0, 0}},
153
     {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
154
      {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
155
      {1, 0, 0, 0}},
156
     {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
157
      {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
158
      {1, 0, 0, 0}},
159
     {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
160
      {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
161
      {1, 0, 0, 0}},
162
     {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
163
      {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
164
      {1, 0, 0, 0}},
165
     {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
166
      {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
167
      {1, 0, 0, 0}},
168
     {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
169
      {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
170
      {1, 0, 0, 0}},
171
     {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
172
      {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
173
      {1, 0, 0, 0}},
174
     {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
175
      {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
176
      {1, 0, 0, 0}}}};
177
178
179
// Helper functions to convert field elements to/from internal representation
180
181
48.6k
static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
182
  // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
183
  // uses four 64-bit words. (The top-most word only has 32 bits.)
184
48.6k
  out[0] = in->words[0] & 0x00ffffffffffffff;
185
48.6k
  out[1] = ((in->words[0] >> 56) | (in->words[1] << 8)) & 0x00ffffffffffffff;
186
48.6k
  out[2] = ((in->words[1] >> 48) | (in->words[2] << 16)) & 0x00ffffffffffffff;
187
48.6k
  out[3] = ((in->words[2] >> 40) | (in->words[3] << 24)) & 0x00ffffffffffffff;
188
48.6k
}
189
190
// Requires 0 <= in < 2*p (always call p224_felem_reduce first)
191
36.5k
static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
192
  // Reduce to unique minimal representation.
193
36.5k
  static const int64_t two56 = ((p224_limb)1) << 56;
194
  // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
195
  // if in > p , reduce in = in - 2^224 + 2^96 - 1
196
36.5k
  int64_t tmp[4], a;
197
36.5k
  tmp[0] = in[0];
198
36.5k
  tmp[1] = in[1];
199
36.5k
  tmp[2] = in[2];
200
36.5k
  tmp[3] = in[3];
201
  // Case 1: a = 1 iff in >= 2^224
202
36.5k
  a = (in[3] >> 56);
203
36.5k
  tmp[0] -= a;
204
36.5k
  tmp[1] += a << 40;
205
36.5k
  tmp[3] &= 0x00ffffffffffffff;
206
  // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
207
  // the lower part is non-zero
208
36.5k
  a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
209
36.5k
      (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
210
36.5k
  a &= 0x00ffffffffffffff;
211
  // turn a into an all-one mask (if a = 0) or an all-zero mask
212
36.5k
  a = (a - 1) >> 63;
213
  // subtract 2^224 - 2^96 + 1 if a is all-one
214
36.5k
  tmp[3] &= a ^ 0xffffffffffffffff;
215
36.5k
  tmp[2] &= a ^ 0xffffffffffffffff;
216
36.5k
  tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
217
36.5k
  tmp[0] -= 1 & a;
218
219
  // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
220
  // be non-zero, so we only need one step
221
36.5k
  a = tmp[0] >> 63;
222
36.5k
  tmp[0] += two56 & a;
223
36.5k
  tmp[1] -= 1 & a;
224
225
  // carry 1 -> 2 -> 3
226
36.5k
  tmp[2] += tmp[1] >> 56;
227
36.5k
  tmp[1] &= 0x00ffffffffffffff;
228
229
36.5k
  tmp[3] += tmp[2] >> 56;
230
36.5k
  tmp[2] &= 0x00ffffffffffffff;
231
232
  // Now 0 <= tmp < p
233
36.5k
  p224_felem tmp2;
234
36.5k
  tmp2[0] = tmp[0];
235
36.5k
  tmp2[1] = tmp[1];
236
36.5k
  tmp2[2] = tmp[2];
237
36.5k
  tmp2[3] = tmp[3];
238
239
  // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
240
  // uses four 64-bit words. (The top-most word only has 32 bits.)
241
36.5k
  out->words[0] = tmp2[0] | (tmp2[1] << 56);
242
36.5k
  out->words[1] = (tmp2[1] >> 8) | (tmp2[2] << 48);
243
36.5k
  out->words[2] = (tmp2[2] >> 16) | (tmp2[3] << 40);
244
36.5k
  out->words[3] = tmp2[3] >> 24;
245
36.5k
}
246
247
248
// Field operations, using the internal representation of field elements.
249
// NB! These operations are specific to our point multiplication and cannot be
250
// expected to be correct in general - e.g., multiplication with a large scalar
251
// will cause an overflow.
