/src/boringssl/crypto/fipsmodule/cmac/cmac.cc.inc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/cmac.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <limits.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/aes.h> |
22 | | #include <openssl/cipher.h> |
23 | | #include <openssl/mem.h> |
24 | | |
25 | | #include "../../internal.h" |
26 | | #include "../service_indicator/internal.h" |
27 | | |
28 | | |
29 | | struct cmac_ctx_st { |
30 | | EVP_CIPHER_CTX cipher_ctx; |
31 | | // k1 and k2 are the CMAC subkeys. See |
32 | | // https://tools.ietf.org/html/rfc4493#section-2.3 |
33 | | uint8_t k1[AES_BLOCK_SIZE]; |
34 | | uint8_t k2[AES_BLOCK_SIZE]; |
35 | | // Last (possibly partial) scratch |
36 | | uint8_t block[AES_BLOCK_SIZE]; |
37 | | // block_used contains the number of valid bytes in |block|. |
38 | | unsigned block_used; |
39 | | }; |
40 | | |
41 | 0 | static void CMAC_CTX_init(CMAC_CTX *ctx) { |
42 | 0 | EVP_CIPHER_CTX_init(&ctx->cipher_ctx); |
43 | 0 | } |
44 | | |
45 | 0 | static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { |
46 | 0 | EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); |
47 | 0 | OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); |
48 | 0 | OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); |
49 | 0 | OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); |
50 | 0 | } |
51 | | |
52 | | int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, |
53 | 0 | const uint8_t *in, size_t in_len) { |
54 | 0 | const EVP_CIPHER *cipher; |
55 | 0 | switch (key_len) { |
56 | | // WARNING: this code assumes that all supported key sizes are FIPS |
57 | | // Approved. |
58 | 0 | case 16: |
59 | 0 | cipher = EVP_aes_128_cbc(); |
60 | 0 | break; |
61 | 0 | case 32: |
62 | 0 | cipher = EVP_aes_256_cbc(); |
63 | 0 | break; |
64 | 0 | default: |
65 | 0 | return 0; |
66 | 0 | } |
67 | | |
68 | 0 | size_t scratch_out_len; |
69 | 0 | CMAC_CTX ctx; |
70 | 0 | CMAC_CTX_init(&ctx); |
71 | | |
72 | | // We have to verify that all the CMAC services actually succeed before |
73 | | // updating the indicator state, so we lock the state here. |
74 | 0 | FIPS_service_indicator_lock_state(); |
75 | 0 | const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && |
76 | 0 | CMAC_Update(&ctx, in, in_len) && |
77 | 0 | CMAC_Final(&ctx, out, &scratch_out_len); |
78 | 0 | FIPS_service_indicator_unlock_state(); |
79 | |
|
80 | 0 | if (ok) { |
81 | 0 | FIPS_service_indicator_update_state(); |
82 | 0 | } |
83 | 0 | CMAC_CTX_cleanup(&ctx); |
84 | 0 | return ok; |
85 | 0 | } |
86 | | |
87 | 0 | CMAC_CTX *CMAC_CTX_new(void) { |
88 | 0 | CMAC_CTX *ctx = reinterpret_cast<CMAC_CTX *>(OPENSSL_malloc(sizeof(*ctx))); |
89 | 0 | if (ctx != NULL) { |
90 | 0 | CMAC_CTX_init(ctx); |
91 | 0 | } |
92 | 0 | return ctx; |
93 | 0 | } |
94 | | |
95 | 0 | void CMAC_CTX_free(CMAC_CTX *ctx) { |
96 | 0 | if (ctx == NULL) { |
97 | 0 | return; |
98 | 0 | } |
99 | | |
100 | 0 | CMAC_CTX_cleanup(ctx); |
101 | 0 | OPENSSL_free(ctx); |
102 | 0 | } |
103 | | |
104 | 0 | int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { |
105 | 0 | if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { |
106 | 0 | return 0; |
107 | 0 | } |
108 | 0 | OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); |
109 | 0 | OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); |
110 | 0 | OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); |
111 | 0 | out->block_used = in->block_used; |
112 | 0 | return 1; |
113 | 0 | } |
114 | | |
115 | | // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) |
116 | | // with a hard-coded reduction polynomial and sets |out| as x times the input. |
117 | | // |
118 | | // See https://tools.ietf.org/html/rfc4493#section-2.3 |
119 | 0 | static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { |
120 | 0 | unsigned i; |
121 | | |
122 | | // Shift |in| to left, including carry. |
123 | 0 | for (i = 0; i < 15; i++) { |
124 | 0 | out[i] = (in[i] << 1) | (in[i + 1] >> 7); |
125 | 0 | } |
126 | | |
127 | | // If MSB set fixup with R. |
128 | 0 | const uint8_t carry = in[0] >> 7; |
129 | 0 | out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); |
130 | 0 | } |
131 | | |
132 | | // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an |
133 | | // element of GF(2⁶⁴). |
134 | | // |
135 | | // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf |
136 | 0 | static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { |
137 | 0 | unsigned i; |
138 | | |
139 | | // Shift |in| to left, including carry. |
140 | 0 | for (i = 0; i < 7; i++) { |
141 | 0 | out[i] = (in[i] << 1) | (in[i + 1] >> 7); |
142 | 0 | } |
143 | | |
144 | | // If MSB set fixup with R. |
145 | 0 | const uint8_t carry = in[0] >> 7; |
146 | 0 | out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); |
147 | 0 | } |
148 | | |
149 | | static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; |
150 | | |
151 | | int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, |
152 | 0 | const EVP_CIPHER *cipher, ENGINE *engine) { |
153 | 0 | int ret = 0; |
