Coverage Report

Created: 2025-06-24 07:00

/src/boringssl/crypto/fipsmodule/bn/internal.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2
// Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
3
//
4
// Licensed under the Apache License, Version 2.0 (the "License");
5
// you may not use this file except in compliance with the License.
6
// You may obtain a copy of the License at
7
//
8
//     https://www.apache.org/licenses/LICENSE-2.0
9
//
10
// Unless required by applicable law or agreed to in writing, software
11
// distributed under the License is distributed on an "AS IS" BASIS,
12
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
// See the License for the specific language governing permissions and
14
// limitations under the License.
15
16
#ifndef OPENSSL_HEADER_CRYPTO_FIPSMODULE_BN_INTERNAL_H
17
#define OPENSSL_HEADER_CRYPTO_FIPSMODULE_BN_INTERNAL_H
18
19
#include <openssl/bn.h>
20
21
#if defined(OPENSSL_X86_64) && defined(_MSC_VER)
22
#include <intrin.h>
23
#pragma intrinsic(__umulh, _umul128)
24
#endif
25
26
#include "../../internal.h"
27
28
#if defined(__cplusplus)
29
extern "C" {
30
#endif
31
32
#if defined(OPENSSL_64_BIT)
33
34
#if defined(BORINGSSL_HAS_UINT128)
35
// MSVC doesn't support two-word integers on 64-bit.
36
33.2M
#define BN_ULLONG uint128_t
37
#if defined(BORINGSSL_CAN_DIVIDE_UINT128)
38
#define BN_CAN_DIVIDE_ULLONG
39
#endif
40
#endif
41
42
722M
#define BN_BITS2 64
43
66.4k
#define BN_BITS2_LG 6
44
428k
#define BN_BYTES 8
45
#define BN_BITS4 32
46
126k
#define BN_MASK2 (0xffffffffffffffffUL)
47
#define BN_MASK2l (0xffffffffUL)
48
#define BN_MASK2h (0xffffffff00000000UL)
49
#define BN_MASK2h1 (0xffffffff80000000UL)
50
1.51M
#define BN_MONT_CTX_N0_LIMBS 1
51
19.8k
#define BN_DEC_CONV (10000000000000000000UL)
52
219k
#define BN_DEC_NUM 19
53
0
#define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
54
55
#elif defined(OPENSSL_32_BIT)
56
57
#define BN_ULLONG uint64_t
58
#define BN_CAN_DIVIDE_ULLONG
59
#define BN_BITS2 32
60
#define BN_BITS2_LG 5
61
#define BN_BYTES 4
62
#define BN_BITS4 16
63
#define BN_MASK2 (0xffffffffUL)
64
#define BN_MASK2l (0xffffUL)
65
#define BN_MASK2h1 (0xffff8000UL)
66
#define BN_MASK2h (0xffff0000UL)
67
// On some 32-bit platforms, Montgomery multiplication is done using 64-bit
68
// arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
69
// needs to be two words long. Only certain 32-bit platforms actually make use
70
// of n0[1] and shorter R value would suffice for the others. However,
71
// currently only the assembly files know which is which.
72
#define BN_MONT_CTX_N0_LIMBS 2
73
#define BN_DEC_CONV (1000000000UL)
74
#define BN_DEC_NUM 9
75
#define TOBN(hi, lo) (lo), (hi)
76
77
#else
78
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
79
#endif
80
81
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
82
#define BN_CAN_USE_INLINE_ASM
83
#endif
84
85
// MOD_EXP_CTIME_ALIGN is the alignment needed for |BN_mod_exp_mont_consttime|'s
86
// tables.
87
//
88
// TODO(davidben): Historically, this alignment came from cache line
89
// assumptions, which we've since removed. Is 64-byte alignment still necessary
90
// or ideal? The true alignment requirement seems to now be 32 bytes, coming
91
// from RSAZ's use of VMOVDQA to a YMM register. Non-x86_64 has even fewer
92
// requirements.