252
253
926k
static void p224_felem_assign(p224_felem out, const p224_felem in) {
254
926k
  out[0] = in[0];
255
926k
  out[1] = in[1];
256
926k
  out[2] = in[2];
257
926k
  out[3] = in[3];
258
926k
}
259
260
// Sum two field elements: out += in
261
193k
static void p224_felem_sum(p224_felem out, const p224_felem in) {
262
193k
  out[0] += in[0];
263
193k
  out[1] += in[1];
264
193k
  out[2] += in[2];
265
193k
  out[3] += in[3];
266
193k
}
267
268
// Subtract field elements: out -= in
269
// Assumes in[i] < 2^57
270
215k
static void p224_felem_diff(p224_felem out, const p224_felem in) {
271
215k
  static const p224_limb two58p2 =
272
215k
      (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
273
215k
  static const p224_limb two58m2 =
274
215k
      (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
275
215k
  static const p224_limb two58m42m2 =
276
215k
      (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
277
278
  // Add 0 mod 2^224-2^96+1 to ensure out > in
279
215k
  out[0] += two58p2;
280
215k
  out[1] += two58m42m2;
281
215k
  out[2] += two58m2;
282
215k
  out[3] += two58m2;
283
284
215k
  out[0] -= in[0];
285
215k
  out[1] -= in[1];
286
215k
  out[2] -= in[2];
287
215k
  out[3] -= in[3];
288
215k
}
289
290
// Subtract in unreduced 128-bit mode: out -= in
291
// Assumes in[i] < 2^119
292
150k
static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
293
150k
  static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
294
150k
  static const p224_widelimb two120m64 =
295
150k
      (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
296
150k
  static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
297
150k
                                             (((p224_widelimb)1) << 104) -
298
150k
                                             (((p224_widelimb)1) << 64);
299
300
  // Add 0 mod 2^224-2^96+1 to ensure out > in
301
150k
  out[0] += two120;
302
150k
  out[1] += two120m64;
303
150k
  out[2] += two120m64;
304
150k
  out[3] += two120;
305
150k
  out[4] += two120m104m64;
306
150k
  out[5] += two120m64;
307
150k
  out[6] += two120m64;
308
309
150k
  out[0] -= in[0];
310
150k
  out[1] -= in[1];
311
150k
  out[2] -= in[2];
312
150k
  out[3] -= in[3];
313
150k
  out[4] -= in[4];
314
150k
  out[5] -= in[5];
315
150k
  out[6] -= in[6];
316
150k
}
317
318
// Subtract in mixed mode: out128 -= in64
319
// in[i] < 2^63
320
475k
static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
321
475k
  static const p224_widelimb two64p8 =
322
475k
      (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
323
475k
  static const p224_widelimb two64m8 =
324
475k
      (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
325
475k
  static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
326
475k
                                          (((p224_widelimb)1) << 48) -
327
475k
                                          (((p224_widelimb)1) << 8);
328
329
  // Add 0 mod 2^224-2^96+1 to ensure out > in
330
475k
  out[0] += two64p8;
331
475k
  out[1] += two64m48m8;
332
475k
  out[2] += two64m8;
333
475k
  out[3] += two64m8;
334
335
475k
  out[0] -= in[0];
336
475k
  out[1] -= in[1];
337
475k
  out[2] -= in[2];
338
475k
  out[3] -= in[3];
339
475k
}
340
341
// Multiply a field element by a scalar: out = out * scalar
342
// The scalars we actually use are small, so results fit without overflow
343
279k
static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
344
279k
  out[0] *= scalar;
345
279k
  out[1] *= scalar;
346
279k
  out[2] *= scalar;
347
279k
  out[3] *= scalar;
348
279k
}
349
350
// Multiply an unreduced field element by a scalar: out = out * scalar
351
// The scalars we actually use are small, so results fit without overflow
352
static void p224_widefelem_scalar(p224_widefelem out,
353
64.5k
                                  const p224_widelimb scalar) {
354
64.5k
  out[0] *= scalar;
355
64.5k
  out[1] *= scalar;
356
64.5k
  out[2] *= scalar;
357
64.5k
  out[3] *= scalar;
358
64.5k
  out[4] *= scalar;
359
64.5k
  out[5] *= scalar;
360
64.5k
  out[6] *= scalar;
361
64.5k
}
362
363
// Square a field element: out = in^2
364
722k
static void p224_felem_square(p224_widefelem out, const p224_felem in) {
365
722k
  p224_limb tmp0, tmp1, tmp2;
366
722k
  tmp0 = 2 * in[0];
367
722k
  tmp1 = 2 * in[1];
368
722k
  tmp2 = 2 * in[2];
369
722k
  out[0] = ((p224_widelimb)in[0]) * in[0];
370
722k
  out[1] = ((p224_widelimb)in[0]) * tmp1;
371
722k
  out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
372
722k
  out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
373
722k
  out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
374
722k
  out[5] = ((p224_widelimb)in[3]) * tmp2;
375
722k
  out[6] = ((p224_widelimb)in[3]) * in[3];
376
722k
}
377
378
// Multiply two field elements: out = in1 * in2
379
static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
380
930k
                           const p224_felem in2) {
381
930k
  out[0] = ((p224_widelimb)in1[0]) * in2[0];
382
930k
  out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
383
930k
  out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
384
930k
           ((p224_widelimb)in1[2]) * in2[0];
385
930k
  out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
386
930k
           ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
387
930k
  out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
388
930k
           ((p224_widelimb)in1[3]) * in2[1];
389
930k
  out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
390
930k
  out[6] = ((p224_widelimb)in1[3]) * in2[3];
391
930k
}
392
393
// Reduce seven 128-bit coefficients to four 64-bit coefficients.