154 | 0 | uint8_t scratch[AES_BLOCK_SIZE]; |
155 | | |
156 | | // We have to avoid the underlying AES-CBC |EVP_CIPHER| services updating the |
157 | | // indicator state, so we lock the state here. |
158 | 0 | FIPS_service_indicator_lock_state(); |
159 | |
|
160 | 0 | size_t block_size = EVP_CIPHER_block_size(cipher); |
161 | 0 | if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || |
162 | 0 | EVP_CIPHER_key_length(cipher) != key_len || |
163 | 0 | !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, |
164 | 0 | reinterpret_cast<const uint8_t *>(key), kZeroIV) || |
165 | 0 | !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || |
166 | | // Reset context again ready for first data. |
167 | 0 | !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { |
168 | 0 | goto out; |
169 | 0 | } |
170 | | |
171 | 0 | if (block_size == AES_BLOCK_SIZE) { |
172 | 0 | binary_field_mul_x_128(ctx->k1, scratch); |
173 | 0 | binary_field_mul_x_128(ctx->k2, ctx->k1); |
174 | 0 | } else { |
175 | 0 | binary_field_mul_x_64(ctx->k1, scratch); |
176 | 0 | binary_field_mul_x_64(ctx->k2, ctx->k1); |
177 | 0 | } |
178 | 0 | ctx->block_used = 0; |
179 | 0 | ret = 1; |
180 | |
|
181 | 0 | out: |
182 | 0 | FIPS_service_indicator_unlock_state(); |
183 | 0 | return ret; |
184 | 0 | } |
185 | | |
186 | 0 | int CMAC_Reset(CMAC_CTX *ctx) { |
187 | 0 | ctx->block_used = 0; |
188 | 0 | return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); |
189 | 0 | } |
190 | | |
191 | 0 | int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { |
192 | 0 | int ret = 0; |
193 | | |
194 | | // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the |
195 | | // indicator state, so we lock the state here. |
196 | 0 | FIPS_service_indicator_lock_state(); |
197 | |
|
198 | 0 | size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
199 | 0 | assert(block_size <= AES_BLOCK_SIZE); |
200 | 0 | uint8_t scratch[AES_BLOCK_SIZE]; |
201 | |
|
202 | 0 | if (ctx->block_used > 0) { |
203 | 0 | size_t todo = block_size - ctx->block_used; |
204 | 0 | if (in_len < todo) { |
205 | 0 | todo = in_len; |
206 | 0 | } |
207 | |
|
208 | 0 | OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); |
209 | 0 | in += todo; |
210 | 0 | in_len -= todo; |
211 | 0 | ctx->block_used += todo; |
212 | | |
213 | | // If |in_len| is zero then either |ctx->block_used| is less than |
214 | | // |block_size|, in which case we can stop here, or |ctx->block_used| is |
215 | | // exactly |block_size| but there's no more data to process. In the latter |
216 | | // case we don't want to process this block now because it might be the last |
217 | | // block and that block is treated specially. |
218 | 0 | if (in_len == 0) { |
219 | 0 | ret = 1; |
220 | 0 | goto out; |
221 | 0 | } |
222 | | |
223 | 0 | assert(ctx->block_used == block_size); |
224 | | |
225 | 0 | if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { |
226 | 0 | goto out; |
227 | 0 | } |
228 | 0 | } |
229 | | |
230 | | // Encrypt all but one of the remaining blocks. |
231 | 0 | while (in_len > block_size) { |
232 | 0 | if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { |
233 | 0 | goto out; |
234 | 0 | } |
235 | 0 | in += block_size; |
236 | 0 | in_len -= block_size; |
237 | 0 | } |
238 | | |
239 | 0 | OPENSSL_memcpy(ctx->block, in, in_len); |
240 | | // |in_len| is bounded by |block_size|, which fits in |unsigned|. |
241 | 0 | static_assert(EVP_MAX_BLOCK_LENGTH < UINT_MAX, |
242 | 0 | "EVP_MAX_BLOCK_LENGTH is too large"); |
243 | 0 | ctx->block_used = (unsigned)in_len; |
244 | 0 | ret = 1; |
245 | |
|
246 | 0 | out: |
247 | 0 | FIPS_service_indicator_unlock_state(); |
248 | 0 | return ret; |
249 | 0 | } |
250 | | |
251 | 0 | int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { |
252 | 0 | int ret = 0; |
253 | 0 | size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
254 | 0 | assert(block_size <= AES_BLOCK_SIZE); |
255 | | |
256 | | // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the |
257 | | // indicator state, so we lock the state here. |
258 | 0 | FIPS_service_indicator_lock_state(); |
259 | |
|
260 | 0 | *out_len = block_size; |
261 | 0 | const uint8_t *mask = ctx->k1; |
262 | 0 | if (out == NULL) { |
263 | 0 | ret = 1; |
264 | 0 | goto out; |
265 | 0 | } |
266 | | |
267 | 0 | if (ctx->block_used != block_size) { |
268 | | // If the last block is incomplete, terminate it with a single 'one' bit |
269 | | // followed by zeros. |
270 | 0 | ctx->block[ctx->block_used] = 0x80; |
271 | 0 | OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, |
272 | 0 | block_size - (ctx->block_used + 1)); |
273 | |
|
274 | 0 | mask = ctx->k2; |
275 | 0 | } |
276 | |
|
277 | 0 | for (unsigned i = 0; i < block_size; i++) { |
278 | 0 | out[i] = ctx->block[i] ^ mask[i]; |
279 | 0 | } |
280 | 0 | ret = EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); |
281 | |
|
282 | 0 | out: |
283 | 0 | FIPS_service_indicator_unlock_state(); |
284 | 0 | if (ret) { |
285 | 0 | FIPS_service_indicator_update_state(); |
286 | 0 | } |
287 | 0 | return ret; |
288 | 0 | } |