93
114
#define MOD_EXP_CTIME_ALIGN 64
94
95
// MOD_EXP_CTIME_STORAGE_LEN is the number of |BN_ULONG|s needed for the
96
// |BN_mod_exp_mont_consttime| stack-allocated storage buffer. The buffer is
97
// just the right size for the RSAZ and is about ~1KB larger than what's
98
// necessary (4480 bytes) for 1024-bit inputs.
99
#define MOD_EXP_CTIME_STORAGE_LEN \
100
0
  (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG))
101
102
#define STATIC_BIGNUM(x)                                    \
103
  {                                                         \
104
    (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG),          \
105
        sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
106
  }
107
108
#if defined(BN_ULLONG)
109
#define Lw(t) ((BN_ULONG)(t))
110
#define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
111
#endif
112
113
// bn_minimal_width returns the minimal number of words needed to represent
114
// |bn|.
115
int bn_minimal_width(const BIGNUM *bn);
116
117
// bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
118
// zero, |bn->neg| is set to zero.
119
void bn_set_minimal_width(BIGNUM *bn);
120
121
// bn_wexpand ensures that |bn| has at least |words| works of space without
122
// altering its value. It returns one on success or zero on allocation
123
// failure.
124
int bn_wexpand(BIGNUM *bn, size_t words);
125
126
// bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
127
// than a number of words.
128
int bn_expand(BIGNUM *bn, size_t bits);
129
130
// bn_resize_words adjusts |bn->width| to be |words|. It returns one on success
131
// and zero on allocation error or if |bn|'s value is too large.
132
OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
133
134
// bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
135
// all zeros.
136
void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
137
                     const BN_ULONG *b, size_t num);
138
139
// bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
140
// least significant word first.
141
int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
142
143
// bn_set_static_words acts like |bn_set_words|, but doesn't copy the data. A
144
// flag is set on |bn| so that |BN_free| won't attempt to free the data.
145
//
146
// The |STATIC_BIGNUM| macro is probably a better solution for this outside of
147
// the FIPS module. Inside of the FIPS module that macro generates rel.ro data,
148
// which doesn't work with FIPS requirements.
149
void bn_set_static_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
150
151
// bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
152
// a sign bit, and zero otherwise.
153
int bn_fits_in_words(const BIGNUM *bn, size_t num);
154
155
// bn_copy_words copies the value of |bn| to |out| and returns one if the value
156
// is representable in |num| words. Otherwise, it returns zero.
157
int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
158
159
// bn_assert_fits_in_bytes asserts that |bn| fits in |num| bytes. This is a
160
// no-op in release builds, but triggers an assert in debug builds, and
161
// declassifies all bytes which are therefore known to be zero in constant-time
162
// validation.
163
void bn_assert_fits_in_bytes(const BIGNUM *bn, size_t num);
164
165
// bn_secret marks |bn|'s contents, but not its width or sign, as secret. See
166
// |CONSTTIME_SECRET| for details.
167
1.11k
inline void bn_secret(BIGNUM *bn) {
168
1.11k
  CONSTTIME_SECRET(bn->d, bn->width * sizeof(BN_ULONG));
169
1.11k
}
170
171
// bn_declassify marks |bn|'s value as public. See |CONSTTIME_DECLASSIFY| for
172
// details.
173
1.09k
inline void bn_declassify(BIGNUM *bn) {
174
1.09k
  CONSTTIME_DECLASSIFY(bn->d, bn->width * sizeof(BN_ULONG));
175
1.09k
}
176
177
// bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
178
// the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
179
// the carry word of the operation. |ap| and |rp| may be equal but otherwise may
180
// not alias.
181
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
182
                          BN_ULONG w);
183
184
// bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
185
// |rp| must both be |num| words long. It returns the carry word of the
186
// operation. |ap| and |rp| may be equal but otherwise may not alias.
187
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
188
189
// bn_sqr_add_words computes |tmp| where |tmp[2*i]| and |tmp[2*i+1]| are
190
// |ap[i]|'s square, for all |i| up to |num|, and adds the result to |rp|. If
191
// the result does not fit in |2*num| words, the final carry bit is truncated.
192
// |ap| is an array of |num| words and |rp| an array of |2*num| words. |ap| and
193
// |rp| may not alias.
194
//
195
// This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
196
void bn_sqr_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
197
198
// bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
199
// are |num| words long. It returns the carry bit, which is one if the operation
200
// overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
201
// to each other but otherwise may not alias.
