Coverage Report

Created: 2023-06-29 07:25

/src/boringssl/crypto/fipsmodule/bn/exponentiation.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.]
56
 */
57
/* ====================================================================
58
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
59
 *
60
 * Redistribution and use in source and binary forms, with or without
61
 * modification, are permitted provided that the following conditions
62
 * are met:
63
 *
64
 * 1. Redistributions of source code must retain the above copyright
65
 *    notice, this list of conditions and the following disclaimer.
66
 *
67
 * 2. Redistributions in binary form must reproduce the above copyright
68
 *    notice, this list of conditions and the following disclaimer in
69
 *    the documentation and/or other materials provided with the
70
 *    distribution.
71
 *
72
 * 3. All advertising materials mentioning features or use of this
73
 *    software must display the following acknowledgment:
74
 *    "This product includes software developed by the OpenSSL Project
75
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76
 *
77
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78
 *    endorse or promote products derived from this software without
79
 *    prior written permission. For written permission, please contact
80
 *    openssl-core@openssl.org.
81
 *
82
 * 5. Products derived from this software may not be called "OpenSSL"
83
 *    nor may "OpenSSL" appear in their names without prior written
84
 *    permission of the OpenSSL Project.
85
 *
86
 * 6. Redistributions of any form whatsoever must retain the following
87
 *    acknowledgment:
88
 *    "This product includes software developed by the OpenSSL Project
89
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90
 *
91
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102
 * OF THE POSSIBILITY OF SUCH DAMAGE.
103
 * ====================================================================
104
 *
105
 * This product includes cryptographic software written by Eric Young
106
 * (eay@cryptsoft.com).  This product includes software written by Tim
107
 * Hudson (tjh@cryptsoft.com). */
108
109
#include <openssl/bn.h>
110
111
#include <assert.h>
112
#include <limits.h>
113
#include <stdlib.h>
114
#include <string.h>
115
116
#include <openssl/err.h>
117
#include <openssl/mem.h>
118
119
#include "internal.h"
120
#include "rsaz_exp.h"
121
122
123
0
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
124
0
  int i, bits, ret = 0;
125
0
  BIGNUM *v, *rr;
126
127
0
  BN_CTX_start(ctx);
128
0
  if (r == a || r == p) {
129
0
    rr = BN_CTX_get(ctx);
130
0
  } else {
131
0
    rr = r;
132
0
  }
133
134
0
  v = BN_CTX_get(ctx);
135
0
  if (rr == NULL || v == NULL) {
136
0
    goto err;
137
0
  }
138
139
0
  if (BN_copy(v, a) == NULL) {
140
0
    goto err;
141
0
  }
142
0
  bits = BN_num_bits(p);
143
144
0
  if (BN_is_odd(p)) {
145
0
    if (BN_copy(rr, a) == NULL) {
146
0
      goto err;
147
0
    }
148
0
  } else {
149
0
    if (!BN_one(rr)) {
150
0
      goto err;
151
0
    }
152
0
  }
153
154
0
  for (i = 1; i < bits; i++) {
155
0
    if (!BN_sqr(v, v, ctx)) {
156
0
      goto err;
157
0
    }
158
0
    if (BN_is_bit_set(p, i)) {
159
0
      if (!BN_mul(rr, rr, v, ctx)) {
160
0
        goto err;
161
0
      }
162
0
    }
163
0
  }
164
165
0
  if (r != rr && !BN_copy(r, rr)) {
166
0
    goto err;
167
0
  }
168
0
  ret = 1;
169
170
0
err:
171
0
  BN_CTX_end(ctx);
172
0
  return ret;
173
0
}
174
175
typedef struct bn_recp_ctx_st {
176
  BIGNUM N;   // the divisor
177
  BIGNUM Nr;  // the reciprocal
178
  int num_bits;
179
  int shift;
180
  int flags;
181
} BN_RECP_CTX;
182
183
1.56k
static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
184
1.56k
  BN_init(&recp->N);
185
1.56k
  BN_init(&recp->Nr);
186
1.56k
  recp->num_bits = 0;
187
1.56k
  recp->shift = 0;
188
1.56k
  recp->flags = 0;
189
1.56k
}
190
191
1.56k
static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
192
1.56k
  if (recp == NULL) {
193
0
    return;
194
0
  }
195
196
1.56k
  BN_free(&recp->N);
197
1.56k
  BN_free(&recp->Nr);
198
1.56k
}
199
200
1.56k
static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
201
1.56k
  if (!BN_copy(&(recp->N), d)) {
202
0
    return 0;
203
0
  }
204
1.56k
  BN_zero(&recp->Nr);
205
1.56k
  recp->num_bits = BN_num_bits(d);
206
1.56k
  recp->shift = 0;
207
208
1.56k
  return 1;
209
1.56k
}
210
211
// len is the expected size of the result We actually calculate with an extra
212
// word of precision, so we can do faster division if the remainder is not
213
// required.