394
// Requires in[i] < 2^126,
395
// ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
396
1.50M
static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
397
1.50M
  static const p224_widelimb two127p15 =
398
1.50M
      (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
399
1.50M
  static const p224_widelimb two127m71 =
400
1.50M
      (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
401
1.50M
  static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
402
1.50M
                                            (((p224_widelimb)1) << 71) -
403
1.50M
                                            (((p224_widelimb)1) << 55);
404
1.50M
  p224_widelimb output[5];
405
406
  // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
407
1.50M
  output[0] = in[0] + two127p15;
408
1.50M
  output[1] = in[1] + two127m71m55;
409
1.50M
  output[2] = in[2] + two127m71;
410
1.50M
  output[3] = in[3];
411
1.50M
  output[4] = in[4];
412
413
  // Eliminate in[4], in[5], in[6]
414
1.50M
  output[4] += in[6] >> 16;
415
1.50M
  output[3] += (in[6] & 0xffff) << 40;
416
1.50M
  output[2] -= in[6];
417
418
1.50M
  output[3] += in[5] >> 16;
419
1.50M
  output[2] += (in[5] & 0xffff) << 40;
420
1.50M
  output[1] -= in[5];
421
422
1.50M
  output[2] += output[4] >> 16;
423
1.50M
  output[1] += (output[4] & 0xffff) << 40;
424
1.50M
  output[0] -= output[4];
425
426
  // Carry 2 -> 3 -> 4
427
1.50M
  output[3] += output[2] >> 56;
428
1.50M
  output[2] &= 0x00ffffffffffffff;
429
430
1.50M
  output[4] = output[3] >> 56;
431
1.50M
  output[3] &= 0x00ffffffffffffff;
432
433
  // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
434
435
  // Eliminate output[4]
436
1.50M
  output[2] += output[4] >> 16;
437
  // output[2] < 2^56 + 2^56 = 2^57
438
1.50M
  output[1] += (output[4] & 0xffff) << 40;
439
1.50M
  output[0] -= output[4];
440
441
  // Carry 0 -> 1 -> 2 -> 3
442
1.50M
  output[1] += output[0] >> 56;
443
1.50M
  out[0] = output[0] & 0x00ffffffffffffff;
444
445
1.50M
  output[2] += output[1] >> 56;
446
  // output[2] < 2^57 + 2^72
447
1.50M
  out[1] = output[1] & 0x00ffffffffffffff;
448
1.50M
  output[3] += output[2] >> 56;
449
  // output[3] <= 2^56 + 2^16
450
1.50M
  out[2] = output[2] & 0x00ffffffffffffff;
451
452
  // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
453
  // out[3] <= 2^56 + 2^16 (due to final carry),
454
  // so out < 2*p
455
1.50M
  out[3] = output[3];
456
1.50M
}
457
458
// Get negative value: out = -in
459
// Requires in[i] < 2^63,
460
// ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
461
2.79k
static void p224_felem_neg(p224_felem out, const p224_felem in) {
462
2.79k
  p224_widefelem tmp = {0};
463
2.79k
  p224_felem_diff_128_64(tmp, in);
464
2.79k
  p224_felem_reduce(out, tmp);
465
2.79k
}
466
467
// Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
468
// elements are reduced to in < 2^225, so we only need to check three cases: 0,
469
// 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
470
344k
static p224_limb p224_felem_is_zero(const p224_felem in) {
471
344k
  p224_limb zero = in[0] | in[1] | in[2] | in[3];
472
344k
  zero = (((int64_t)(zero)-1) >> 63) & 1;
473
474
344k
  p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
475
344k
                     (in[2] ^ 0x00ffffffffffffff) |
476
344k
                     (in[3] ^ 0x00ffffffffffffff);
477
344k
  two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
478
344k
  p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
479
344k
                     (in[2] ^ 0x00ffffffffffffff) |
480
344k
                     (in[3] ^ 0x01ffffffffffffff);
481
344k
  two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
482
344k
  return (zero | two224m96p1 | two225m97p2);
483
344k
}
484
485
// Invert a field element
486
// Computation chain copied from djb's code
487
533
static void p224_felem_inv(p224_felem out, const p224_felem in) {
488
533
  p224_felem ftmp, ftmp2, ftmp3, ftmp4;
489
533
  p224_widefelem tmp;
490
491
533
  p224_felem_square(tmp, in);
492
533
  p224_felem_reduce(ftmp, tmp);  // 2
493
533
  p224_felem_mul(tmp, in, ftmp);
494
533
  p224_felem_reduce(ftmp, tmp);  // 2^2 - 1
495
533
  p224_felem_square(tmp, ftmp);
496
533
  p224_felem_reduce(ftmp, tmp);  // 2^3 - 2
497
533
  p224_felem_mul(tmp, in, ftmp);
498
533
  p224_felem_reduce(ftmp, tmp);  // 2^3 - 1
499
533
  p224_felem_square(tmp, ftmp);
500
533
  p224_felem_reduce(ftmp2, tmp);  // 2^4 - 2
501
533
  p224_felem_square(tmp, ftmp2);
502
533
  p224_felem_reduce(ftmp2, tmp);  // 2^5 - 4
503
533
  p224_felem_square(tmp, ftmp2);
504
533
  p224_felem_reduce(ftmp2, tmp);  // 2^6 - 8
505
533
  p224_felem_mul(tmp, ftmp2, ftmp);
506
533
  p224_felem_reduce(ftmp, tmp);  // 2^6 - 1
507
533
  p224_felem_square(tmp, ftmp);
508
533
  p224_felem_reduce(ftmp2, tmp);  // 2^7 - 2
509
3.19k
  for (size_t i = 0; i < 5; ++i) {  // 2^12 - 2^6
510
2.66k
    p224_felem_square(tmp, ftmp2);
511
2.66k
    p224_felem_reduce(ftmp2, tmp);
512
2.66k
  }
513
533
  p224_felem_mul(tmp, ftmp2, ftmp);
514
533
  p224_felem_reduce(ftmp2, tmp);  // 2^12 - 1
515
533
  p224_felem_square(tmp, ftmp2);
516
533
  p224_felem_reduce(ftmp3, tmp);  // 2^13 - 2
517
6.39k
  for (size_t i = 0; i < 11; ++i) {  // 2^24 - 2^12
518
5.86k
    p224_felem_square(tmp, ftmp3);
519
5.86k
    p224_felem_reduce(ftmp3, tmp);
520
5.86k
  }
521
533
  p224_felem_mul(tmp, ftmp3, ftmp2);
522
533
  p224_felem_reduce(ftmp2, tmp);  // 2^24 - 1
523
533
  p224_felem_square(tmp, ftmp2);
524
533
  p224_felem_reduce(ftmp3, tmp);  // 2^25 - 2
525
12.7k
  for (size_t i = 0; i < 23; ++i) {  // 2^48 - 2^24
526
12.2k
    p224_felem_square(tmp, ftmp3);
527
12.2k
    p224_felem_reduce(ftmp3, tmp);
528
12.2k
  }
529
533
  p224_felem_mul(tmp, ftmp3, ftmp2);
530
533
  p224_felem_reduce(ftmp3, tmp);  // 2^48 - 1
531
533
  p224_felem_square(tmp, ftmp3);
532
533
  p224_felem_reduce(ftmp4, tmp);  // 2^49 - 2
533
25.5k
  for (size_t i = 0; i < 47; ++i) {  // 2^96 - 2^48
534