202
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
203
                      size_t num);
204
205
// bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
206
// returns the borrow bit, which is one if the computation underflowed and zero
207
// otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
208
// otherwise may not alias.
209
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
210
                      size_t num);
211
212
// bn_mul_comba4 sets |r| to the product of |a| and |b|.
213
void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
214
215
// bn_mul_comba8 sets |r| to the product of |a| and |b|.
216
void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
217
218
// bn_sqr_comba8 sets |r| to |a|^2.
219
void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]);
220
221
// bn_sqr_comba4 sets |r| to |a|^2.
222
void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
223
224
// bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
225
// and |b| both are |len| words long. It runs in constant time.
226
int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
227
228
// bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
229
// where |a| and |max_exclusive| both are |len| words long. |a| and
230
// |max_exclusive| are treated as secret.
231
int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
232
                      const BN_ULONG *max_exclusive, size_t len);
233
234
// bn_rand_range_words sets |out| to a uniformly distributed random number from
235
// |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
236
// words long.
237
//
238
// This function runs in time independent of the result, but |min_inclusive| and
239
// |max_exclusive| are public data. (Information about the range is unavoidably
240
// leaked by how many iterations it took to select a number.)
241
int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
242
                        const BN_ULONG *max_exclusive, size_t len,
243
                        const uint8_t additional_data[32]);
244
245
// bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
246
// |max_exclusive| as secret. Because of this constraint, the distribution of
247
// values returned is more complex.
248
//
249
// Rather than repeatedly generating values until one is in range, which would
250
// leak information, it generates one value. If the value is in range, it sets
251
// |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
252
// fixing up the value to force it in range.
253
//
254
// The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
255
// one are uniformly distributed in the target range. Calls overall are not.
256
// This function is intended for use in situations where the extra values are
257
// still usable and where the number of iterations needed to reach the target
258
// number of uniform outputs may be blinded for negligible probabilities of
259
// timing leaks.
260
//
261
// Although this function treats |max_exclusive| as secret, it treats the number
262
// of bits in |max_exclusive| as public.
263
int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
264
                         const BIGNUM *max_exclusive);
265
266
// BN_MONTGOMERY_MAX_WORDS is the maximum number of words allowed in a |BIGNUM|
267
// used with Montgomery reduction. Ideally this limit would be applied to all
268
// |BIGNUM|s, in |bn_wexpand|, but the exactfloat library needs to create 8 MiB
269
// values for other operations.
270
//
271
// TODO(crbug.com/402677800): This is not quite tight enough to limit the
272
// |bn_mul_mont| allocation to under a page. Lower the maximum RSA key and then
273
// lower this to match.
274
22.9k
#define BN_MONTGOMERY_MAX_WORDS (16384 / BN_BITS2)
275
276
#if !defined(OPENSSL_NO_ASM) &&                         \
277
    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
278
     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
279
#define OPENSSL_BN_ASM_MONT
280
// bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words
281
// long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the
282
// corresponding field in |BN_MONT_CTX|.
283
//
284
// If at least one of |ap| or |bp| is fully reduced, |rp| will be fully reduced.
285
// If neither is fully-reduced, the output may not be either.
286
//
287
// This function allocates up to 2 * |num| words (plus a constant allocation) on
288
// the stack, so |num| should be at most |BN_MONTGOMERY_MAX_WORDS|.
289
// Additionally, |num| must be at least 128 / |BN_BITS2|.
290
//
291
// TODO(davidben): The x86_64 implementation expects a 32-bit input and masks
292
// off upper bits. The aarch64 implementation expects a 64-bit input and does
293
// not. |size_t| is the safer option but not strictly correct for x86_64. But
294
// the |BN_MONTGOMERY_MAX_WORDS| bound makes this moot.
295
//
296
// See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word
297
// inputs.
298
void bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
299
                 const BN_ULONG *np, const BN_ULONG *n0, size_t num);
300
301
#if defined(OPENSSL_X86_64)
302
2.38M
inline int bn_mulx_adx_capable(void) {
303
  // MULX is in BMI2.