214
// r := 2^len / m
215
1.48k
static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
216
1.48k
  int ret = -1;
217
1.48k
  BIGNUM *t;
218
219
1.48k
  BN_CTX_start(ctx);
220
1.48k
  t = BN_CTX_get(ctx);
221
1.48k
  if (t == NULL) {
222
0
    goto err;
223
0
  }
224
225
1.48k
  if (!BN_set_bit(t, len)) {
226
0
    goto err;
227
0
  }
228
229
1.48k
  if (!BN_div(r, NULL, t, m, ctx)) {
230
0
    goto err;
231
0
  }
232
233
1.48k
  ret = len;
234
235
1.48k
err:
236
1.48k
  BN_CTX_end(ctx);
237
1.48k
  return ret;
238
1.48k
}
239
240
static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
241
126k
                       BN_RECP_CTX *recp, BN_CTX *ctx) {
242
126k
  int i, j, ret = 0;
243
126k
  BIGNUM *a, *b, *d, *r;
244
245
126k
  BN_CTX_start(ctx);
246
126k
  a = BN_CTX_get(ctx);
247
126k
  b = BN_CTX_get(ctx);
248
126k
  if (dv != NULL) {
249
0
    d = dv;
250
126k
  } else {
251
126k
    d = BN_CTX_get(ctx);
252
126k
  }
253
254
126k
  if (rem != NULL) {
255
126k
    r = rem;
256
126k
  } else {
257
0
    r = BN_CTX_get(ctx);
258
0
  }
259
260
126k
  if (a == NULL || b == NULL || d == NULL || r == NULL) {
261
0
    goto err;
262
0
  }
263
264
126k
  if (BN_ucmp(m, &recp->N) < 0) {
265
37.5k
    BN_zero(d);
266
37.5k
    if (!BN_copy(r, m)) {
267
0
      goto err;
268
0
    }
269
37.5k
    BN_CTX_end(ctx);
270
37.5k
    return 1;
271
37.5k
  }
272
273
  // We want the remainder
274
  // Given input of ABCDEF / ab
275
  // we need multiply ABCDEF by 3 digests of the reciprocal of ab
276
277
  // i := max(BN_num_bits(m), 2*BN_num_bits(N))
278
89.3k
  i = BN_num_bits(m);
279
89.3k
  j = recp->num_bits << 1;
280
89.3k
  if (j > i) {
281
81.2k
    i = j;
282
81.2k
  }
283
284
  // Nr := round(2^i / N)
285
89.3k
  if (i != recp->shift) {
286
1.48k
    recp->shift =
287
1.48k
        BN_reciprocal(&(recp->Nr), &(recp->N), i,
288
1.48k
                      ctx);  // BN_reciprocal returns i, or -1 for an error
289
1.48k
  }
290
291
89.3k
  if (recp->shift == -1) {
292
0
    goto err;
293
0
  }
294
295
  // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
296
  // BN_num_bits(N)))|
297
  //    = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
298
  // BN_num_bits(N)))|
299
  //   <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
300
  //    = |m/N|
301
89.3k
  if (!BN_rshift(a, m, recp->num_bits)) {
302
0
    goto err;
303
0
  }
304
89.3k
  if (!BN_mul(b, a, &(recp->Nr), ctx)) {
305
0
    goto err;
306
0
  }
307
89.3k
  if (!BN_rshift(d, b, i - recp->num_bits)) {
308
0
    goto err;
309
0
  }
310
89.3k
  d->neg = 0;
311
312
89.3k
  if (!BN_mul(b, &(recp->N), d, ctx)) {
313
0
    goto err;
314
0
  }
315
89.3k
  if (!BN_usub(r, m, b)) {
316
0
    goto err;
317
0
  }
318
89.3k
  r->neg = 0;
319
320
89.3k
  j = 0;
321
144k
  while (BN_ucmp(r, &(recp->N)) >= 0) {
322
55.1k
    if (j++ > 2) {
323
0
      OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
324
0
      goto err;
325
0
    }
326
55.1k
    if (!BN_usub(r, r, &(recp->N))) {
327
0
      goto err;
328
0
    }
329
55.1k
    if (!BN_add_word(d, 1)) {
330
0
      goto err;
331
0
    }
332
55.1k
  }
333
334
89.3k
  r->neg = BN_is_zero(r) ? 0 : m->neg;
335
89.3k
  d->neg = m->neg ^ recp->N.neg;
336
89.3k
  ret = 1;
337
338
89.3k
err:
339
89.3k
  BN_CTX_end(ctx);
340
89.3k
  return ret;
341
89.3k
}
342
343
static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
344
126k
                                 BN_RECP_CTX *recp, BN_CTX *ctx) {
345
126k
  int ret = 0;
346
126k
  BIGNUM *a;
347
126k
  const BIGNUM *ca;
348
349
126k
  BN_CTX_start(ctx);
350
126k
  a = BN_CTX_get(ctx);
351
126k
  if (a == NULL) {
352
0
    goto err;
353
0
  }
354
355
126k
  if (y != NULL) {
356
126k
    if (x == y) {
357
105k
      if (!BN_sqr(a, x, ctx)) {
358
0
        goto err;
359
0
      }
360
105k
    } else {
361
21.2k
      if (!BN_mul(a, x, y, ctx)) {
362
0
        goto err;
363
0
      }
364
21.2k
    }
365
126k
    ca = a;
366
126k
  } else {
367
0
    ca = x;  // Just do the mod
368
0
  }
369
370
126k
  ret = BN_div_recp(NULL, r, ca, recp, ctx);
371
372
126k
err:
373
126k
  BN_CTX_end(ctx);
374
126k
  return ret;
375
126k
}
376
377
// BN_window_bits_for_exponent_size returns sliding window size for mod_exp with
378
// a |b| bit exponent.
379
//
380
// For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
381
// multiplications is a constant plus on average
382
//
383
//    2^(w-1) + (b-w)/(w+1);
384
//
385
// here 2^(w-1)  is for precomputing the table (we actually need entries only
386
// for windows that have the lowest bit set), and (b-w)/(w+1)  is an
387
// approximation for the expected number of w-bit windows, not counting the
388
// first one.
389
//
390
// Thus we should use
391
//
392
//    w >= 6  if        b > 671
393
//     w = 5  if  671 > b > 239
394
//     w = 4  if  239 > b >  79
395
//     w = 3  if   79 > b >  23
396
//    w <= 2  if   23 > b
397
//
398
// (with draws in between).  Very small exponents are often selected
399
// with low Hamming weight, so we use  w = 1  for b <= 23.