25.0k
    p224_felem_square(tmp, ftmp4);
535
25.0k
    p224_felem_reduce(ftmp4, tmp);
536
25.0k
  }
537
533
  p224_felem_mul(tmp, ftmp3, ftmp4);
538
533
  p224_felem_reduce(ftmp3, tmp);  // 2^96 - 1
539
533
  p224_felem_square(tmp, ftmp3);
540
533
  p224_felem_reduce(ftmp4, tmp);  // 2^97 - 2
541
12.7k
  for (size_t i = 0; i < 23; ++i) {  // 2^120 - 2^24
542
12.2k
    p224_felem_square(tmp, ftmp4);
543
12.2k
    p224_felem_reduce(ftmp4, tmp);
544
12.2k
  }
545
533
  p224_felem_mul(tmp, ftmp2, ftmp4);
546
533
  p224_felem_reduce(ftmp2, tmp);  // 2^120 - 1
547
3.73k
  for (size_t i = 0; i < 6; ++i) {  // 2^126 - 2^6
548
3.19k
    p224_felem_square(tmp, ftmp2);
549
3.19k
    p224_felem_reduce(ftmp2, tmp);
550
3.19k
  }
551
533
  p224_felem_mul(tmp, ftmp2, ftmp);
552
533
  p224_felem_reduce(ftmp, tmp);  // 2^126 - 1
553
533
  p224_felem_square(tmp, ftmp);
554
533
  p224_felem_reduce(ftmp, tmp);  // 2^127 - 2
555
533
  p224_felem_mul(tmp, ftmp, in);
556
533
  p224_felem_reduce(ftmp, tmp);  // 2^127 - 1
557
52.2k
  for (size_t i = 0; i < 97; ++i) {  // 2^224 - 2^97
558
51.7k
    p224_felem_square(tmp, ftmp);
559
51.7k
    p224_felem_reduce(ftmp, tmp);
560
51.7k
  }
561
533
  p224_felem_mul(tmp, ftmp, ftmp3);
562
533
  p224_felem_reduce(out, tmp);  // 2^224 - 2^96 - 1
563
533
}
564
565
// Copy in constant time:
566
// if icopy == 1, copy in to out,
567
// if icopy == 0, copy out to itself.
568
static void p224_copy_conditional(p224_felem out, const p224_felem in,
569
516k
                                  p224_limb icopy) {
570
  // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
571
516k
  const p224_limb copy = -icopy;
572
2.58M
  for (size_t i = 0; i < 4; ++i) {
573
2.06M
    const p224_limb tmp = copy & (in[i] ^ out[i]);
574
2.06M
    out[i] ^= tmp;
575
2.06M
  }
576
516k
}
577
578
// ELLIPTIC CURVE POINT OPERATIONS
579
//
580
// Points are represented in Jacobian projective coordinates:
581
// (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
582
// or to the point at infinity if Z == 0.
583
584
// Double an elliptic curve point:
585
// (X', Y', Z') = 2 * (X, Y, Z), where
586
// X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
587
// Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
588
// Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
589
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
590
// while x_out == y_in is not (maybe this works, but it's not tested).
591
static void p224_point_double(p224_felem x_out, p224_felem y_out,
592
                              p224_felem z_out, const p224_felem x_in,
593
64.5k
                              const p224_felem y_in, const p224_felem z_in) {
594
64.5k
  p224_widefelem tmp, tmp2;
595
64.5k
  p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
596
597
64.5k
  p224_felem_assign(ftmp, x_in);
598
64.5k
  p224_felem_assign(ftmp2, x_in);
599
600
  // delta = z^2
601
64.5k
  p224_felem_square(tmp, z_in);
602
64.5k
  p224_felem_reduce(delta, tmp);
603
604
  // gamma = y^2
605
64.5k
  p224_felem_square(tmp, y_in);
606
64.5k
  p224_felem_reduce(gamma, tmp);
607
608
  // beta = x*gamma
609
64.5k
  p224_felem_mul(tmp, x_in, gamma);
610
64.5k
  p224_felem_reduce(beta, tmp);
611
612
  // alpha = 3*(x-delta)*(x+delta)
613
64.5k
  p224_felem_diff(ftmp, delta);
614
  // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
615
64.5k
  p224_felem_sum(ftmp2, delta);
616
  // ftmp2[i] < 2^57 + 2^57 = 2^58
617
64.5k
  p224_felem_scalar(ftmp2, 3);
618
  // ftmp2[i] < 3 * 2^58 < 2^60
619
64.5k
  p224_felem_mul(tmp, ftmp, ftmp2);
620
  // tmp[i] < 2^60 * 2^59 * 4 = 2^121
621
64.5k
  p224_felem_reduce(alpha, tmp);
622
623
  // x' = alpha^2 - 8*beta
624
64.5k
  p224_felem_square(tmp, alpha);
625
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
626
64.5k
  p224_felem_assign(ftmp, beta);
627
64.5k
  p224_felem_scalar(ftmp, 8);
628
  // ftmp[i] < 8 * 2^57 = 2^60
629
64.5k
  p224_felem_diff_128_64(tmp, ftmp);
630
  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
631
64.5k
  p224_felem_reduce(x_out, tmp);
632
633
  // z' = (y + z)^2 - gamma - delta
634
64.5k
  p224_felem_sum(delta, gamma);
635
  // delta[i] < 2^57 + 2^57 = 2^58
636
64.5k
  p224_felem_assign(ftmp, y_in);
637
64.5k
  p224_felem_sum(ftmp, z_in);
638
  // ftmp[i] < 2^57 + 2^57 = 2^58
639
64.5k
  p224_felem_square(tmp, ftmp);
640
  // tmp[i] < 4 * 2^58 * 2^58 = 2^118
641
64.5k
  p224_felem_diff_128_64(tmp, delta);
642
  // tmp[i] < 2^118 + 2^64 + 8 < 2^119
643
64.5k
  p224_felem_reduce(z_out, tmp);
644
645
  // y' = alpha*(4*beta - x') - 8*gamma^2
646
64.5k
  p224_felem_scalar(beta, 4);
647
  // beta[i] < 4 * 2^57 = 2^59
648
64.5k
  p224_felem_diff(beta, x_out);
649
  // beta[i] < 2^59 + 2^58 + 2 < 2^60
650
64.5k
  p224_felem_mul(tmp, alpha, beta);
651
  // tmp[i] < 4 * 2^57 * 2^60 = 2^119
652
64.5k
  p224_felem_square(tmp2, gamma);
653
  // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
654
64.5k
  p224_widefelem_scalar(tmp2, 8);
655
  // tmp2[i] < 8 * 2^116 = 2^119
656
64.5k
  p224_widefelem_diff(tmp, tmp2);
657
  // tmp[i] < 2^119 + 2^120 < 2^121
658
64.5k
  p224_felem_reduce(y_out, tmp);
659
64.5k
}
660
661
// Add two elliptic curve points:
662
// (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
663
// X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
664
// 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
665
// Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
666
// X_1)^2 - X_3) -
667
//        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
668
// Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
669
//
670
// This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
671
672
// This function is not entirely constant-time: it includes a branch for
673
// checking whether the two input points are equal, (while not equal to the
674
// point at infinity). This case never happens during single point
675
// multiplication, so there is no timing leak for ECDH or ECDSA signing.