304
2.38M
  return CRYPTO_is_BMI2_capable() && CRYPTO_is_ADX_capable();
305
2.38M
}
306
void bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
307
                      const BN_ULONG *np, const BN_ULONG *n0, size_t num);
308
593M
inline int bn_mul4x_mont_capable(size_t num) {
309
593M
  return num >= 8 && (num & 3) == 0;
310
593M
}
311
void bn_mul4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
312
                   const BN_ULONG *np, const BN_ULONG *n0, size_t num);
313
296M
inline int bn_mulx4x_mont_capable(size_t num) {
314
296M
  return bn_mul4x_mont_capable(num) && bn_mulx_adx_capable();
315
296M
}
316
void bn_mulx4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
317
                    const BN_ULONG *np, const BN_ULONG *n0, size_t num);
318
166M
inline int bn_sqr8x_mont_capable(size_t num) {
319
166M
  return num >= 8 && (num & 7) == 0;
320
166M
}
321
void bn_sqr8x_mont(BN_ULONG *rp, const BN_ULONG *ap, BN_ULONG mulx_adx_capable,
322
                   const BN_ULONG *np, const BN_ULONG *n0, size_t num);
323
#elif defined(OPENSSL_ARM)
324
inline int bn_mul8x_mont_neon_capable(size_t num) {
325
  return (num & 7) == 0 && CRYPTO_is_NEON_capable();
326
}
327
void bn_mul8x_mont_neon(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
328
                        const BN_ULONG *np, const BN_ULONG *n0, size_t num);
329
void bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
330
                      const BN_ULONG *np, const BN_ULONG *n0, size_t num);
331
#endif
332
333
#endif  // OPENSSL_BN_ASM_MONT
334
335
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
336
#define OPENSSL_BN_ASM_MONT5
337
338
// The following functions implement |bn_mul_mont_gather5|. See
339
// |bn_mul_mont_gather5| for details.
340
1.07M
inline int bn_mul4x_mont_gather5_capable(int num) { return (num & 7) == 0; }
341
void bn_mul4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
342
                           const BN_ULONG *table, const BN_ULONG *np,
343
                           const BN_ULONG *n0, int num, int power);
344
345
1.06M
inline int bn_mulx4x_mont_gather5_capable(int num) {
346
1.06M
  return bn_mul4x_mont_gather5_capable(num) && CRYPTO_is_ADX_capable() &&
347
1.06M
         CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
348
1.06M
}
349
void bn_mulx4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
350
                            const BN_ULONG *table, const BN_ULONG *np,
351
                            const BN_ULONG *n0, int num, int power);
352
353
void bn_mul_mont_gather5_nohw(BN_ULONG *rp, const BN_ULONG *ap,
354
                              const BN_ULONG *table, const BN_ULONG *np,
355
                              const BN_ULONG *n0, int num, int power);
356
357
// bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of
358
// |table| are |num| words long. |power| must be less than 32 and is treated as
359
// public. |table| must be 32*|num| words long. |table| must be aligned to at
360
// least 16 bytes.
361
void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table,
362
                 size_t power);
363
364
// bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and
365
// each entry of |table| are |num| words long. |power| must be less than 32 and
366
// is treated as secret. |table| must be aligned to at least 16 bytes.
367
void bn_gather5(BN_ULONG *out, size_t num, const BN_ULONG *table, size_t power);
368
369
// The following functions implement |bn_power5|. See |bn_power5| for details.
370
void bn_power5_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
371
                    const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
372
373
28.6M
inline int bn_power5_capable(int num) { return (num & 7) == 0; }
374
375
14.2M
inline int bn_powerx5_capable(int num) {
376
14.2M
  return bn_power5_capable(num) && CRYPTO_is_ADX_capable() &&
377
14.2M
         CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
378
14.2M
}
379
void bn_powerx5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
380
                const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
381
382
#endif  // !OPENSSL_NO_ASM && OPENSSL_X86_64
383
384
uint64_t bn_mont_n0(const BIGNUM *n);
385
386
// bn_mont_ctx_set_RR_consttime initializes |mont->RR|. It returns one on
387
// success and zero on error. |mont->N| and |mont->n0| must have been
388
// initialized already. The bit width of |mont->N| is assumed public, but
389
// |mont->N| is otherwise treated as secret.
