/src/boringssl/crypto/fipsmodule/rand/rand.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2014, Google Inc. |
2 | | * |
3 | | * Permission to use, copy, modify, and/or distribute this software for any |
4 | | * purpose with or without fee is hereby granted, provided that the above |
5 | | * copyright notice and this permission notice appear in all copies. |
6 | | * |
7 | | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | | |
15 | | #include <openssl/rand.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <limits.h> |
19 | | #include <string.h> |
20 | | |
21 | | #if defined(BORINGSSL_FIPS) |
22 | | #include <unistd.h> |
23 | | #endif |
24 | | |
25 | | #include <openssl/chacha.h> |
26 | | #include <openssl/ctrdrbg.h> |
27 | | #include <openssl/mem.h> |
28 | | |
29 | | #include "internal.h" |
30 | | #include "fork_detect.h" |
31 | | #include "../../internal.h" |
32 | | #include "../delocate.h" |
33 | | |
34 | | |
35 | | // It's assumed that the operating system always has an unfailing source of |
36 | | // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating |
37 | | // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the |
38 | | // process—we don't try to handle it.) |
39 | | // |
40 | | // In addition, the hardware may provide a low-latency RNG. Intel's rdrand |
41 | | // instruction is the canonical example of this. When a hardware RNG is |
42 | | // available we don't need to worry about an RNG failure arising from fork()ing |
43 | | // the process or moving a VM, so we can keep thread-local RNG state and use it |
44 | | // as an additional-data input to CTR-DRBG. |
45 | | // |
46 | | // (We assume that the OS entropy is safe from fork()ing and VM duplication. |
47 | | // This might be a bit of a leap of faith, esp on Windows, but there's nothing |
48 | | // that we can do about it.) |
49 | | |
50 | | // kReseedInterval is the number of generate calls made to CTR-DRBG before |
51 | | // reseeding. |
52 | | static const unsigned kReseedInterval = 4096; |
53 | | |
54 | | // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the |
55 | | // continuous random number generator test in FIPS 140-2, section 4.9.2. |
56 | | #define CRNGT_BLOCK_SIZE 16 |
57 | | |
58 | | // rand_thread_state contains the per-thread state for the RNG. |
59 | | struct rand_thread_state { |
60 | | CTR_DRBG_STATE drbg; |
61 | | uint64_t fork_generation; |
62 | | // calls is the number of generate calls made on |drbg| since it was last |
63 | | // (re)seeded. This is bound by |kReseedInterval|. |
64 | | unsigned calls; |
65 | | // last_block_valid is non-zero iff |last_block| contains data from |
66 | | // |get_seed_entropy|. |
67 | | int last_block_valid; |
68 | | // fork_unsafe_buffering is non-zero iff, when |drbg| was last (re)seeded, |
69 | | // fork-unsafe buffering was enabled. |
70 | | int fork_unsafe_buffering; |
71 | | |
72 | | #if defined(BORINGSSL_FIPS) |
73 | | // last_block contains the previous block from |get_seed_entropy|. |
74 | | uint8_t last_block[CRNGT_BLOCK_SIZE]; |
75 | | // next and prev form a NULL-terminated, double-linked list of all states in |
76 | | // a process. |
77 | | struct rand_thread_state *next, *prev; |
78 | | // clear_drbg_lock synchronizes between uses of |drbg| and |
79 | | // |rand_thread_state_clear_all| clearing it. This lock should be uncontended |
80 | | // in the common case, except on shutdown. |
81 | | CRYPTO_MUTEX clear_drbg_lock; |
82 | | #endif |
83 | | }; |
84 | | |
85 | | #if defined(BORINGSSL_FIPS) |
86 | | // thread_states_list is the head of a linked-list of all |rand_thread_state| |
87 | | // objects in the process, one per thread. This is needed because FIPS requires |
88 | | // that they be zeroed on process exit, but thread-local destructors aren't |
89 | | // called when the whole process is exiting. |
90 | | DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list); |
91 | | DEFINE_STATIC_MUTEX(thread_states_list_lock); |
92 | | |
93 | | static void rand_thread_state_clear_all(void) __attribute__((destructor)); |
94 | | static void rand_thread_state_clear_all(void) { |
95 | | CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); |
