/src/boringssl/crypto/stack/stack.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | | * All rights reserved. |
3 | | * |
4 | | * This package is an SSL implementation written |
5 | | * by Eric Young (eay@cryptsoft.com). |
6 | | * The implementation was written so as to conform with Netscapes SSL. |
7 | | * |
8 | | * This library is free for commercial and non-commercial use as long as |
9 | | * the following conditions are aheared to. The following conditions |
10 | | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | | * included with this distribution is covered by the same copyright terms |
13 | | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | | * |
15 | | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | | * the code are not to be removed. |
17 | | * If this package is used in a product, Eric Young should be given attribution |
18 | | * as the author of the parts of the library used. |
19 | | * This can be in the form of a textual message at program startup or |
20 | | * in documentation (online or textual) provided with the package. |
21 | | * |
22 | | * Redistribution and use in source and binary forms, with or without |
23 | | * modification, are permitted provided that the following conditions |
24 | | * are met: |
25 | | * 1. Redistributions of source code must retain the copyright |
26 | | * notice, this list of conditions and the following disclaimer. |
27 | | * 2. Redistributions in binary form must reproduce the above copyright |
28 | | * notice, this list of conditions and the following disclaimer in the |
29 | | * documentation and/or other materials provided with the distribution. |
30 | | * 3. All advertising materials mentioning features or use of this software |
31 | | * must display the following acknowledgement: |
32 | | * "This product includes cryptographic software written by |
33 | | * Eric Young (eay@cryptsoft.com)" |
34 | | * The word 'cryptographic' can be left out if the rouines from the library |
35 | | * being used are not cryptographic related :-). |
36 | | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | | * the apps directory (application code) you must include an acknowledgement: |
38 | | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | | * |
40 | | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | | * SUCH DAMAGE. |
51 | | * |
52 | | * The licence and distribution terms for any publically available version or |
53 | | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | | * copied and put under another distribution licence |
55 | | * [including the GNU Public Licence.] */ |
56 | | |
57 | | #include <openssl/stack.h> |
58 | | |
59 | | #include <assert.h> |
60 | | #include <limits.h> |
61 | | |
62 | | #include <openssl/err.h> |
63 | | #include <openssl/mem.h> |
64 | | |
65 | | #include "../internal.h" |
66 | | |
67 | | |
68 | | // kMinSize is the number of pointers that will be initially allocated in a new |
69 | | // stack. |
70 | | static const size_t kMinSize = 4; |
71 | | |
72 | 3.26M | _STACK *sk_new(OPENSSL_sk_cmp_func comp) { |
73 | 3.26M | _STACK *ret = OPENSSL_malloc(sizeof(_STACK)); |
74 | 3.26M | if (ret == NULL) { |
75 | 0 | return NULL; |
76 | 0 | } |
77 | 3.26M | OPENSSL_memset(ret, 0, sizeof(_STACK)); |