400
141k
static int BN_window_bits_for_exponent_size(size_t b) {
401
141k
  if (b > 671) {
402
532
    return 6;
403
532
  }
404
140k
  if (b > 239) {
405
78.3k
    return 5;
406
78.3k
  }
407
62.2k
  if (b > 79) {
408
4.99k
    return 4;
409
4.99k
  }
410
57.2k
  if (b > 23) {
411
869
    return 3;
412
869
  }
413
56.3k
  return 1;
414
57.2k
}
415
416
// TABLE_SIZE is the maximum precomputation table size for *variable* sliding
417
// windows. This must be 2^(max_window - 1), where max_window is the largest
418
// value returned from |BN_window_bits_for_exponent_size|.
419
#define TABLE_SIZE 32
420
421
// TABLE_BITS_SMALL is the smallest value returned from
422
// |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| *
423
// |BN_SMALL_MAX_WORDS| words.
424
77.2k
#define TABLE_BITS_SMALL 5
425
426
// TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most
427
// |BN_BITS2| * |BN_SMALL_MAX_WORDS|.
428
#define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1))
429
430
static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
431
1.59k
                        const BIGNUM *m, BN_CTX *ctx) {
432
1.59k
  int i, j, ret = 0, wstart, window;
433
1.59k
  int start = 1;
434
1.59k
  BIGNUM *aa;
435
  // Table of variables obtained from 'ctx'
436
1.59k
  BIGNUM *val[TABLE_SIZE];
437
1.59k
  BN_RECP_CTX recp;
438
439
  // This function is only called on even moduli.
440
1.59k
  assert(!BN_is_odd(m));
441
442
1.59k
  int bits = BN_num_bits(p);
443
1.59k
  if (bits == 0) {
444
24
    return BN_one(r);
445
24
  }
446
447
1.56k
  BN_RECP_CTX_init(&recp);
448
1.56k
  BN_CTX_start(ctx);
449
1.56k
  aa = BN_CTX_get(ctx);
450
1.56k
  val[0] = BN_CTX_get(ctx);
451
1.56k
  if (!aa || !val[0]) {
452
0
    goto err;
453
0
  }
454
455
1.56k
  if (m->neg) {
456
    // ignore sign of 'm'
457
0
    if (!BN_copy(aa, m)) {
458
0
      goto err;
459
0
    }
460
0
    aa->neg = 0;
461
0
    if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
462
0
      goto err;
463
0
    }
464
1.56k
  } else {
465
1.56k
    if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
466
0
      goto err;
467
0
    }
468
1.56k
  }
469
470
1.56k
  if (!BN_nnmod(val[0], a, m, ctx)) {
471
0
    goto err;  // 1
472
0
  }
473
1.56k
  if (BN_is_zero(val[0])) {
474
51
    BN_zero(r);
475
51
    ret = 1;
476
51
    goto err;
477
51
  }
478
479
1.51k
  window = BN_window_bits_for_exponent_size(bits);
480
1.51k
  if (window > 1) {
481
392
    if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
482
0
      goto err;  // 2
483
0
    }
484
392
    j = 1 << (window - 1);
485
3.17k
    for (i = 1; i < j; i++) {
486
2.78k
      if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
487
2.78k
          !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
488
0
        goto err;
489
0
      }
490
2.78k
    }
491
392
  }
492
493
1.51k
  start = 1;  // This is used to avoid multiplication etc
494
              // when there is only the value '1' in the
495
              // buffer.
496
1.51k
  wstart = bits - 1;  // The top bit of the window
497
498
1.51k
  if (!BN_one(r)) {
499
0
    goto err;
500
0
  }
501
502
71.6k
  for (;;) {
503
71.6k
    int wvalue;  // The 'value' of the window
504
71.6k
    int wend;  // The bottom bit of the window
505
506
71.6k
    if (!BN_is_bit_set(p, wstart)) {
507
53.1k
      if (!start) {
508
53.1k
        if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
509
0
          goto err;
510
0
        }
511
53.1k
      }
512
53.1k
      if (wstart == 0) {
513
438
        break;
514
438
      }
515
52.6k
      wstart--;
516
52.6k
      continue;
517
53.1k
    }
518
519
    // We now have wstart on a 'set' bit, we now need to work out
520
    // how bit a window to do.  To do this we need to scan
521
    // forward until the last set bit before the end of the
522
    // window
523
18.5k
    wvalue = 1;
524
18.5k
    wend = 0;
525
66.3k
    for (i = 1; i < window; i++) {
526
48.0k
      if (wstart - i < 0) {
527
168
        break;
528
168
      }
529
47.8k
      if (BN_is_bit_set(p, wstart - i)) {
530
30.2k
        wvalue <<= (i - wend);
531
30.2k
        wvalue |= 1;
532
30.2k
        wend = i;
533
30.2k
      }
534
47.8k
    }
535
536
    // wend is the size of the current window
537
18.5k
    j = wend + 1;
538
    // add the 'bytes above'
539
18.5k
    if (!start) {
540
69.1k
      for (i = 0; i < j; i++) {
541
52.1k
        if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
542
0
          goto err;
543
0
        }
544
52.1k
      }
545
16.9k
    }
546
547
    // wvalue will be an odd number < 2^window
548
18.5k
    if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
549
0
      goto err;
550
0
    }
551
552
    // move the 'window' down further
553
18.5k
    wstart -= wend + 1;
554
18.5k
    start = 0;
555
18.5k
    if (wstart < 0) {
556
1.08k
      break;
557
1.08k
    }
558
18.5k
  }
559
1.51k
  ret = 1;
560
561
1.56k
err:
562
1.56k
  BN_CTX_end(ctx);
563
1.56k
  BN_RECP_CTX_free(&recp);
564
1.56k
  return ret;
565
1.51k
}
566
567
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
568
2.81k
               BN_CTX *ctx) {
569
2.81k
  if (m->neg) {
570
0
    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
571
0
    return 0;
572
0
  }
573
2.81k
  if (a->neg || BN_ucmp(a, m) >= 0) {
574
2.23k
    if (!BN_nnmod(r, a, m, ctx)) {
575
0
      return 0;
576
0
    }
577
2.23k
    a = r;
578
2.23k
  }
579
580
2.81k
  if (BN_is_odd(m)) {
581
1.22k
    return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
582
1.22k
  }
583
584
1.59k
  return mod_exp_recp(r, a, p, m, ctx);
585
2.81k
}
586
587
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
588
62.7k
                    const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
589
62.7k
  if (!BN_is_odd(m)) {
590
0
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
591
0
    return 0;
592
0
  }
593
62.7k
  if (m->neg) {
594
0
    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
595
0
    return 0;
596
0
  }
597
  // |a| is secret, but |a < m| is not.