96 | | for (struct rand_thread_state *cur = *thread_states_list_bss_get(); |
97 | | cur != NULL; cur = cur->next) { |
98 | | CRYPTO_MUTEX_lock_write(&cur->clear_drbg_lock); |
99 | | CTR_DRBG_clear(&cur->drbg); |
100 | | } |
101 | | // The locks are deliberately left locked so that any threads that are still |
102 | | // running will hang if they try to call |RAND_bytes|. It also ensures |
103 | | // |rand_thread_state_free| cannot free any thread state while we've taken the |
104 | | // lock. |
105 | | } |
106 | | #endif |
107 | | |
108 | | // rand_thread_state_free frees a |rand_thread_state|. This is called when a |
109 | | // thread exits. |
110 | 0 | static void rand_thread_state_free(void *state_in) { |
111 | 0 | struct rand_thread_state *state = state_in; |
112 | |
|
113 | 0 | if (state_in == NULL) { |
114 | 0 | return; |
115 | 0 | } |
116 | | |
117 | | #if defined(BORINGSSL_FIPS) |
118 | | CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); |
119 | | |
120 | | if (state->prev != NULL) { |
121 | | state->prev->next = state->next; |
122 | | } else { |
123 | | *thread_states_list_bss_get() = state->next; |
124 | | } |
125 | | |
126 | | if (state->next != NULL) { |
127 | | state->next->prev = state->prev; |
128 | | } |
129 | | |
130 | | CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get()); |
131 | | |
132 | | CTR_DRBG_clear(&state->drbg); |
133 | | #endif |
134 | | |
135 | 0 | OPENSSL_free(state); |
136 | 0 | } |
137 | | |
138 | | #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ |
139 | | !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) |
140 | | // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand| |
141 | | // returned true. |
142 | | static int rdrand(uint8_t *buf, const size_t len) { |
143 | | const size_t len_multiple8 = len & ~7; |
144 | | if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) { |
145 | | return 0; |
146 | | } |
147 | | const size_t remainder = len - len_multiple8; |
148 | | |
149 | | if (remainder != 0) { |
150 | | assert(remainder < 8); |
151 | | |
152 | | uint8_t rand_buf[8]; |
153 | | if (!CRYPTO_rdrand(rand_buf)) { |
154 | | return 0; |
155 | | } |
156 | | OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder); |
157 | | } |
158 | | |
159 | | return 1; |
160 | | } |
161 | | |
162 | | #else |
163 | | |
164 | 595k | static int rdrand(uint8_t *buf, size_t len) { |
165 | 595k | return 0; |
166 | 595k | } |
167 | | |
168 | | #endif |
169 | | |
170 | | #if defined(BORINGSSL_FIPS) |
171 | | |
172 | | void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len, |
173 | | int *out_want_additional_input) { |
174 | | *out_want_additional_input = 0; |
175 | | if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) { |
176 | | *out_want_additional_input = 1; |
177 | | } else { |
178 | | CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len); |
179 | | } |
180 | | } |
181 | | |
182 | | // In passive entropy mode, entropy is supplied from outside of the module via |
183 | | // |RAND_load_entropy| and is stored in global instance of the following |
184 | | // structure. |
185 | | |
186 | | struct entropy_buffer { |
187 | | // bytes contains entropy suitable for seeding a DRBG. |
188 | | uint8_t |
189 | | bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD]; |
190 | | // bytes_valid indicates the number of bytes of |bytes| that contain valid |
191 | | // data. |
192 | | size_t bytes_valid; |
193 | | // want_additional_input is true if any of the contents of |bytes| were |
194 | | // obtained via a method other than from the kernel. In these cases entropy |
195 | | // from the kernel is also provided via an additional input to the DRBG. |
196 | | int want_additional_input; |
197 | | }; |
198 | | |
199 | | DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer); |
200 | | DEFINE_STATIC_MUTEX(entropy_buffer_lock); |
201 | | |
202 | | void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len, |
203 | | int want_additional_input) { |
204 | | struct entropy_buffer *const buffer = entropy_buffer_bss_get(); |
205 | | |
206 | | CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); |
207 | | const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid; |