78 | | |
79 | 3.26M | ret->data = OPENSSL_malloc(sizeof(void *) * kMinSize); |
80 | 3.26M | if (ret->data == NULL) { |
81 | 0 | goto err; |
82 | 0 | } |
83 | | |
84 | 3.26M | OPENSSL_memset(ret->data, 0, sizeof(void *) * kMinSize); |
85 | | |
86 | 3.26M | ret->comp = comp; |
87 | 3.26M | ret->num_alloc = kMinSize; |
88 | | |
89 | 3.26M | return ret; |
90 | | |
91 | 0 | err: |
92 | 0 | OPENSSL_free(ret); |
93 | 0 | return NULL; |
94 | 3.26M | } |
95 | | |
96 | 3.26M | _STACK *sk_new_null(void) { return sk_new(NULL); } |
97 | | |
98 | 54.2M | size_t sk_num(const _STACK *sk) { |
99 | 54.2M | if (sk == NULL) { |
100 | 436k | return 0; |
101 | 436k | } |
102 | 53.8M | return sk->num; |
103 | 54.2M | } |
104 | | |
105 | 0 | void sk_zero(_STACK *sk) { |
106 | 0 | if (sk == NULL || sk->num == 0) { |
107 | 0 | return; |
108 | 0 | } |
109 | 0 | OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num); |
110 | 0 | sk->num = 0; |
111 | 0 | sk->sorted = 0; |
112 | 0 | } |
113 | | |
114 | 48.2M | void *sk_value(const _STACK *sk, size_t i) { |
115 | 48.2M | if (!sk || i >= sk->num) { |
116 | 0 | return NULL; |
117 | 0 | } |
118 | 48.2M | return sk->data[i]; |
119 | 48.2M | } |
120 | | |
121 | 649k | void *sk_set(_STACK *sk, size_t i, void *value) { |
122 | 649k | if (!sk || i >= sk->num) { |
123 | 0 | return NULL; |
124 | 0 | } |
125 | 649k | return sk->data[i] = value; |
126 | 649k | } |
127 | | |
128 | 3.79M | void sk_free(_STACK *sk) { |
129 | 3.79M | if (sk == NULL) { |
130 | 347k | return; |
131 | 347k | } |
132 | 3.44M | OPENSSL_free(sk->data); |
133 | 3.44M | OPENSSL_free(sk); |
134 | 3.44M | } |
135 | | |
136 | | void sk_pop_free_ex(_STACK *sk, OPENSSL_sk_call_free_func call_free_func, |
137 | 3.46M | OPENSSL_sk_free_func free_func) { |
138 | 3.46M | if (sk == NULL) { |
139 | 1.02M | return; |
140 | 1.02M | } |
141 | | |
142 | 6.68M | for (size_t i = 0; i < sk->num; i++) { |
143 | 4.24M | if (sk->data[i] != NULL) { |
144 | 4.22M | call_free_func(free_func, sk->data[i]); |
145 | 4.22M | } |
146 | 4.24M | } |
147 | 2.43M | sk_free(sk); |
148 | 2.43M | } |
149 | | |
150 | | // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func| |
151 | | // directly. This is undefined in C. Some callers called |sk_pop_free| directly, |
152 | | // so we must maintain a compatibility version for now. |
153 | 0 | static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) { |
154 | 0 | func(ptr); |
155 | 0 | } |
156 | | |
157 | 0 | void sk_pop_free(_STACK *sk, OPENSSL_sk_free_func free_func) { |
158 | 0 | sk_pop_free_ex(sk, call_free_func_legacy, free_func); |
159 | 0 | } |
160 | | |
161 | 5.73M | size_t sk_insert(_STACK *sk, void *p, size_t where) { |
162 | 5.73M | if (sk == NULL) { |
163 | 0 | return 0; |
164 | 0 | } |
165 | | |
166 | 5.73M | if (sk->num >= INT_MAX) { |
167 | 0 | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
168 | 0 | return 0; |
169 | 0 | } |
170 | | |
171 | 5.73M | if (sk->num_alloc <= sk->num + 1) { |
172 | | // Attempt to double the size of the array. |
173 | 201k | size_t new_alloc = sk->num_alloc << 1; |
174 | 201k | size_t alloc_size = new_alloc * sizeof(void *); |
175 | 201k | void **data; |
176 | | |
177 | | // If the doubling overflowed, try to increment. |
