/src/boringssl/crypto/fipsmodule/bn/random.cc.inc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/bn.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <limits.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/err.h> |
22 | | |
23 | | #include "../../internal.h" |
24 | | #include "../bcm_interface.h" |
25 | | #include "../service_indicator/internal.h" |
26 | | #include "internal.h" |
27 | | |
28 | | |
29 | 0 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom) { |
30 | 0 | if (rnd == NULL) { |
31 | 0 | return 0; |
32 | 0 | } |
33 | | |
34 | 0 | if (top != BN_RAND_TOP_ANY && top != BN_RAND_TOP_ONE && |
35 | 0 | top != BN_RAND_TOP_TWO) { |
36 | 0 | OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
37 | 0 | return 0; |
38 | 0 | } |
39 | | |
40 | 0 | if (bottom != BN_RAND_BOTTOM_ANY && bottom != BN_RAND_BOTTOM_ODD) { |
41 | 0 | OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
42 | 0 | return 0; |
43 | 0 | } |
44 | | |
45 | 0 | if (bits == 0) { |
46 | 0 | BN_zero(rnd); |
47 | 0 | return 1; |
48 | 0 | } |
49 | | |
50 | 0 | if (bits > INT_MAX - (BN_BITS2 - 1)) { |
51 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
52 | 0 | return 0; |
53 | 0 | } |
54 | | |
55 | 0 | int words = (bits + BN_BITS2 - 1) / BN_BITS2; |
56 | 0 | int bit = (bits - 1) % BN_BITS2; |
57 | 0 | const BN_ULONG kOne = 1; |
58 | 0 | const BN_ULONG kThree = 3; |
59 | 0 | BN_ULONG mask = bit < BN_BITS2 - 1 ? (kOne << (bit + 1)) - 1 : BN_MASK2; |
60 | 0 | if (!bn_wexpand(rnd, words)) { |
61 | 0 | return 0; |
62 | 0 | } |
63 | | |
64 | 0 | FIPS_service_indicator_lock_state(); |
65 | 0 | BCM_rand_bytes((uint8_t *)rnd->d, words * sizeof(BN_ULONG)); |
66 | 0 | FIPS_service_indicator_unlock_state(); |
67 | |
|
68 | 0 | rnd->d[words - 1] &= mask; |
69 | 0 | if (top != BN_RAND_TOP_ANY) { |
70 | 0 | if (top == BN_RAND_TOP_TWO && bits > 1) { |
71 | 0 | if (bit == 0) { |
72 | 0 | rnd->d[words - 1] |= 1; |
73 | 0 | rnd->d[words - 2] |= kOne << (BN_BITS2 - 1); |
74 | 0 | } else { |
75 | 0 | rnd->d[words - 1] |= kThree << (bit - 1); |
76 | 0 | } |
77 | 0 | } else { |
78 | 0 | rnd->d[words - 1] |= kOne << bit; |
79 | 0 | } |
80 | 0 | } |
81 | 0 | if (bottom == BN_RAND_BOTTOM_ODD) { |
82 | 0 | rnd->d[0] |= 1; |
83 | 0 | } |
84 | |
|
85 | 0 | rnd->neg = 0; |
86 | 0 | rnd->width = words; |
87 | 0 | return 1; |
88 | 0 | } |
89 | | |
90 | 0 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) { |
91 | 0 | return BN_rand(rnd, bits, top, bottom); |
92 | 0 | } |
93 | | |
94 | | // bn_less_than_word_mask returns a mask of all ones if the number represented |
95 | | // by |len| words at |a| is less than |b| and zero otherwise. It performs this |
96 | | // computation in time independent of the value of |a|. |b| is assumed public. |
97 | | static crypto_word_t bn_less_than_word_mask(const BN_ULONG *a, size_t len, |
98 | 36.7k | BN_ULONG b) { |
99 | 36.7k | if (b == 0) { |
100 | 0 | return CONSTTIME_FALSE_W; |
101 | 0 | } |
102 | 36.7k | if (len == 0) { |
103 | 0 | return CONSTTIME_TRUE_W; |
104 | 0 | } |
105 | | |
106 | | // |a| < |b| iff a[1..len-1] are all zero and a[0] < b. |
107 | 36.7k | static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
108 | 36.7k | "crypto_word_t is too small"); |
109 | 36.7k | crypto_word_t mask = 0; |