598
62.7k
  if (a->neg || constant_time_declassify_int(BN_ucmp(a, m)) >= 0) {
599
0
    OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
600
0
    return 0;
601
0
  }
602
603
62.7k
  int bits = BN_num_bits(p);
604
62.7k
  if (bits == 0) {
605
    // x**0 mod 1 is still zero.
606
318
    if (BN_abs_is_word(m, 1)) {
607
4
      BN_zero(rr);
608
4
      return 1;
609
4
    }
610
314
    return BN_one(rr);
611
318
  }
612
613
62.4k
  int ret = 0;
614
62.4k
  BIGNUM *val[TABLE_SIZE];
615
62.4k
  BN_MONT_CTX *new_mont = NULL;
616
617
62.4k
  BN_CTX_start(ctx);
618
62.4k
  BIGNUM *r = BN_CTX_get(ctx);
619
62.4k
  val[0] = BN_CTX_get(ctx);
620
62.4k
  if (r == NULL || val[0] == NULL) {
621
0
    goto err;
622
0
  }
623
624
  // Allocate a montgomery context if it was not supplied by the caller.
625
62.4k
  if (mont == NULL) {
626
6.95k
    new_mont = BN_MONT_CTX_new_consttime(m, ctx);
627
6.95k
    if (new_mont == NULL) {
628
0
      goto err;
629
0
    }
630
6.95k
    mont = new_mont;
631
6.95k
  }
632
633
  // We exponentiate by looking at sliding windows of the exponent and
634
  // precomputing powers of |a|. Windows may be shifted so they always end on a
635
  // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1)
636
  // for i = 0 to 2^(window-1), all in Montgomery form.
637
62.4k
  int window = BN_window_bits_for_exponent_size(bits);
638
62.4k
  if (!BN_to_montgomery(val[0], a, mont, ctx)) {
639
0
    goto err;
640
0
  }
641
62.4k
  if (window > 1) {
642
7.16k
    BIGNUM *d = BN_CTX_get(ctx);
643
7.16k
    if (d == NULL ||
644
7.16k
        !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
645
0
      goto err;
646
0
    }
647
76.5k
    for (int i = 1; i < 1 << (window - 1); i++) {
648
69.3k
      val[i] = BN_CTX_get(ctx);
649
69.3k
      if (val[i] == NULL ||
650
69.3k
          !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
651
0
        goto err;
652
0
      }
653
69.3k
    }
654
7.16k
  }
655
656
  // |p| is non-zero, so at least one window is non-zero. To save some
657
  // multiplications, defer initializing |r| until then.
658
62.4k
  int r_is_one = 1;
659
62.4k
  int wstart = bits - 1;  // The top bit of the window.
660
1.76M
  for (;;) {
661
1.76M
    if (!BN_is_bit_set(p, wstart)) {
662
1.36M
      if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
663
0
        goto err;
664
0
      }
665
1.36M
      if (wstart == 0) {
666
2.01k
        break;
667
2.01k
      }
668
1.36M
      wstart--;
669
1.36M
      continue;
670
1.36M
    }
671
672
    // We now have wstart on a set bit. Find the largest window we can use.
673
404k
    int wvalue = 1;
674
404k
    int wsize = 0;
675
1.25M
    for (int i = 1; i < window && i <= wstart; i++) {
676
847k
      if (BN_is_bit_set(p, wstart - i)) {
677
724k
        wvalue <<= (i - wsize);
678
724k
        wvalue |= 1;
679
724k
        wsize = i;
680
724k
      }
681
847k
    }
682
683
    // Shift |r| to the end of the window.
684
404k
    if (!r_is_one) {
685
1.42M
      for (int i = 0; i < wsize + 1; i++) {
686
1.08M
        if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
687
0
          goto err;
688
0
        }
689
1.08M
      }
690
342k
    }
691
692
404k
    assert(wvalue & 1);
693
404k
    assert(wvalue < (1 << window));
694
404k
    if (r_is_one) {
695
62.4k
      if (!BN_copy(r, val[wvalue >> 1])) {
696
0
        goto err;
697
0
      }
698
342k
    } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
699
0
      goto err;
700
0
    }
701
702
404k
    r_is_one = 0;
703
404k
    if (wstart == wsize) {
704
60.3k
      break;
705
60.3k
    }
706
344k
    wstart -= wsize + 1;
707
344k
  }
708
709
  // |p| is non-zero, so |r_is_one| must be cleared at some point.
710
62.4k
  assert(!r_is_one);
711
712
62.4k
  if (!BN_from_montgomery(rr, r, mont, ctx)) {
713
0
    goto err;
714
0
  }
715
62.4k
  ret = 1;
716
717
62.4k
err:
718
62.4k
  BN_MONT_CTX_free(new_mont);
719
62.4k
  BN_CTX_end(ctx);
720
62.4k
  return ret;
721
62.4k
}
722
723
void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
724
                           const BN_ULONG *p, size_t num_p,
725
77.2k
                           const BN_MONT_CTX *mont) {
726
77.2k
  if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS ||
727
77.2k
      num_p > ((size_t)-1) / BN_BITS2) {
728
0
    abort();
729
0
  }
730
77.2k
  assert(BN_is_odd(&mont->N));
731
732
  // Count the number of bits in |p|, skipping leading zeros. Note this function
733
  // treats |p| as public.