178 | 201k | if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { |
179 | 0 | new_alloc = sk->num_alloc + 1; |
180 | 0 | alloc_size = new_alloc * sizeof(void *); |
181 | 0 | } |
182 | | |
183 | | // If the increment also overflowed, fail. |
184 | 201k | if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { |
185 | 0 | return 0; |
186 | 0 | } |
187 | | |
188 | 201k | data = OPENSSL_realloc(sk->data, alloc_size); |
189 | 201k | if (data == NULL) { |
190 | 0 | return 0; |
191 | 0 | } |
192 | | |
193 | 201k | sk->data = data; |
194 | 201k | sk->num_alloc = new_alloc; |
195 | 201k | } |
196 | | |
197 | 5.73M | if (where >= sk->num) { |
198 | 5.73M | sk->data[sk->num] = p; |
199 | 5.73M | } else { |
200 | 0 | OPENSSL_memmove(&sk->data[where + 1], &sk->data[where], |
201 | 0 | sizeof(void *) * (sk->num - where)); |
202 | 0 | sk->data[where] = p; |
203 | 0 | } |
204 | | |
205 | 5.73M | sk->num++; |
206 | 5.73M | sk->sorted = 0; |
207 | | |
208 | 5.73M | return sk->num; |
209 | 5.73M | } |
210 | | |
211 | 2.96k | void *sk_delete(_STACK *sk, size_t where) { |
212 | 2.96k | void *ret; |
213 | | |
214 | 2.96k | if (!sk || where >= sk->num) { |
215 | 0 | return NULL; |
216 | 0 | } |
217 | | |
218 | 2.96k | ret = sk->data[where]; |
219 | | |
220 | 2.96k | if (where != sk->num - 1) { |
221 | 2.95k | OPENSSL_memmove(&sk->data[where], &sk->data[where + 1], |
222 | 2.95k | sizeof(void *) * (sk->num - where - 1)); |
223 | 2.95k | } |
224 | | |
225 | 2.96k | sk->num--; |
226 | 2.96k | return ret; |
227 | 2.96k | } |
228 | | |
229 | 2.95k | void *sk_delete_ptr(_STACK *sk, const void *p) { |
230 | 2.95k | if (sk == NULL) { |
231 | 0 | return NULL; |
232 | 0 | } |
233 | | |
234 | 9.43k | for (size_t i = 0; i < sk->num; i++) { |
235 | 9.43k | if (sk->data[i] == p) { |
236 | 2.95k | return sk_delete(sk, i); |
237 | 2.95k | } |
238 | 9.43k | } |
239 | | |
240 | 0 | return NULL; |
241 | 2.95k | } |
242 | | |
243 | | void sk_delete_if(_STACK *sk, OPENSSL_sk_call_delete_if_func call_func, |
244 | 0 | OPENSSL_sk_delete_if_func func, void *data) { |
245 | 0 | if (sk == NULL) { |
246 | 0 | return; |
247 | 0 | } |
248 | | |
249 | 0 | size_t new_num = 0; |
250 | 0 | for (size_t i = 0; i < sk->num; i++) { |
251 | 0 | if (!call_func(func, sk->data[i], data)) { |
252 | 0 | sk->data[new_num] = sk->data[i]; |
253 | 0 | new_num++; |
254 | 0 | } |
255 | 0 | } |
256 | 0 | sk->num = new_num; |
257 | 0 | } |
258 | | |
259 | | int sk_find(const _STACK *sk, size_t *out_index, const void *p, |
260 | 68.8k | OPENSSL_sk_call_cmp_func call_cmp_func) { |
261 | 68.8k | if (sk == NULL) { |
262 | 0 | return 0; |
263 | 0 | } |
264 | | |
265 | 68.8k | if (sk->comp == NULL) { |
266 | | // Use pointer equality when no comparison function has been set. |
267 | 694k | for (size_t i = 0; i < sk->num; i++) { |
268 | 694k | if (sk->data[i] == p) { |
269 | 68.6k | if (out_index) { |
270 | 5.00k | *out_index = i; |
271 | 5.00k | } |
272 | 68.6k | return 1; |
273 | 68.6k | } |
274 | 694k | } |
275 | 180 | return 0; |
276 | 68.8k | } |
277 | | |
278 | 0 | if (p == NULL) { |
279 | 0 | return 0; |
280 | 0 | } |
281 | | |
282 | 0 | if (!sk_is_sorted(sk)) { |
283 | 0 | for (size_t i = 0; i < sk->num; i++) { |