110 | 289k | for (size_t i = 1; i < len; i++) { |
111 | 252k | mask |= a[i]; |
112 | 252k | } |
113 | | // |mask| is now zero iff a[1..len-1] are all zero. |
114 | 36.7k | mask = constant_time_is_zero_w(mask); |
115 | 36.7k | mask &= constant_time_lt_w(a[0], b); |
116 | 36.7k | return mask; |
117 | 36.7k | } |
118 | | |
119 | | int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive, |
120 | 36.7k | const BN_ULONG *max_exclusive, size_t len) { |
121 | 36.7k | crypto_word_t mask = ~bn_less_than_word_mask(a, len, min_inclusive); |
122 | 36.7k | return mask & bn_less_than_words(a, max_exclusive, len); |
123 | 36.7k | } |
124 | | |
125 | | static int bn_range_to_mask(size_t *out_words, BN_ULONG *out_mask, |
126 | | size_t min_inclusive, const BN_ULONG *max_exclusive, |
127 | 36.1k | size_t len) { |
128 | | // The magnitude of |max_exclusive| is assumed public. |
129 | 36.1k | size_t words = len; |
130 | 36.1k | while (words > 0 && max_exclusive[words - 1] == 0) { |
131 | 0 | words--; |
132 | 0 | } |
133 | 36.1k | if (words == 0 || (words == 1 && max_exclusive[0] <= min_inclusive)) { |
134 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_INVALID_RANGE); |
135 | 0 | return 0; |
136 | 0 | } |
137 | 36.1k | BN_ULONG mask = max_exclusive[words - 1]; |
138 | | // This sets all bits in |mask| below the most significant bit. |
139 | 36.1k | mask |= mask >> 1; |
140 | 36.1k | mask |= mask >> 2; |
141 | 36.1k | mask |= mask >> 4; |
142 | 36.1k | mask |= mask >> 8; |
143 | 36.1k | mask |= mask >> 16; |
144 | 36.1k | #if defined(OPENSSL_64_BIT) |
145 | 36.1k | mask |= mask >> 32; |
146 | 36.1k | #endif |
147 | | |
148 | 36.1k | *out_words = words; |
149 | 36.1k | *out_mask = mask; |
150 | 36.1k | return 1; |
151 | 36.1k | } |
152 | | |
153 | | int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive, |
154 | | const BN_ULONG *max_exclusive, size_t len, |
155 | 36.1k | const uint8_t additional_data[32]) { |
156 | | // This function implements the equivalent of steps 4 through 7 of FIPS 186-4 |
157 | | // appendices B.4.2 and B.5.2. When called in those contexts, |max_exclusive| |
158 | | // is n and |min_inclusive| is one. |
159 | | |
160 | | // Compute the bit length of |max_exclusive| (step 1), in terms of a number of |
161 | | // |words| worth of entropy to fill and a mask of bits to clear in the top |
162 | | // word. |
163 | 36.1k | size_t words; |
164 | 36.1k | BN_ULONG mask; |
165 | 36.1k | if (!bn_range_to_mask(&words, &mask, min_inclusive, max_exclusive, len)) { |
166 | 0 | return 0; |
167 | 0 | } |
168 | | |
169 | | // Fill any unused words with zero. |
170 | 36.1k | OPENSSL_memset(out + words, 0, (len - words) * sizeof(BN_ULONG)); |
171 | | |
172 | 36.1k | unsigned count = 100; |
173 | 36.7k | do { |
174 | 36.7k | if (!--count) { |
175 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS); |
176 | 0 | return 0; |
177 | 0 | } |
178 | | |
179 | | // Steps 4 and 5. Use |words| and |mask| together to obtain a string of N |
180 | | // bits, where N is the bit length of |max_exclusive|. |
181 | 36.7k | FIPS_service_indicator_lock_state(); |
182 | 36.7k | BCM_rand_bytes_with_additional_data( |
183 | 36.7k | (uint8_t *)out, words * sizeof(BN_ULONG), additional_data); |
184 | 36.7k | FIPS_service_indicator_unlock_state(); |
185 | 36.7k | out[words - 1] &= mask; |