676
static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
677
                           const p224_felem x1, const p224_felem y1,
678
                           const p224_felem z1, const int mixed,
679
                           const p224_felem x2, const p224_felem y2,
680
86.0k
                           const p224_felem z2) {
681
86.0k
  p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
682
86.0k
  p224_widefelem tmp, tmp2;
683
86.0k
  p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
684
685
86.0k
  if (!mixed) {
686
    // ftmp2 = z2^2
687
6.47k
    p224_felem_square(tmp, z2);
688
6.47k
    p224_felem_reduce(ftmp2, tmp);
689
690
    // ftmp4 = z2^3
691
6.47k
    p224_felem_mul(tmp, ftmp2, z2);
692
6.47k
    p224_felem_reduce(ftmp4, tmp);
693
694
    // ftmp4 = z2^3*y1
695
6.47k
    p224_felem_mul(tmp2, ftmp4, y1);
696
6.47k
    p224_felem_reduce(ftmp4, tmp2);
697
698
    // ftmp2 = z2^2*x1
699
6.47k
    p224_felem_mul(tmp2, ftmp2, x1);
700
6.47k
    p224_felem_reduce(ftmp2, tmp2);
701
79.5k
  } else {
702
    // We'll assume z2 = 1 (special case z2 = 0 is handled later)
703
704
    // ftmp4 = z2^3*y1
705
79.5k
    p224_felem_assign(ftmp4, y1);
706
707
    // ftmp2 = z2^2*x1
708
79.5k
    p224_felem_assign(ftmp2, x1);
709
79.5k
  }
710
711
  // ftmp = z1^2
712
86.0k
  p224_felem_square(tmp, z1);
713
86.0k
  p224_felem_reduce(ftmp, tmp);
714
715
  // ftmp3 = z1^3
716
86.0k
  p224_felem_mul(tmp, ftmp, z1);
717
86.0k
  p224_felem_reduce(ftmp3, tmp);
718
719
  // tmp = z1^3*y2
720
86.0k
  p224_felem_mul(tmp, ftmp3, y2);
721
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
722
723
  // ftmp3 = z1^3*y2 - z2^3*y1
724
86.0k
  p224_felem_diff_128_64(tmp, ftmp4);
725
  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
726
86.0k
  p224_felem_reduce(ftmp3, tmp);
727
728
  // tmp = z1^2*x2
729
86.0k
  p224_felem_mul(tmp, ftmp, x2);
730
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
731
732
  // ftmp = z1^2*x2 - z2^2*x1
733
86.0k
  p224_felem_diff_128_64(tmp, ftmp2);
734
  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
735
86.0k
  p224_felem_reduce(ftmp, tmp);
736
737
  // The formulae are incorrect if the points are equal, so we check for this
738
  // and do doubling if this happens.
739
86.0k
  x_equal = p224_felem_is_zero(ftmp);
740
86.0k
  y_equal = p224_felem_is_zero(ftmp3);
741
86.0k
  z1_is_zero = p224_felem_is_zero(z1);
742
86.0k
  z2_is_zero = p224_felem_is_zero(z2);
743
  // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
744
86.0k
  p224_limb is_nontrivial_double =
745
86.0k
      x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
746
86.0k
  if (constant_time_declassify_w(is_nontrivial_double)) {
747
0
    p224_point_double(x3, y3, z3, x1, y1, z1);
748
0
    return;
749
0
  }
750
751
  // ftmp5 = z1*z2
752
86.0k
  if (!mixed) {
753
6.47k
    p224_felem_mul(tmp, z1, z2);
754
6.47k
    p224_felem_reduce(ftmp5, tmp);
755
79.5k
  } else {
756
    // special case z2 = 0 is handled later
757
79.5k
    p224_felem_assign(ftmp5, z1);
758
79.5k
  }
759
760
  // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
761
86.0k
  p224_felem_mul(tmp, ftmp, ftmp5);
762
86.0k
  p224_felem_reduce(z_out, tmp);
763
764
  // ftmp = (z1^2*x2 - z2^2*x1)^2
765
86.0k
  p224_felem_assign(ftmp5, ftmp);
766
86.0k
  p224_felem_square(tmp, ftmp);
767
86.0k
  p224_felem_reduce(ftmp, tmp);
768
769
  // ftmp5 = (z1^2*x2 - z2^2*x1)^3
770
86.0k
  p224_felem_mul(tmp, ftmp, ftmp5);
771
86.0k
  p224_felem_reduce(ftmp5, tmp);
772
773
  // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
774
86.0k
  p224_felem_mul(tmp, ftmp2, ftmp);
775
86.0k
  p224_felem_reduce(ftmp2, tmp);
776
777
  // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
778
86.0k
  p224_felem_mul(tmp, ftmp4, ftmp5);
779
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
780
781
  // tmp2 = (z1^3*y2 - z2^3*y1)^2
782
86.0k
  p224_felem_square(tmp2, ftmp3);
783
  // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
784
785
  // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
786
86.0k
  p224_felem_diff_128_64(tmp2, ftmp5);
787
  // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
788
789
  // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
790
86.0k
  p224_felem_assign(ftmp5, ftmp2);
791
86.0k
  p224_felem_scalar(ftmp5, 2);
792
  // ftmp5[i] < 2 * 2^57 = 2^58
793
794
  /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
795
     2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
796
86.0k
  p224_felem_diff_128_64(tmp2, ftmp5);
797
  // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
798
86.0k
  p224_felem_reduce(x_out, tmp2);
799
800
  // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
801
86.0k
  p224_felem_diff(ftmp2, x_out);
802
  // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
803
804
  // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
805
86.0k
  p224_felem_mul(tmp2, ftmp3, ftmp2);
806
  // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
807
808
  /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
809
     z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
810
86.0k
  p224_widefelem_diff(tmp2, tmp);
811
  // tmp2[i] < 2^118 + 2^120 < 2^121
812
86.0k
  p224_felem_reduce(y_out, tmp2);
813
814
  // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
815
  // the point at infinity, so we need to check for this separately
816
817
  // if point 1 is at infinity, copy point 2 to output, and vice versa
818
86.0k
  p224_copy_conditional(x_out, x2, z1_is_zero);
819
86.0k
  p224_copy_conditional(x_out, x1, z2_is_zero);
820
86.0k
  p224_copy_conditional(y_out, y2, z1_is_zero);
821
86.0k
  p224_copy_conditional(y_out, y1, z2_is_zero);
822
86.0k
  p224_copy_conditional(z_out, z2, z1_is_zero);
823
86.0k
  p224_copy_conditional(z_out, z1, z2_is_zero);
824
86.0k
  p224_felem_assign(x3, x_out);
825
86.0k
  p224_felem_assign(y3, y_out);
826
86.0k
  p224_felem_assign(z3, z_out);
827
86.0k
}
828
829
// p224_select_point selects the |idx|th point from a precomputation table and
830
// copies it to out.
831
static void p224_select_point(const uint64_t idx, size_t size,
832
                              const p224_felem pre_comp[/*size*/][3],
833
73.7k
                              p224_felem out[3]) {
834
73.7k
  p224_limb *outlimbs = &out[0][0];
835
73.7k
  OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
836
837
1.25M
  for (size_t i = 0; i < size; i++) {
838
1.18M
    const p224_limb *inlimbs = &pre_comp[i][0][0];
839
1.18M
    uint64_t mask = i ^ idx;
840
1.18M
    mask |= mask >> 4;
841
1.18M
    mask |= mask >> 2;
842
1.18M
    mask |= mask >> 1;
843
1.18M
    mask &= 1;
844
1.18M
    mask--;
845
15.3M
    for (size_t j = 0; j < 4 * 3; j++) {
846
14.1M
      outlimbs[j] |= inlimbs[j] & mask;
847
14.1M
    }
848
1.18M
  }
849
73.7k
}
850
851
// p224_get_bit returns the |i|th bit in |in|.
852
357k
static crypto_word_t p224_get_bit(const EC_SCALAR *in, size_t i) {
853
357k
  if (i >= 224) {
854
254
    return 0;
855
254
  }
856
357k
  static_assert(sizeof(in->words[0]) == 8, "BN_ULONG is not 64-bit");
857
357k
  return (in->words[i >> 6] >> (i & 63)) & 1;
858
357k
}
859
860
// Takes the Jacobian coordinates (X, Y, Z) of a point and returns
861
// (X', Y') = (X/Z^2, Y/Z^3)
862
static int ec_GFp_nistp224_point_get_affine_coordinates(
863
    const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x,
864
533
    EC_FELEM *y) {
865
533
  if (constant_time_declassify_int(
866
533
          ec_GFp_simple_is_at_infinity(group, point))) {
867
0
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
868
0
    return 0;
869
0
  }
870
871
533
  p224_felem z1, z2;
872
533
  p224_widefelem tmp;
873
533
  p224_generic_to_felem(z1, &point->Z);
874
533
  p224_felem_inv(z2, z1);
875
533
  p224_felem_square(tmp, z2);
876
533
  p224_felem_reduce(z1, tmp);
877
878
533
  if (x != NULL) {
879
533
    p224_felem x_in, x_out;
880
533
    p224_generic_to_felem(x_in, &point->X);
881
533
    p224_felem_mul(tmp, x_in, z1);
882
533
    p224_felem_reduce(x_out, tmp);
883
533
    p224_felem_to_generic(x, x_out);
884
533
  }
885
886
533
  if (y != NULL) {
887
406
    p224_felem y_in, y_out;
888
406
    p224_generic_to_felem(y_in, &point->Y);
889
406
    p224_felem_mul(tmp, z1, z2);
890
406
    p224_felem_reduce(z1, tmp);
891
406
    p224_felem_mul(tmp, y_in, z1);
892
406
    p224_felem_reduce(y_out, tmp);
893
406
    p224_felem_to_generic(y, y_out);
894
406
  }
895
896
533
  return 1;
897
533
}
898
899
static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_JACOBIAN *r,
900
0
                                const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
901
0
  p224_felem x1, y1, z1, x2, y2, z2;
902
0
  p224_generic_to_felem(x1, &a->X);
903
0
  p224_generic_to_felem(y1, &a->Y);
904
0
  p224_generic_to_felem(z1, &a->Z);
905
0
  p224_generic_to_felem(x2, &b->X);
906
0
  p224_generic_to_felem(y2, &b->Y);
907
0
  p224_generic_to_felem(z2, &b->Z);
908
0
  p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
909
  // The outputs are already reduced, but still need to be contracted.