284 | 0 | const void *elem = sk->data[i]; |
285 | 0 | if (call_cmp_func(sk->comp, &p, &elem) == 0) { |
286 | 0 | if (out_index) { |
287 | 0 | *out_index = i; |
288 | 0 | } |
289 | 0 | return 1; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | return 0; |
293 | 0 | } |
294 | | |
295 | | // The stack is sorted, so binary search to find the element. |
296 | | // |
297 | | // |lo| and |hi| maintain a half-open interval of where the answer may be. All |
298 | | // indices such that |lo <= idx < hi| are candidates. |
299 | 0 | size_t lo = 0, hi = sk->num; |
300 | 0 | while (lo < hi) { |
301 | | // Bias |mid| towards |lo|. See the |r == 0| case below. |
302 | 0 | size_t mid = lo + (hi - lo - 1) / 2; |
303 | 0 | assert(lo <= mid && mid < hi); |
304 | 0 | const void *elem = sk->data[mid]; |
305 | 0 | int r = call_cmp_func(sk->comp, &p, &elem); |
306 | 0 | if (r > 0) { |
307 | 0 | lo = mid + 1; // |mid| is too low. |
308 | 0 | } else if (r < 0) { |
309 | 0 | hi = mid; // |mid| is too high. |
310 | 0 | } else { |
311 | | // |mid| matches. However, this function returns the earliest match, so we |
312 | | // can only return if the range has size one. |
313 | 0 | if (hi - lo == 1) { |
314 | 0 | if (out_index != NULL) { |
315 | 0 | *out_index = mid; |
316 | 0 | } |
317 | 0 | return 1; |
318 | 0 | } |
319 | | // The sample is biased towards |lo|. |mid| can only be |hi - 1| if |
320 | | // |hi - lo| was one, so this makes forward progress. |
321 | 0 | assert(mid + 1 < hi); |
322 | 0 | hi = mid + 1; |
323 | 0 | } |
324 | 0 | } |
325 | | |
326 | 0 | assert(lo == hi); |
327 | 0 | return 0; // Not found. |
328 | 0 | } |
329 | | |
330 | 0 | void *sk_shift(_STACK *sk) { |
331 | 0 | if (sk == NULL) { |
332 | 0 | return NULL; |
333 | 0 | } |
334 | 0 | if (sk->num == 0) { |
335 | 0 | return NULL; |
336 | 0 | } |
337 | 0 | return sk_delete(sk, 0); |
338 | 0 | } |
339 | | |
340 | 5.54M | size_t sk_push(_STACK *sk, void *p) { return (sk_insert(sk, p, sk->num)); } |
341 | | |
342 | 3 | void *sk_pop(_STACK *sk) { |
343 | 3 | if (sk == NULL) { |
344 | 0 | return NULL; |
345 | 0 | } |
346 | 3 | if (sk->num == 0) { |
347 | 0 | return NULL; |
348 | 0 | } |
349 | 3 | return sk_delete(sk, sk->num - 1); |
350 | 3 | } |
351 | | |
352 | 181k | _STACK *sk_dup(const _STACK *sk) { |
353 | 181k | if (sk == NULL) { |
354 | 0 | return NULL; |
355 | 0 | } |
356 | | |
357 | 181k | _STACK *ret = OPENSSL_malloc(sizeof(_STACK)); |
358 | 181k | if (ret == NULL) { |
359 | 0 | return NULL; |
360 | 0 | } |
361 | 181k | OPENSSL_memset(ret, 0, sizeof(_STACK)); |
362 | | |
363 | 181k | ret->data = OPENSSL_malloc(sizeof(void *) * sk->num_alloc); |
364 | 181k | if (ret->data == NULL) { |
365 | 0 | goto err; |
366 | 0 | } |
367 | | |
368 | 181k | ret->num = sk->num; |
369 | 181k | OPENSSL_memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
370 | 181k | ret->sorted = sk->sorted; |
371 | 181k | ret->num_alloc = sk->num_alloc; |
372 | 181k | ret->comp = sk->comp; |
373 | 181k | return ret; |
374 | | |
375 | 0 | err: |
376 | 0 | sk_free(ret); |
377 | 0 | return NULL; |
378 | 181k | } |
379 | | |
380 | | #if defined(_MSC_VER) |
381 | | struct sort_compare_ctx { |
382 | | OPENSSL_sk_call_cmp_func call_cmp_func; |