390
int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx);
391
392
#if defined(_MSC_VER)
393
#if defined(OPENSSL_X86_64)
394
#define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
395
#elif defined(OPENSSL_AARCH64)
396
#define BN_UMULT_LOHI(low, high, a, b) \
397
  do {                                 \
398
    const BN_ULONG _a = (a);           \
399
    const BN_ULONG _b = (b);           \
400
    (low) = _a * _b;                   \
401
    (high) = __umulh(_a, _b);          \
402
  } while (0)
403
#endif
404
#endif  // _MSC_VER
405
406
#if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
407
#error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
408
#endif
409
410
// bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
411
// -2 on error.
412
int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
413
414
// bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
415
// otherwise.
416
int bn_is_bit_set_words(const BN_ULONG *a, size_t num, size_t bit);
417
418
// bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
419
// success and zero on error. This function treats the bit width of the modulus
420
// as public.
421
int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
422
423
// bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
424
// value for |mont| and zero otherwise.
425
int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
426
427
// bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
428
// in time independent of the value of |bn|, but it treats |d| as public.
429
OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
430
431
// bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
432
// of the first several odd primes and zero otherwise.
433
int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
434
435
// A BN_MILLER_RABIN stores state common to each Miller-Rabin iteration. It is
436
// initialized within an existing |BN_CTX| scope and may not be used after
437
// that scope is released with |BN_CTX_end|. Field names match those in FIPS
438
// 186-4, section C.3.1.
439
typedef struct {
440
  // w1 is w-1.
441
  BIGNUM *w1;
442
  // m is (w-1)/2^a.
443
  BIGNUM *m;
444
  // one_mont is 1 (mod w) in Montgomery form.
445
  BIGNUM *one_mont;
446
  // w1_mont is w-1 (mod w) in Montgomery form.
447
  BIGNUM *w1_mont;
448
  // w_bits is BN_num_bits(w).
449
  int w_bits;
450
  // a is the largest integer such that 2^a divides w-1.
451
  int a;
452
} BN_MILLER_RABIN;
453
454
// bn_miller_rabin_init initializes |miller_rabin| for testing if |mont->N| is
455
// prime. It returns one on success and zero on error.
456
OPENSSL_EXPORT int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin,
457
                                        const BN_MONT_CTX *mont, BN_CTX *ctx);
458
459
// bn_miller_rabin_iteration performs one Miller-Rabin iteration, checking if
460
// |b| is a composite witness for |mont->N|. |miller_rabin| must have been
461
// initialized with |bn_miller_rabin_setup|. On success, it returns one and sets
462
// |*out_is_possibly_prime| to one if |mont->N| may still be prime or zero if
463
// |b| shows it is composite. On allocation or internal failure, it returns
464
// zero.
465
OPENSSL_EXPORT int bn_miller_rabin_iteration(
466
    const BN_MILLER_RABIN *miller_rabin, int *out_is_possibly_prime,
467
    const BIGNUM *b, const BN_MONT_CTX *mont, BN_CTX *ctx);
468
469
// bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
470
void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
471
472
// bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits
473
// wide.
474
void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift,
475
                     size_t num);
476
477
// bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
478
// of both |a| and |n|.
479
OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
480
                                          unsigned n, BN_CTX *ctx);
481
482
// bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns
483
// zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num|
484
// words long, but |a| has an additional word specified by |carry|. |carry| must
485
// be zero or one, as implied by the bounds on |a|.
486
//
487
// |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a|
488
// must alias.
489
BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
490
                        const BN_ULONG *m, size_t num);
491
492
// bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on
493
// |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias.
494
BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
495
                                 BN_ULONG *tmp, size_t num);
496
497
498
// Constant-time non-modular arithmetic.
499
//
500
// The following functions implement non-modular arithmetic in constant-time
501
// and pessimally set |r->width| to the largest possible word size.
502
//
503
// Note this means that, e.g., repeatedly multiplying by one will cause widths
504
// to increase without bound. The corresponding public API functions minimize
505
// their outputs to avoid regressing calculator consumers.