910
0
  p224_felem_to_generic(&r->X, x1);
911
0
  p224_felem_to_generic(&r->Y, y1);
912
0
  p224_felem_to_generic(&r->Z, z1);
913
0
}
914
915
static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
916
0
                                const EC_JACOBIAN *a) {
917
0
  p224_felem x, y, z;
918
0
  p224_generic_to_felem(x, &a->X);
919
0
  p224_generic_to_felem(y, &a->Y);
920
0
  p224_generic_to_felem(z, &a->Z);
921
0
  p224_point_double(x, y, z, x, y, z);
922
  // The outputs are already reduced, but still need to be contracted.
923
0
  p224_felem_to_generic(&r->X, x);
924
0
  p224_felem_to_generic(&r->Y, y);
925
0
  p224_felem_to_generic(&r->Z, z);
926
0
}
927
928
static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
929
127
                                         const EC_JACOBIAN *p) {
930
127
  OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
931
932
127
  p224_generic_to_felem(out[1][0], &p->X);
933
127
  p224_generic_to_felem(out[1][1], &p->Y);
934
127
  p224_generic_to_felem(out[1][2], &p->Z);
935
936
2.03k
  for (size_t j = 2; j <= 16; ++j) {
937
1.90k
    if (j & 1) {
938
889
      p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
939
889
                     out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
940
1.01k
    } else {
941
1.01k
      p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
942
1.01k
                        out[j / 2][1], out[j / 2][2]);
943
1.01k
    }
944
1.90k
  }
945
127
}
946
947
static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
948
                                      const EC_JACOBIAN *p,
949
0
                                      const EC_SCALAR *scalar) {
950
0
  p224_felem p_pre_comp[17][3];
951
0
  ec_GFp_nistp224_make_precomp(p_pre_comp, p);
952
953
  // Set nq to the point at infinity.
954
0
  p224_felem nq[3], tmp[4];
955
0
  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
956
957
0
  int skip = 1;  // Save two point operations in the first round.
958
0
  for (size_t i = 220; i < 221; i--) {
959
0
    if (!skip) {
960
0
      p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
961
0
    }
962
963
    // Add every 5 doublings.
964
0
    if (i % 5 == 0) {
965
0
      crypto_word_t bits = p224_get_bit(scalar, i + 4) << 5;
966
0
      bits |= p224_get_bit(scalar, i + 3) << 4;
967
0
      bits |= p224_get_bit(scalar, i + 2) << 3;
968
0
      bits |= p224_get_bit(scalar, i + 1) << 2;
969
0
      bits |= p224_get_bit(scalar, i) << 1;
970
0
      bits |= p224_get_bit(scalar, i - 1);
971
0
      crypto_word_t sign, digit;
972
0
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
973
974
      // Select the point to add or subtract.
975
0
      p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
976
0
      p224_felem_neg(tmp[3], tmp[1]);  // (X, -Y, Z) is the negative point
977
0
      p224_copy_conditional(tmp[1], tmp[3], sign);
978
979
0
      if (!skip) {
980
0
        p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
981
0
                       tmp[0], tmp[1], tmp[2]);
982
0
      } else {
983
0
        OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
984
0
        skip = 0;
985
0
      }
986
0
    }
987
0
  }
988
989
  // Reduce the output to its unique minimal representation.
990
0
  p224_felem_to_generic(&r->X, nq[0]);
991
0
  p224_felem_to_generic(&r->Y, nq[1]);
992
0
  p224_felem_to_generic(&r->Z, nq[2]);
993
0
}
994
995
static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
996
                                           EC_JACOBIAN *r,
997
1.31k
                                           const EC_SCALAR *scalar) {
998
  // Set nq to the point at infinity.
999
1.31k
  p224_felem nq[3], tmp[3];
1000
1.31k
  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1001
1002
1.31k
  int skip = 1;  // Save two point operations in the first round.
1003
38.1k
  for (size_t i = 27; i < 28; i--) {
1004
    // double
1005
36.8k
    if (!skip) {
1006
35.5k
      p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1007
35.5k
    }
1008
1009
    // First, look 28 bits upwards.
1010
36.8k
    crypto_word_t bits = p224_get_bit(scalar, i + 196) << 3;
1011
36.8k
    bits |= p224_get_bit(scalar, i + 140) << 2;
1012
36.8k
    bits |= p224_get_bit(scalar, i + 84) << 1;
1013
36.8k
    bits |= p224_get_bit(scalar, i + 28);
1014
    // Select the point to add, in constant time.
1015
36.8k
    p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
1016
1017
36.8k
    if (!skip) {
1018
35.5k
      p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1019
35.5k
                     tmp[0], tmp[1], tmp[2]);
1020
35.5k
    } else {
1021
1.31k
      OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1022
1.31k
      skip = 0;
1023
1.31k
    }
1024
1025
    // Second, look at the current position/
1026
36.8k
    bits = p224_get_bit(scalar, i + 168) << 3;
1027
36.8k
    bits |= p224_get_bit(scalar, i + 112) << 2;
1028
36.8k
    bits |= p224_get_bit(scalar, i + 56) << 1;
1029
36.8k
    bits |= p224_get_bit(scalar, i);
1030
    // Select the point to add, in constant time.
1031
36.8k
    p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
1032
36.8k
    p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1033
36.8k
                   tmp[0], tmp[1], tmp[2]);
1034
36.8k
  }
1035
1036
  // Reduce the output to its unique minimal representation.
1037
1.31k
  p224_felem_to_generic(&r->X, nq[0]);
1038
1.31k
  p224_felem_to_generic(&r->Y, nq[1]);
1039
1.31k
  p224_felem_to_generic(&r->Z, nq[2]);
1040
1.31k
}
1041
1042
static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
1043
                                             EC_JACOBIAN *r,
1044
                                             const EC_SCALAR *g_scalar,
1045
                                             const EC_JACOBIAN *p,
1046
127
                                             const EC_SCALAR *p_scalar) {
1047
  // TODO(davidben): If P-224 ECDSA verify performance ever matters, using
1048
  // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
1049
127
  p224_felem p_pre_comp[17][3];
1050
127
  ec_GFp_nistp224_make_precomp(p_pre_comp, p);
1051
1052
  // Set nq to the point at infinity.