734
77.2k
  while (num_p != 0 && p[num_p - 1] == 0) {
735
0
    num_p--;
736
0
  }
737
77.2k
  if (num_p == 0) {
738
0
    bn_from_montgomery_small(r, num, mont->RR.d, num, mont);
739
0
    return;
740
0
  }
741
77.2k
  size_t bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2;
742
77.2k
  assert(bits != 0);
743
744
  // We exponentiate by looking at sliding windows of the exponent and
745
  // precomputing powers of |a|. Windows may be shifted so they always end on a
746
  // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for
747
  // i = 0 to 2^(window-1), all in Montgomery form.
748
77.2k
  unsigned window = BN_window_bits_for_exponent_size(bits);
749
77.2k
  if (window > TABLE_BITS_SMALL) {
750
0
    window = TABLE_BITS_SMALL;  // Tolerate excessively large |p|.
751
0
  }
752
77.2k
  BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS];
753
77.2k
  OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG));
754
77.2k
  if (window > 1) {
755
77.2k
    BN_ULONG d[BN_SMALL_MAX_WORDS];
756
77.2k
    bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont);
757
1.23M
    for (unsigned i = 1; i < 1u << (window - 1); i++) {
758
1.15M
      bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont);
759
1.15M
    }
760
77.2k
  }
761
762
  // |p| is non-zero, so at least one window is non-zero. To save some
763
  // multiplications, defer initializing |r| until then.
764
77.2k
  int r_is_one = 1;
765
77.2k
  size_t wstart = bits - 1;  // The top bit of the window.
766
10.0M
  for (;;) {
767
10.0M
    if (!bn_is_bit_set_words(p, num_p, wstart)) {
768
5.04M
      if (!r_is_one) {
769
5.04M
        bn_mod_mul_montgomery_small(r, r, r, num, mont);
770
5.04M
      }
771
5.04M
      if (wstart == 0) {
772
0
        break;
773
0
      }
774
5.04M
      wstart--;
775
5.04M
      continue;
776
5.04M
    }
777
778
    // We now have wstart on a set bit. Find the largest window we can use.
779
5.04M
    unsigned wvalue = 1;
780
5.04M
    unsigned wsize = 0;
781
24.9M
    for (unsigned i = 1; i < window && i <= wstart; i++) {
782
19.8M
      if (bn_is_bit_set_words(p, num_p, wstart - i)) {
783
19.6M
        wvalue <<= (i - wsize);
784
19.6M
        wvalue |= 1;
785
19.6M
        wsize = i;
786
19.6M
      }
787
19.8M
    }
788
789
    // Shift |r| to the end of the window.
790
5.04M
    if (!r_is_one) {
791
29.2M
      for (unsigned i = 0; i < wsize + 1; i++) {
792
24.2M
        bn_mod_mul_montgomery_small(r, r, r, num, mont);
793
24.2M
      }
794
4.97M
    }
795
796
5.04M
    assert(wvalue & 1);
797
5.04M
    assert(wvalue < (1u << window));
798
5.04M
    if (r_is_one) {
799
77.2k
      OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG));
800
4.97M
    } else {
801
4.97M
      bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont);
802
4.97M
    }
803
5.04M
    r_is_one = 0;
804
5.04M
    if (wstart == wsize) {
805
77.2k
      break;
806
77.2k
    }
807
4.97M
    wstart -= wsize + 1;
808
4.97M
  }
809
810
  // |p| is non-zero, so |r_is_one| must be cleared at some point.
811
77.2k
  assert(!r_is_one);
812
77.2k
  OPENSSL_cleanse(val, sizeof(val));
813
77.2k
}
814
815
void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a,
816
77.2k
                                      size_t num, const BN_MONT_CTX *mont) {
817
77.2k
  if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
818
0
    abort();
819
0
  }
820
821
  // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime.
822
77.2k
  BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS];
823
77.2k
  const BN_ULONG *p = mont->N.d;
824
77.2k
  OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG));
825
77.2k
  if (p_minus_two[0] >= 2) {
826
77.2k
    p_minus_two[0] -= 2;
827
77.2k
  } else {
828
0
    p_minus_two[0] -= 2;
829
0
    for (size_t i = 1; i < num; i++) {
830
0
      if (p_minus_two[i]-- != 0) {
831
0
        break;
832
0
      }
833
0
    }
834
0
  }
835
836
77.2k
  bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont);
837
77.2k
}
838
839
static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx,
840
23.7k
                           int window) {
841
23.7k
  int ret = bn_copy_words(table + idx * top, top, b);
842
23.7k
  assert(ret);  // |b| is guaranteed to fit.
843
23.7k
  (void)ret;
844
23.7k
}
845
846
static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx,
847
71.8k
                            int window) {
848
71.8k
  if (!bn_wexpand(b, top)) {
849
0
    return 0;
850
0
  }
851
852
71.8k
  OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top);
853
71.8k
  const int width = 1 << window;
854
1.02M
  for (int i = 0; i < width; i++, table += top) {
855
    // Use a value barrier to prevent Clang from adding a branch when |i != idx|
856
    // and making this copy not constant time. Clang is still allowed to learn
857
    // that |mask| is constant across the inner loop, so this won't inhibit any
858
    // vectorization it might do.
859
950k
    BN_ULONG mask = value_barrier_w(constant_time_eq_int(i, idx));
860
8.51M
    for (int j = 0; j < top; j++) {
861
7.56M
      b->d[j] |= table[j] & mask;
862
7.56M
    }
863
950k
  }
864
865
71.8k
  b->width = top;
866
71.8k
  return 1;
867
71.8k
}
868
869
// Window sizes optimized for fixed window size modular exponentiation
870
// algorithm (BN_mod_exp_mont_consttime).