208 | | if (entropy_len > space) { |
209 | | entropy_len = space; |
210 | | } |
211 | | |
212 | | OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len); |
213 | | buffer->bytes_valid += entropy_len; |
214 | | buffer->want_additional_input |= |
215 | | want_additional_input && (entropy_len != 0); |
216 | | CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); |
217 | | } |
218 | | |
219 | | // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the |
220 | | // global |entropy_buffer|. |
221 | | static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len, |
222 | | int *out_want_additional_input) { |
223 | | struct entropy_buffer *const buffer = entropy_buffer_bss_get(); |
224 | | if (out_entropy_len > sizeof(buffer->bytes)) { |
225 | | abort(); |
226 | | } |
227 | | |
228 | | CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); |
229 | | while (buffer->bytes_valid < out_entropy_len) { |
230 | | CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); |
231 | | RAND_need_entropy(out_entropy_len - buffer->bytes_valid); |
232 | | CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); |
233 | | } |
234 | | |
235 | | *out_want_additional_input = buffer->want_additional_input; |
236 | | OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len); |
237 | | OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len], |
238 | | buffer->bytes_valid - out_entropy_len); |
239 | | buffer->bytes_valid -= out_entropy_len; |
240 | | if (buffer->bytes_valid == 0) { |
241 | | buffer->want_additional_input = 0; |
242 | | } |
243 | | |
244 | | CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); |
245 | | } |
246 | | |
247 | | // rand_get_seed fills |seed| with entropy. In some cases, it will additionally |
248 | | // fill |additional_input| with entropy to supplement |seed|. It sets |
249 | | // |*out_additional_input_len| to the number of extra bytes. |
250 | | static void rand_get_seed(struct rand_thread_state *state, |
251 | | uint8_t seed[CTR_DRBG_ENTROPY_LEN], |
252 | | uint8_t additional_input[CTR_DRBG_ENTROPY_LEN], |
253 | | size_t *out_additional_input_len) { |
254 | | uint8_t entropy_bytes[sizeof(state->last_block) + |
255 | | CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD]; |
256 | | uint8_t *entropy = entropy_bytes; |
257 | | size_t entropy_len = sizeof(entropy_bytes); |
258 | | |
259 | | if (state->last_block_valid) { |
260 | | // No need to fill |state->last_block| with entropy from the read. |
261 | | entropy += sizeof(state->last_block); |
262 | | entropy_len -= sizeof(state->last_block); |
263 | | } |
264 | | |
265 | | int want_additional_input; |
266 | | get_seed_entropy(entropy, entropy_len, &want_additional_input); |
267 | | |
268 | | if (!state->last_block_valid) { |
269 | | OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block)); |
270 | | entropy += sizeof(state->last_block); |
271 | | entropy_len -= sizeof(state->last_block); |
272 | | } |
273 | | |
274 | | // See FIPS 140-2, section 4.9.2. This is the “continuous random number |
275 | | // generator test” which causes the program to randomly abort. Hopefully the |
276 | | // rate of failure is small enough not to be a problem in practice. |
277 | | if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) == |
278 | | 0) { |
279 | | fprintf(stderr, "CRNGT failed.\n"); |
280 | | BORINGSSL_FIPS_abort(); |
281 | | } |
282 | | |
283 | | assert(entropy_len % CRNGT_BLOCK_SIZE == 0); |
284 | | for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) { |
285 | | if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i, |
286 | | CRNGT_BLOCK_SIZE) == 0) { |
287 | | fprintf(stderr, "CRNGT failed.\n"); |
288 | | BORINGSSL_FIPS_abort(); |
289 | | } |
290 | | } |
291 | | OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE, |
292 | | CRNGT_BLOCK_SIZE); |
293 | | |
294 | | assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_ENTROPY_LEN); |
295 | | OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN); |
296 | | |
297 | | for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) { |
298 | | for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) { |
299 | | seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j]; |
300 | | } |
301 | | } |