1053
127
  p224_felem nq[3], tmp[3];
1054
127
  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1055
1056
  // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
1057
  // the generator (two in each of the last 28 rounds) and additions of p (every
1058
  // 5th round).
1059
127
  int skip = 1;  // Save two point operations in the first round.
1060
28.1k
  for (size_t i = 220; i < 221; i--) {
1061
28.0k
    if (!skip) {
1062
27.9k
      p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1063
27.9k
    }
1064
1065
    // Add multiples of the generator.
1066
28.0k
    if (i <= 27) {
1067
      // First, look 28 bits upwards.
1068
3.55k
      crypto_word_t bits = p224_get_bit(g_scalar, i + 196) << 3;
1069
3.55k
      bits |= p224_get_bit(g_scalar, i + 140) << 2;
1070
3.55k
      bits |= p224_get_bit(g_scalar, i + 84) << 1;
1071
3.55k
      bits |= p224_get_bit(g_scalar, i + 28);
1072
1073
3.55k
      size_t index = (size_t)bits;
1074
3.55k
      p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1075
3.55k
                     g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
1076
3.55k
                     g_p224_pre_comp[1][index][2]);
1077
3.55k
      assert(!skip);
1078
1079
      // Second, look at the current position.
1080
3.55k
      bits = p224_get_bit(g_scalar, i + 168) << 3;
1081
3.55k
      bits |= p224_get_bit(g_scalar, i + 112) << 2;
1082
3.55k
      bits |= p224_get_bit(g_scalar, i + 56) << 1;
1083
3.55k
      bits |= p224_get_bit(g_scalar, i);
1084
3.55k
      index = (size_t)bits;
1085
3.55k
      p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1086
3.55k
                     g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
1087
3.55k
                     g_p224_pre_comp[0][index][2]);
1088
3.55k
    }
1089
1090
    // Incorporate |p_scalar| every 5 doublings.
1091
28.0k
    if (i % 5 == 0) {
1092
5.71k
      crypto_word_t bits = p224_get_bit(p_scalar, i + 4) << 5;
1093
5.71k
      bits |= p224_get_bit(p_scalar, i + 3) << 4;
1094
5.71k
      bits |= p224_get_bit(p_scalar, i + 2) << 3;
1095
5.71k
      bits |= p224_get_bit(p_scalar, i + 1) << 2;
1096
5.71k
      bits |= p224_get_bit(p_scalar, i) << 1;
1097
5.71k
      bits |= p224_get_bit(p_scalar, i - 1);
1098
5.71k
      crypto_word_t sign, digit;
1099
5.71k
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1100
1101
      // Select the point to add or subtract.
1102
5.71k
      OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
1103
5.71k
      if (sign) {
1104
2.79k
        p224_felem_neg(tmp[1], tmp[1]);  // (X, -Y, Z) is the negative point
1105
2.79k
      }
1106
1107
5.71k
      if (!skip) {
1108
5.58k
        p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1109
5.58k
                       tmp[0], tmp[1], tmp[2]);
1110
5.58k
      } else {
1111
127
        OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1112
127
        skip = 0;
1113
127
      }
1114
5.71k
    }
1115
28.0k
  }
1116
1117
  // Reduce the output to its unique minimal representation.
1118
127
  p224_felem_to_generic(&r->X, nq[0]);
1119
127
  p224_felem_to_generic(&r->Y, nq[1]);
1120
127
  p224_felem_to_generic(&r->Z, nq[2]);
1121
127
}
1122
1123
static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
1124
15.5k
                                      const EC_FELEM *a, const EC_FELEM *b) {
1125
15.5k
  p224_felem felem1, felem2;
1126
15.5k
  p224_widefelem wide;
1127
15.5k
  p224_generic_to_felem(felem1, a);
1128
15.5k
  p224_generic_to_felem(felem2, b);
1129
15.5k
  p224_felem_mul(wide, felem1, felem2);
1130
15.5k
  p224_felem_reduce(felem1, wide);
1131
15.5k
  p224_felem_to_generic(r, felem1);
1132
15.5k
}
1133
1134
static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
1135
15.7k
                                      const EC_FELEM *a) {
1136
15.7k
  p224_felem felem;
1137
15.7k
  p224_generic_to_felem(felem, a);
1138
15.7k
  p224_widefelem wide;
1139
15.7k
  p224_felem_square(wide, felem);
1140
15.7k
  p224_felem_reduce(felem, wide);
1141
15.7k
  p224_felem_to_generic(r, felem);
1142
15.7k
}
1143
1144
15
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
1145
15
  out->group_init = ec_GFp_simple_group_init;
1146
15
  out->group_finish = ec_GFp_simple_group_finish;
1147
15
  out->group_set_curve = ec_GFp_simple_group_set_curve;
1148
15
  out->point_get_affine_coordinates =
1149
15
      ec_GFp_nistp224_point_get_affine_coordinates;
1150
15
  out->add = ec_GFp_nistp224_add;
1151
15
  out->dbl = ec_GFp_nistp224_dbl;
1152
15
  out->mul = ec_GFp_nistp224_point_mul;
1153
15
  out->mul_base = ec_GFp_nistp224_point_mul_base;
1154
15
  out->mul_public = ec_GFp_nistp224_point_mul_public;
1155
15
  out->felem_mul = ec_GFp_nistp224_felem_mul;
1156
15
  out->felem_sqr = ec_GFp_nistp224_felem_sqr;
1157
15
  out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
1158
15
  out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
1159
15
  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1160
15
  out->scalar_to_montgomery_inv_vartime =
1161
15
      ec_simple_scalar_to_montgomery_inv_vartime;
1162
15
  out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
1163
15
}
1164
1165
#endif  // BORINGSSL_HAS_UINT128 && !SMALL