871
//
872
// TODO(davidben): These window sizes were originally set for 64-byte cache
873
// lines with a cache-line-dependent constant-time mitigation. They can probably
874
// be revised now that our implementation is no longer cache-time-dependent.
875
#define BN_window_bits_for_ctime_exponent_size(b) \
876
81.0k
  ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
877
#define BN_MAX_MOD_EXP_CTIME_WINDOW (6)
878
879
// This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access
880
// patterns to protect secret exponents (cf. the hyper-threading timing attacks
881
// pointed out by Colin Percival,
882
// http://www.daemonology.net/hyperthreading-considered-harmful/)
883
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
884
                              const BIGNUM *m, BN_CTX *ctx,
885
81.0k
                              const BN_MONT_CTX *mont) {
886
81.0k
  int i, ret = 0, wvalue;
887
81.0k
  BN_MONT_CTX *new_mont = NULL;
888
889
81.0k
  unsigned char *powerbuf_free = NULL;
890
81.0k
  size_t powerbuf_len = 0;
891
81.0k
  BN_ULONG *powerbuf = NULL;
892
893
81.0k
  if (!BN_is_odd(m)) {
894
0
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
895
0
    return 0;
896
0
  }
897
81.0k
  if (m->neg) {
898
0
    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
899
0
    return 0;
900
0
  }
901
81.0k
  if (a->neg || BN_ucmp(a, m) >= 0) {
902
0
    OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
903
0
    return 0;
904
0
  }
905
906
  // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
907
  // whether the top bits are zero.
908
81.0k
  int max_bits = p->width * BN_BITS2;
909
81.0k
  int bits = max_bits;
910
81.0k
  if (bits == 0) {
911
    // x**0 mod 1 is still zero.
912
0
    if (BN_abs_is_word(m, 1)) {
913
0
      BN_zero(rr);
914
0
      return 1;
915
0
    }
916
0
    return BN_one(rr);
917
0
  }
918
919
  // Allocate a montgomery context if it was not supplied by the caller.
920
81.0k
  if (mont == NULL) {
921
1.63k
    new_mont = BN_MONT_CTX_new_consttime(m, ctx);
922
1.63k
    if (new_mont == NULL) {
923
0
      goto err;
924
0
    }
925
1.63k
    mont = new_mont;
926
1.63k
  }
927
928
  // Use the width in |mont->N|, rather than the copy in |m|. The assembly
929
  // implementation assumes it can use |top| to size R.
930
81.0k
  int top = mont->N.width;
931
932
81.0k
#if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED)
933
  // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code
934
  // paths. If we were to use separate static buffers for each then there is
935
  // some chance that both large buffers would be allocated on the stack,
936
  // causing the stack space requirement to be truly huge (~10KB).
937
81.0k
  alignas(MOD_EXP_CTIME_ALIGN) BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN];
938
81.0k
#endif
939
81.0k
#if defined(RSAZ_ENABLED)
940
  // If the size of the operands allow it, perform the optimized RSAZ
941
  // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c
942
  // and accompanying assembly modules.
943
81.0k
  if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 &&
944
81.0k
      rsaz_avx2_preferred()) {
945
0
    if (!bn_wexpand(rr, 16)) {
946
0
      goto err;
947
0
    }
948
0
    RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0],
949
0
                           storage);
950
0
    rr->width = 16;
951
0
    rr->neg = 0;
952
0
    ret = 1;
953
0
    goto err;
954
0
  }
955
81.0k
#endif
956
957
  // Get the window size to use with size of p.
958
81.0k
  int window = BN_window_bits_for_ctime_exponent_size(bits);
959
81.0k
  assert(window <= BN_MAX_MOD_EXP_CTIME_WINDOW);
960
961
  // Calculating |powerbuf_len| below cannot overflow because of the bound on
962
  // Montgomery reduction.
963
81.0k
  assert((size_t)top <= BN_MONTGOMERY_MAX_WORDS);
964
81.0k
  static_assert(
965
81.0k
      BN_MONTGOMERY_MAX_WORDS <=
966
81.0k
          INT_MAX / sizeof(BN_ULONG) / ((1 << BN_MAX_MOD_EXP_CTIME_WINDOW) + 3),
967
81.0k
      "powerbuf_len may overflow");
968
969
81.0k
#if defined(OPENSSL_BN_ASM_MONT5)
970
81.0k
  if (window >= 5) {
971
78.5k
    window = 5;  // ~5% improvement for RSA2048 sign, and even for RSA4096
972
    // Reserve space for the |mont->N| copy.
973
78.5k
    powerbuf_len += top * sizeof(mont->N.d[0]);
974
78.5k
  }
975
81.0k
#endif
976
977
  // Allocate a buffer large enough to hold all of the pre-computed
978
  // powers of |am|, |am| itself, and |tmp|.
979
81.0k
  int num_powers = 1 << window;
980
81.0k
  powerbuf_len += sizeof(m->d[0]) * top * (num_powers + 2);
981
982
81.0k
#if defined(OPENSSL_BN_ASM_MONT5)
983
81.0k
  if (powerbuf_len <= sizeof(storage)) {
984
81.0k
    powerbuf = storage;
985
81.0k
  }
986
  // |storage| is more than large enough to handle 1024-bit inputs.
987
81.0k
  assert(powerbuf != NULL || top * BN_BITS2 > 1024);
988
81.0k
#endif
989
81.0k
  if (powerbuf == NULL) {
990
74
    powerbuf_free = OPENSSL_malloc(powerbuf_len + MOD_EXP_CTIME_ALIGN);
991
74
    if (powerbuf_free == NULL) {
992
0
      goto err;
993
0
    }
994
74
    powerbuf = align_pointer(powerbuf_free, MOD_EXP_CTIME_ALIGN);
995
74
  }
996
81.0k
  OPENSSL_memset(powerbuf, 0, powerbuf_len);
997
998
  // Place |tmp| and |am| right after powers table.