302 | | |
303 | | // If we used something other than system entropy then also |
304 | | // opportunistically read from the system. This avoids solely relying on the |
305 | | // hardware once the entropy pool has been initialized. |
306 | | *out_additional_input_len = 0; |
307 | | if (want_additional_input && |
308 | | CRYPTO_sysrand_if_available(additional_input, CTR_DRBG_ENTROPY_LEN)) { |
309 | | *out_additional_input_len = CTR_DRBG_ENTROPY_LEN; |
310 | | } |
311 | | } |
312 | | |
313 | | #else |
314 | | |
315 | | // rand_get_seed fills |seed| with entropy. In some cases, it will additionally |
316 | | // fill |additional_input| with entropy to supplement |seed|. It sets |
317 | | // |*out_additional_input_len| to the number of extra bytes. |
318 | | static void rand_get_seed(struct rand_thread_state *state, |
319 | | uint8_t seed[CTR_DRBG_ENTROPY_LEN], |
320 | | uint8_t additional_input[CTR_DRBG_ENTROPY_LEN], |
321 | 149 | size_t *out_additional_input_len) { |
322 | | // If not in FIPS mode, we don't overread from the system entropy source and |
323 | | // we don't depend only on the hardware RDRAND. |
324 | 149 | CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN); |
325 | 149 | *out_additional_input_len = 0; |
326 | 149 | } |
327 | | |
328 | | #endif |
329 | | |
330 | | void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len, |
331 | 595k | const uint8_t user_additional_data[32]) { |
332 | 595k | if (out_len == 0) { |
333 | 0 | return; |
334 | 0 | } |
335 | | |
336 | 595k | const uint64_t fork_generation = CRYPTO_get_fork_generation(); |
337 | 595k | const int fork_unsafe_buffering = rand_fork_unsafe_buffering_enabled(); |
338 | | |
339 | | // Additional data is mixed into every CTR-DRBG call to protect, as best we |
340 | | // can, against forks & VM clones. We do not over-read this information and |
341 | | // don't reseed with it so, from the point of view of FIPS, this doesn't |
342 | | // provide “prediction resistance”. But, in practice, it does. |
343 | 595k | uint8_t additional_data[32]; |
344 | | // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can |
345 | | // be _slower_ than a system call. |
346 | 595k | if (!have_fast_rdrand() || |
347 | 595k | !rdrand(additional_data, sizeof(additional_data))) { |
348 | | // Without a hardware RNG to save us from address-space duplication, the OS |
349 | | // entropy is used. This can be expensive (one read per |RAND_bytes| call) |
350 | | // and so is disabled when we have fork detection, or if the application has |
351 | | // promised not to fork. |
352 | 595k | if (fork_generation != 0 || fork_unsafe_buffering) { |
353 | 595k | OPENSSL_memset(additional_data, 0, sizeof(additional_data)); |
354 | 595k | } else if (!have_rdrand()) { |
355 | | // No alternative so block for OS entropy. |
356 | 0 | CRYPTO_sysrand(additional_data, sizeof(additional_data)); |
357 | 0 | } else if (!CRYPTO_sysrand_if_available(additional_data, |
358 | 0 | sizeof(additional_data)) && |
359 | 0 | !rdrand(additional_data, sizeof(additional_data))) { |
360 | | // RDRAND failed: block for OS entropy. |
361 | 0 | CRYPTO_sysrand(additional_data, sizeof(additional_data)); |
362 | 0 | } |
363 | 595k | } |
364 | | |
365 | 19.6M | for (size_t i = 0; i < sizeof(additional_data); i++) { |
366 | 19.0M | additional_data[i] ^= user_additional_data[i]; |
367 | 19.0M | } |
368 | | |
369 | 595k | struct rand_thread_state stack_state; |
370 | 595k | struct rand_thread_state *state = |
371 | 595k | CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND); |
372 | | |
373 | 595k | if (state == NULL) { |
374 | 6 | state = OPENSSL_malloc(sizeof(struct rand_thread_state)); |
375 | 6 | if (state == NULL || |
376 | 6 | !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state, |
377 | 6 | rand_thread_state_free)) { |
378 | | // If the system is out of memory, use an ephemeral state on the |
379 | | // stack. |
380 | 0 | state = &stack_state; |
381 | 0 | } |
382 | | |
383 | 6 | state->last_block_valid = 0; |
384 | 6 | uint8_t seed[CTR_DRBG_ENTROPY_LEN]; |
385 | 6 | uint8_t personalization[CTR_DRBG_ENTROPY_LEN] = {0}; |
386 | 6 | size_t personalization_len = 0; |