506
507
// bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
508
// |r->width| = |a->width| + |b->width| + 1.
509
int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
510
511
// bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
512
// |r->width| = |a->width|.
513
int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
514
515
// bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
516
// both inputs as secret. It returns one on success and zero on error.
517
OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
518
                                        const BIGNUM *b, BN_CTX *ctx);
519
520
// bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
521
// pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
522
// information about |a| and |b|.
523
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
524
525
// bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
526
// to 2*|a->width|, to avoid leaking information about |a| and |b|.
527
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
528
529
// bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
530
// treats both inputs, including their magnitudes, as secret. It is, as a
531
// result, much slower than |BN_div| and should only be used for rare operations
532
// where Montgomery reduction is not available. |divisor_min_bits| is a
533
// public lower bound for |BN_num_bits(divisor)|. When |divisor|'s bit width is
534
// public, this can speed up the operation.
535
//
536
// Note that |quotient->width| will be set pessimally to |numerator->width|.
537
OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
538
                                    const BIGNUM *numerator,
539
                                    const BIGNUM *divisor,
540
                                    unsigned divisor_min_bits, BN_CTX *ctx);
541
542
// bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
543
// returns one and sets |*out_relatively_prime| to one if the GCD was one and
544
// zero otherwise. On error, it returns zero.
545
OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
546
                                          const BIGNUM *x, const BIGNUM *y,
547
                                          BN_CTX *ctx);
548
549
// bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
550
// zero on error. |a| and |b| are both treated as secret.
551
OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
552
                                    BN_CTX *ctx);
553
554
// bn_mont_ctx_init zero-initialies |mont|.
555
void bn_mont_ctx_init(BN_MONT_CTX *mont);
556
557
// bn_mont_ctx_cleanup releases memory associated with |mont|, without freeing
558
// |mont| itself.
559
void bn_mont_ctx_cleanup(BN_MONT_CTX *mont);
560
561
562
// Constant-time modular arithmetic.
563
//
564
// The following functions implement basic constant-time modular arithmetic.
565
566
// bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch
567
// space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
568
// |r|, |a|, and |b| may alias.
569
void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
570
                      const BN_ULONG *m, BN_ULONG *tmp, size_t num);
571
572
// bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
573
int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
574
                         const BIGNUM *m, BN_CTX *ctx);
575
576
// bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch
577
// space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
578
// |r|, |a|, and |b| may alias.
579
void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
580
                      const BN_ULONG *m, BN_ULONG *tmp, size_t num);
581
582
// bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
583
int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
584
                         const BIGNUM *m, BN_CTX *ctx);
585
586
// bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
587
// |BN_CTX|.
588
int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
589
                             BN_CTX *ctx);
590
591
// bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
592
int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
593
                            BN_CTX *ctx);
594
595
// bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
596
// negative and less than |n|. It returns one on success and zero on error. On
597
// failure, if the failure was caused by |a| having no inverse mod |n| then
598
// |*out_no_inverse| will be set to one; otherwise it will be set to zero.
599
//
600
// This function treats both |a| and |n| as secret, provided they are both non-
601
// zero and the inverse exists. It should only be used for even moduli where
602
// none of the less general implementations are applicable.
603
OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
604
                                            const BIGNUM *a, const BIGNUM *n,
605
                                            BN_CTX *ctx);
606
607
// bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
608
// computed with Fermat's Little Theorem. It returns one on success and zero on
609
// error. If |mont_p| is NULL, one will be computed temporarily.
610
int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
611
                         BN_CTX *ctx, const BN_MONT_CTX *mont_p);
612
613
// bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
614
// |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
615
// protecting the exponent.
616
int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
617
                                BN_CTX *ctx, const BN_MONT_CTX *mont_p);
618
619
// BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
620
// so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
621
// then stores it as |*pmont|. It returns one on success and zero on error. Note
622
// this function assumes |mod| is public.
623
//
624
// If |*pmont| is already non-NULL then it does nothing and returns one.
625
int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
626
                           const BIGNUM *mod, BN_CTX *bn_ctx);
627
628
629
// Low-level operations for small numbers.