999
81.0k
  BIGNUM tmp, am;
1000
81.0k
  tmp.d = powerbuf + top * num_powers;
1001
81.0k
  am.d = tmp.d + top;
1002
81.0k
  tmp.width = am.width = 0;
1003
81.0k
  tmp.dmax = am.dmax = top;
1004
81.0k
  tmp.neg = am.neg = 0;
1005
81.0k
  tmp.flags = am.flags = BN_FLG_STATIC_DATA;
1006
1007
81.0k
  if (!bn_one_to_montgomery(&tmp, mont, ctx) ||
1008
81.0k
      !bn_resize_words(&tmp, top)) {
1009
0
    goto err;
1010
0
  }
1011
1012
  // Prepare a^1 in the Montgomery domain.
1013
81.0k
  assert(!a->neg);
1014
81.0k
  assert(BN_ucmp(a, m) < 0);
1015
81.0k
  if (!BN_to_montgomery(&am, a, mont, ctx) ||
1016
81.0k
      !bn_resize_words(&am, top)) {
1017
0
    goto err;
1018
0
  }
1019
1020
81.0k
#if defined(OPENSSL_BN_ASM_MONT5)
1021
  // This optimization uses ideas from https://eprint.iacr.org/2011/239,
1022
  // specifically optimization of cache-timing attack countermeasures,
1023
  // pre-computation optimization, and Almost Montgomery Multiplication.
1024
  //
1025
  // The paper discusses a 4-bit window to optimize 512-bit modular
1026
  // exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
1027
  // important.
1028
  //
1029
  // |bn_mul_mont_gather5| and |bn_power5| implement the "almost" reduction
1030
  // variant, so the values here may not be fully reduced. They are bounded by R
1031
  // (i.e. they fit in |top| words), not |m|. Additionally, we pass these
1032
  // "almost" reduced inputs into |bn_mul_mont|, which implements the normal
1033
  // reduction variant. Given those inputs, |bn_mul_mont| may not give reduced
1034
  // output, but it will still produce "almost" reduced output.
1035
  //
1036
  // TODO(davidben): Using "almost" reduction complicates analysis of this code,
1037
  // and its interaction with other parts of the project. Determine whether this
1038
  // is actually necessary for performance.
1039
81.0k
  if (window == 5 && top > 1) {
1040
    // Copy |mont->N| to improve cache locality.
1041
78.5k
    BN_ULONG *np = am.d + top;
1042
1.33M
    for (i = 0; i < top; i++) {
1043
1.25M
      np[i] = mont->N.d[i];
1044
1.25M
    }
1045
1046
    // Fill |powerbuf| with the first 32 powers of |am|.
1047
78.5k
    const BN_ULONG *n0 = mont->n0;
1048
78.5k
    bn_scatter5(tmp.d, top, powerbuf, 0);
1049
78.5k
    bn_scatter5(am.d, am.width, powerbuf, 1);
1050
78.5k
    bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1051
78.5k
    bn_scatter5(tmp.d, top, powerbuf, 2);
1052
1053
    // Square to compute powers of two.
1054
314k
    for (i = 4; i < 32; i *= 2) {
1055
235k
      bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1056
235k
      bn_scatter5(tmp.d, top, powerbuf, i);
1057
235k
    }
1058
    // Compute odd powers |i| based on |i - 1|, then all powers |i * 2^j|.
1059
1.25M
    for (i = 3; i < 32; i += 2) {
1060
1.17M
      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1061
1.17M
      bn_scatter5(tmp.d, top, powerbuf, i);
1062
2.04M
      for (int j = 2 * i; j < 32; j *= 2) {
1063
863k
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1064
863k
        bn_scatter5(tmp.d, top, powerbuf, j);
1065
863k
      }
1066
1.17M
    }
1067
1068
78.5k
    bits--;
1069
392k
    for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
1070
313k
      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1071
313k
    }
1072
78.5k
    bn_gather5(tmp.d, top, powerbuf, wvalue);
1073
1074
    // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1075
    // that has not been read yet.)
1076
78.5k
    assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1077
1078
    // Scan the exponent one window at a time starting from the most
1079
    // significant bits.
1080
78.5k
    if (top & 7) {
1081
5.98k
      while (bits >= 0) {
1082
35.6k
        for (wvalue = 0, i = 0; i < 5; i++, bits--) {
1083
29.7k
          wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1084
29.7k
        }
1085
1086
5.94k
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1087
5.94k
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1088
5.94k
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1089
5.94k
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1090
5.94k
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1091
5.94k
        bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1092
5.94k
      }
1093
78.4k
    } else {
1094
78.4k
      const uint8_t *p_bytes = (const uint8_t *)p->d;
1095
78.4k
      assert(bits < max_bits);
1096
      // |p = 0| has been handled as a special case, so |max_bits| is at least
1097
      // one word.
1098
78.4k
      assert(max_bits >= 64);
1099
1100
      // If the first bit to be read lands in the last byte, unroll the first
1101
      // iteration to avoid reading past the bounds of |p->d|. (After the first
1102
      // iteration, we are guaranteed to be past the last byte.) Note |bits|
1103
      // here is the top bit, inclusive.
1104
78.4k
      if (bits - 4 >= max_bits - 8) {
1105
        // Read five bits from |bits-4| through |bits|, inclusive.
1106
12
        wvalue = p_bytes[p->width * BN_BYTES - 1];
1107
12
        wvalue >>= (bits - 4) & 7;
1108
12
        wvalue &= 0x1f;
1109
12
        bits -= 5;
1110
12
        bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1111
12
      }
1112
16.0M
      while (bits >= 0) {
1113
        // Read five bits from |bits-4| through |bits|, inclusive.