186 | | |
187 | | // If out >= max_exclusive or out < min_inclusive, retry. This implements |
188 | | // the equivalent of steps 6 and 7 without leaking the value of |out|. The |
189 | | // result of this comparison may be treated as public. It only reveals how |
190 | | // many attempts were needed before we found a value in range. This is |
191 | | // independent of the final secret output, and has a distribution that |
192 | | // depends only on |min_inclusive| and |max_exclusive|, both of which are |
193 | | // public. |
194 | 36.7k | } while (!constant_time_declassify_int( |
195 | 36.7k | bn_in_range_words(out, min_inclusive, max_exclusive, words))); |
196 | 36.1k | return 1; |
197 | 36.1k | } |
198 | | |
199 | | int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, |
200 | 36.0k | const BIGNUM *max_exclusive) { |
201 | 36.0k | static const uint8_t kDefaultAdditionalData[32] = {0}; |
202 | 36.0k | if (!bn_wexpand(r, max_exclusive->width) || |
203 | 36.0k | !bn_rand_range_words(r->d, min_inclusive, max_exclusive->d, |
204 | 36.0k | max_exclusive->width, kDefaultAdditionalData)) { |
205 | 0 | return 0; |
206 | 0 | } |
207 | | |
208 | 36.0k | r->neg = 0; |
209 | 36.0k | r->width = max_exclusive->width; |
210 | 36.0k | return 1; |
211 | 36.0k | } |
212 | | |
213 | | int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive, |
214 | 0 | const BIGNUM *max_exclusive) { |
215 | 0 | size_t words; |
216 | 0 | BN_ULONG mask; |
217 | 0 | if (!bn_range_to_mask(&words, &mask, min_inclusive, max_exclusive->d, |
218 | 0 | max_exclusive->width) || |
219 | 0 | !bn_wexpand(r, words)) { |
220 | 0 | return 0; |
221 | 0 | } |
222 | | |
223 | 0 | assert(words > 0); |
224 | 0 | assert(mask != 0); |
225 | | // The range must be large enough for bit tricks to fix invalid values. |
226 | 0 | if (words == 1 && min_inclusive > mask >> 1) { |
227 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_INVALID_RANGE); |
228 | 0 | return 0; |
229 | 0 | } |
230 | | |
231 | | // Select a uniform random number with num_bits(max_exclusive) bits. |
232 | 0 | FIPS_service_indicator_lock_state(); |
233 | 0 | BCM_rand_bytes((uint8_t *)r->d, words * sizeof(BN_ULONG)); |
234 | 0 | FIPS_service_indicator_unlock_state(); |
235 | 0 | r->d[words - 1] &= mask; |
236 | | |
237 | | // Check, in constant-time, if the value is in range. |
238 | 0 | *out_is_uniform = |
239 | 0 | bn_in_range_words(r->d, min_inclusive, max_exclusive->d, words); |
240 | 0 | crypto_word_t in_range = *out_is_uniform; |
241 | 0 | in_range = 0 - in_range; |
242 | | |
243 | | // If the value is not in range, force it to be in range. |
244 | 0 | r->d[0] |= constant_time_select_w(in_range, 0, min_inclusive); |
245 | 0 | r->d[words - 1] &= constant_time_select_w(in_range, BN_MASK2, mask >> 1); |
246 | 0 | declassify_assert( |
247 | 0 | bn_in_range_words(r->d, min_inclusive, max_exclusive->d, words)); |
248 | | |
249 | 0 | r->neg = 0; |
250 | 0 | r->width = (int)words; |
251 | 0 | return 1; |
252 | 0 | } |
253 | | |
254 | 0 | int BN_rand_range(BIGNUM *r, const BIGNUM *range) { |
255 | 0 | return BN_rand_range_ex(r, 0, range); |
256 | 0 | } |
257 | | |
258 | 0 | int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) { |
259 | 0 | return BN_rand_range(r, range); |
260 | 0 | } |