383 | | OPENSSL_sk_cmp_func cmp_func; |
384 | | }; |
385 | | |
386 | | static int sort_compare(void *ctx_v, const void *a, const void *b) { |
387 | | struct sort_compare_ctx *ctx = ctx_v; |
388 | | return ctx->call_cmp_func(ctx->cmp_func, a, b); |
389 | | } |
390 | | #endif |
391 | | |
392 | 0 | void sk_sort(_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func) { |
393 | 0 | if (sk == NULL || sk->comp == NULL || sk->sorted) { |
394 | 0 | return; |
395 | 0 | } |
396 | | |
397 | 0 | if (sk->num >= 2) { |
398 | | #if defined(_MSC_VER) |
399 | | // MSVC's |qsort_s| is different from the C11 one. |
400 | | // https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/qsort-s?view=msvc-170 |
401 | | struct sort_compare_ctx ctx = {call_cmp_func, sk->comp}; |
402 | | qsort_s(sk->data, sk->num, sizeof(void *), sort_compare, &ctx); |
403 | | #else |
404 | | // sk->comp is a function that takes pointers to pointers to elements, but |
405 | | // qsort take a comparison function that just takes pointers to elements. |
406 | | // However, since we're passing an array of pointers to qsort, we can just |
407 | | // cast the comparison function and everything works. |
408 | | // |
409 | | // TODO(davidben): This is undefined behavior, but the call is in libc so, |
410 | | // e.g., CFI does not notice. |qsort| is missing a void* parameter in its |
411 | | // callback, while no one defines |qsort_r| or |qsort_s| consistently. See |
412 | | // https://stackoverflow.com/a/39561369 |
413 | 0 | int (*comp_func)(const void *, const void *) = |
414 | 0 | (int (*)(const void *, const void *))(sk->comp); |
415 | 0 | qsort(sk->data, sk->num, sizeof(void *), comp_func); |
416 | 0 | #endif |
417 | 0 | } |
418 | 0 | sk->sorted = 1; |
419 | 0 | } |
420 | | |
421 | 0 | int sk_is_sorted(const _STACK *sk) { |
422 | 0 | if (!sk) { |
423 | 0 | return 1; |
424 | 0 | } |
425 | | // Zero- and one-element lists are always sorted. |
426 | 0 | return sk->sorted || (sk->comp != NULL && sk->num < 2); |
427 | 0 | } |
428 | | |
429 | 0 | OPENSSL_sk_cmp_func sk_set_cmp_func(_STACK *sk, OPENSSL_sk_cmp_func comp) { |
430 | 0 | OPENSSL_sk_cmp_func old = sk->comp; |
431 | |
|
432 | 0 | if (sk->comp != comp) { |
433 | 0 | sk->sorted = 0; |
434 | 0 | } |
435 | 0 | sk->comp = comp; |
436 | |
|
437 | 0 | return old; |
438 | 0 | } |
439 | | |
440 | | _STACK *sk_deep_copy(const _STACK *sk, OPENSSL_sk_call_copy_func call_copy_func, |
441 | | OPENSSL_sk_copy_func copy_func, |
442 | | OPENSSL_sk_call_free_func call_free_func, |
443 | 125k | OPENSSL_sk_free_func free_func) { |
444 | 125k | _STACK *ret = sk_dup(sk); |
445 | 125k | if (ret == NULL) { |
446 | 0 | return NULL; |
447 | 0 | } |
448 | | |
449 | 254k | for (size_t i = 0; i < ret->num; i++) { |
450 | 129k | if (ret->data[i] == NULL) { |
451 | 506 | continue; |
452 | 506 | } |
453 | 129k | ret->data[i] = call_copy_func(copy_func, ret->data[i]); |
454 | 129k | if (ret->data[i] == NULL) { |
455 | 0 | for (size_t j = 0; j < i; j++) { |
456 | 0 | if (ret->data[j] != NULL) { |
457 | 0 | call_free_func(free_func, ret->data[j]); |
458 | 0 | } |
459 | 0 | } |
460 | 0 | sk_free(ret); |
461 | 0 | return NULL; |
462 | 0 | } |
463 | 129k | } |
464 | | |
465 | 125k | return ret; |
466 | 125k | } |