1114
16.0M
        int first_bit = bits - 4;
1115
16.0M
        uint16_t val;
1116
16.0M
        OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
1117
16.0M
        val >>= first_bit & 7;
1118
16.0M
        val &= 0x1f;
1119
16.0M
        bits -= 5;
1120
16.0M
        bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
1121
16.0M
      }
1122
78.4k
    }
1123
    // The result is now in |tmp| in Montgomery form, but it may not be fully
1124
    // reduced. This is within bounds for |BN_from_montgomery| (tmp < R <= m*R)
1125
    // so it will, when converting from Montgomery form, produce a fully reduced
1126
    // result.
1127
    //
1128
    // This differs from Figure 2 of the paper, which uses AMM(h, 1) to convert
1129
    // from Montgomery form with unreduced output, followed by an extra
1130
    // reduction step. In the paper's terminology, we replace steps 9 and 10
1131
    // with MM(h, 1).
1132
78.5k
  } else
1133
2.58k
#endif
1134
2.58k
  {
1135
2.58k
    copy_to_prebuf(&tmp, top, powerbuf, 0, window);
1136
2.58k
    copy_to_prebuf(&am, top, powerbuf, 1, window);
1137
1138
    // If the window size is greater than 1, then calculate
1139
    // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1140
    // (even powers could instead be computed as (a^(i/2))^2
1141
    // to use the slight performance advantage of sqr over mul).
1142
2.58k
    if (window > 1) {
1143
2.58k
      if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
1144
0
        goto err;
1145
0
      }
1146
1147
2.58k
      copy_to_prebuf(&tmp, top, powerbuf, 2, window);
1148
1149
18.5k
      for (i = 3; i < num_powers; i++) {
1150
        // Calculate a^i = a^(i-1) * a
1151
15.9k
        if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
1152
0
          goto err;
1153
0
        }
1154
1155
15.9k
        copy_to_prebuf(&tmp, top, powerbuf, i, window);
1156
15.9k
      }
1157
2.58k
    }
1158
1159
2.58k
    bits--;
1160
6.02k
    for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
1161
3.43k
      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1162
3.43k
    }
1163
2.58k
    if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
1164
0
      goto err;
1165
0
    }
1166
1167
    // Scan the exponent one window at a time starting from the most
1168
    // significant bits.
1169
71.8k
    while (bits >= 0) {
1170
69.2k
      wvalue = 0;  // The 'value' of the window
1171
1172
      // Scan the window, squaring the result as we go
1173
310k
      for (i = 0; i < window; i++, bits--) {
1174
241k
        if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
1175
0
          goto err;
1176
0
        }
1177
241k
        wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1178
241k
      }
1179
1180
      // Fetch the appropriate pre-computed value from the pre-buf
1181
69.2k
      if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
1182
0
        goto err;
1183
0
      }
1184
1185
      // Multiply the result into the intermediate result
1186
69.2k
      if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
1187
0
        goto err;
1188
0
      }
1189
69.2k
    }
1190
2.58k
  }
1191
1192
  // Convert the final result from Montgomery to standard format. If we used the
1193
  // |OPENSSL_BN_ASM_MONT5| codepath, |tmp| may not be fully reduced. It is only
1194
  // bounded by R rather than |m|. However, that is still within bounds for
1195
  // |BN_from_montgomery|, which implements full Montgomery reduction, not
1196
  // "almost" Montgomery reduction.
1197
81.0k
  if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
1198
0
    goto err;
1199
0
  }
1200
81.0k
  ret = 1;
1201
1202
81.0k
err:
1203
81.0k
  BN_MONT_CTX_free(new_mont);
1204
81.0k
  if (powerbuf != NULL && powerbuf_free == NULL) {
1205
81.0k
    OPENSSL_cleanse(powerbuf, powerbuf_len);
1206
81.0k
  }
1207
81.0k
  OPENSSL_free(powerbuf_free);
1208
81.0k
  return ret;
1209
81.0k
}
1210
1211
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1212
                         const BIGNUM *m, BN_CTX *ctx,
1213
0
                         const BN_MONT_CTX *mont) {
1214
0
  BIGNUM a_bignum;
1215
0
  BN_init(&a_bignum);
1216
1217
0
  int ret = 0;
1218
1219
  // BN_mod_exp_mont requires reduced inputs.
1220
0
  if (bn_minimal_width(m) == 1) {
1221
0
    a %= m->d[0];
1222
0
  }
1223
1224
0
  if (!BN_set_word(&a_bignum, a)) {
1225
0
    OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
1226
0
    goto err;
1227
0
  }
1228
1229
0
  ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
1230
1231
0
err:
1232
0
  BN_free(&a_bignum);
1233
1234
0
  return ret;
1235
0
}
1236
1237
#define TABLE_SIZE 32
1238
1239
int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1240
                     const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1241
0
                     BN_CTX *ctx, const BN_MONT_CTX *mont) {
1242
0
  BIGNUM tmp;
1243
0
  BN_init(&tmp);
1244
1245
0
  int ret = 0;
1246
0
  BN_MONT_CTX *new_mont = NULL;
1247
1248
  // Allocate a montgomery context if it was not supplied by the caller.
1249
0
  if (mont == NULL) {
1250
0
    new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
1251
0
    if (new_mont == NULL) {
1252
0
      goto err;
1253
0
    }
1254
0
    mont = new_mont;
1255
0
  }
1256
1257
  // BN_mod_mul_montgomery removes one Montgomery factor, so passing one
1258
  // Montgomery-encoded and one non-Montgomery-encoded value gives a
1259
  // non-Montgomery-encoded result.
1260
0
  if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
1261
0
      !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
1262
0
      !BN_to_montgomery(rr, rr, mont, ctx) ||
1263
0
      !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
1264
0
    goto err;
1265
0
  }
1266
1267
0
  ret = 1;
1268
1269
0
err:
1270
0
  BN_MONT_CTX_free(new_mont);
1271
0
  BN_free(&tmp);
1272
1273
0
  return ret;
1274
0
}