630
//
631
// The following functions implement algorithms suitable for use with scalars
632
// and field elements in elliptic curves. They rely on the number being small
633
// both to stack-allocate various temporaries and because they do not implement
634
// optimizations useful for the larger values used in RSA.
635
636
// BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
637
// limit allows temporaries to be more easily stack-allocated. This limit is set
638
// to accommodate P-521.
639
#if defined(OPENSSL_32_BIT)
640
#define BN_SMALL_MAX_WORDS 17
641
#else
642
294M
#define BN_SMALL_MAX_WORDS 9
643
#endif
644
645
// bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
646
// not alias with |a| or |b|.
647
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
648
                 const BN_ULONG *b, size_t num_b);
649
650
// bn_sqr_small sets |r| to |a|^2. |num_r| must be |num_a|*2. |r| and |a| may
651
// not alias.
652
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
653
654
// In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
655
// words long.
656
657
// bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
658
// |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be
659
// fully reduced and may alias |r|.
660
void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
661
                            const BN_MONT_CTX *mont);
662
663
// bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
664
// domain. |r| and |a| are |num_r| and |num_a| words long, respectively. |num_r|
665
// must be |mont->N.width|. |a| must be at most |mont->N|^2 and may alias |r|.
666
//
667
// Unlike most of these functions, only |num_r| is bounded by
668
// |BN_SMALL_MAX_WORDS|. |num_a| may exceed it, but must be at most 2 * |num_r|.
669
void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
670
                              size_t num_a, const BN_MONT_CTX *mont);
671
672
// bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
673
// and outputs are in the Montgomery domain. Each array is |num| words long,
674
// which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a|
675
// and |b| must be reduced on input.
676
void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
677
                                 const BN_ULONG *b, size_t num,
678
                                 const BN_MONT_CTX *mont);
679
680
// bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
681
// success and zero on programmer or internal error. Both inputs and outputs are
682
// in the Montgomery domain. |r| and |a| are |num| words long, which must be
683
// |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |num_p|, measured in bits,
684
// must fit in |size_t|. |a| must be fully-reduced. This function runs in time
685
// independent of |a|, but |p| and |mont->N| are public values. |a| must be
686
// fully-reduced and may alias with |r|.
687
//
688
// Note this function differs from |BN_mod_exp_mont| which uses Montgomery
689
// reduction but takes input and output outside the Montgomery domain. Combine
690
// this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
691
// if necessary.
692
void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
693
                           const BN_ULONG *p, size_t num_p,
694
                           const BN_MONT_CTX *mont);
695
696
// bn_mod_inverse0_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. If |a| is
697
// zero, |r| is set to zero. |mont->N| must be a prime. |r| and |a| are |num|
698
// words long, which must be |mont->N.width| and at most |BN_SMALL_MAX_WORDS|.
699
// |a| must be fully-reduced and may alias |r|. This function runs in time
700
// independent of |a|, but |mont->N| is a public value.
701
void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a,
702
                                      size_t num, const BN_MONT_CTX *mont);
703
704
705
// Word-based byte conversion functions.
706
707
// bn_big_endian_to_words interprets |in_len| bytes from |in| as a big-endian,
708
// unsigned integer and writes the result to |out_len| words in |out|. |out_len|
709
// must be large enough to represent any |in_len|-byte value. That is, |in_len|
710
// must be at most |BN_BYTES * out_len|.
711
void bn_big_endian_to_words(BN_ULONG *out, size_t out_len, const uint8_t *in,
712
                            size_t in_len);
713
714
// bn_words_to_big_endian represents |in_len| words from |in| as a big-endian,
715
// unsigned integer in |out_len| bytes. It writes the result to |out|. |out_len|
716
// must be large enough to represent |in| without truncation.
717
//
718
// Note |out_len| may be less than |BN_BYTES * in_len| if |in| is known to have
719
// leading zeros.
720
void bn_words_to_big_endian(uint8_t *out, size_t out_len, const BN_ULONG *in,
721
                            size_t in_len);
722
723
724
#if defined(__cplusplus)
725
}  // extern C
726
#endif
727
728
#endif  // OPENSSL_HEADER_CRYPTO_FIPSMODULE_BN_INTERNAL_H