387 | 6 | rand_get_seed(state, seed, personalization, &personalization_len); |
388 | | |
389 | 6 | if (!CTR_DRBG_init(&state->drbg, seed, personalization, |
390 | 6 | personalization_len)) { |
391 | 0 | abort(); |
392 | 0 | } |
393 | 6 | state->calls = 0; |
394 | 6 | state->fork_generation = fork_generation; |
395 | 6 | state->fork_unsafe_buffering = fork_unsafe_buffering; |
396 | | |
397 | | #if defined(BORINGSSL_FIPS) |
398 | | CRYPTO_MUTEX_init(&state->clear_drbg_lock); |
399 | | if (state != &stack_state) { |
400 | | CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); |
401 | | struct rand_thread_state **states_list = thread_states_list_bss_get(); |
402 | | state->next = *states_list; |
403 | | if (state->next != NULL) { |
404 | | state->next->prev = state; |
405 | | } |
406 | | state->prev = NULL; |
407 | | *states_list = state; |
408 | | CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get()); |
409 | | } |
410 | | #endif |
411 | 6 | } |
412 | | |
413 | 595k | if (state->calls >= kReseedInterval || |
414 | | // If we've forked since |state| was last seeded, reseed. |
415 | 595k | state->fork_generation != fork_generation || |
416 | | // If |state| was seeded from a state with different fork-safety |
417 | | // preferences, reseed. Suppose |state| was fork-safe, then forked into |
418 | | // two children, but each of the children never fork and disable fork |
419 | | // safety. The children must reseed to avoid working from the same PRNG |
420 | | // state. |
421 | 595k | state->fork_unsafe_buffering != fork_unsafe_buffering) { |
422 | 143 | uint8_t seed[CTR_DRBG_ENTROPY_LEN]; |
423 | 143 | uint8_t reseed_additional_data[CTR_DRBG_ENTROPY_LEN] = {0}; |
424 | 143 | size_t reseed_additional_data_len = 0; |
425 | 143 | rand_get_seed(state, seed, reseed_additional_data, |
426 | 143 | &reseed_additional_data_len); |
427 | | #if defined(BORINGSSL_FIPS) |
428 | | // Take a read lock around accesses to |state->drbg|. This is needed to |
429 | | // avoid returning bad entropy if we race with |
430 | | // |rand_thread_state_clear_all|. |
431 | | CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock); |
432 | | #endif |
433 | 143 | if (!CTR_DRBG_reseed(&state->drbg, seed, reseed_additional_data, |
434 | 143 | reseed_additional_data_len)) { |
435 | 0 | abort(); |
436 | 0 | } |
437 | 143 | state->calls = 0; |
438 | 143 | state->fork_generation = fork_generation; |
439 | 143 | state->fork_unsafe_buffering = fork_unsafe_buffering; |
440 | 595k | } else { |
441 | | #if defined(BORINGSSL_FIPS) |
442 | | CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock); |
443 | | #endif |
444 | 595k | } |
445 | | |
446 | 595k | int first_call = 1; |
447 | 1.19M | while (out_len > 0) { |
448 | 595k | size_t todo = out_len; |
449 | 595k | if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) { |
450 | 0 | todo = CTR_DRBG_MAX_GENERATE_LENGTH; |
451 | 0 | } |
452 | | |
453 | 595k | if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data, |
454 | 595k | first_call ? sizeof(additional_data) : 0)) { |
455 | 0 | abort(); |
456 | 0 | } |
457 | | |
458 | 595k | out += todo; |
459 | 595k | out_len -= todo; |
460 | | // Though we only check before entering the loop, this cannot add enough to |
461 | | // overflow a |size_t|. |
462 | 595k | state->calls++; |
463 | 595k | first_call = 0; |
464 | 595k | } |
465 | | |
466 | 595k | if (state == &stack_state) { |
467 | 0 | CTR_DRBG_clear(&state->drbg); |
468 | 0 | } |
469 | | |
470 | | #if defined(BORINGSSL_FIPS) |
471 | | CRYPTO_MUTEX_unlock_read(&state->clear_drbg_lock); |
472 | | #endif |
473 | 595k | } |
474 | | |
475 | 552k | int RAND_bytes(uint8_t *out, size_t out_len) { |
476 | 552k | static const uint8_t kZeroAdditionalData[32] = {0}; |
477 | 552k | RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData); |
478 | 552k | return 1; |
479 | 552k | } |
480 | | |
481 | 0 | int RAND_pseudo_bytes(uint8_t *buf, size_t len) { |
482 | 0 | return RAND_bytes(buf, len); |
483 | 0 | } |
484 | | |
485 | 0 | void RAND_get_system_entropy_for_custom_prng(uint8_t *buf, size_t len) { |
486 | 0 | if (len > 256) { |
487 | 0 | abort(); |
488 | 0 | } |
489 | 0 | CRYPTO_sysrand_for_seed(buf, len); |
490 | 0 | } |