/src/boringssl/crypto/md4/md4.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/md4.h> |
16 | | |
17 | | #include <stdlib.h> |
18 | | #include <string.h> |
19 | | |
20 | | #include <openssl/span.h> |
21 | | |
22 | | #include "../fipsmodule/digest/md32_common.h" |
23 | | #include "../internal.h" |
24 | | |
25 | | |
26 | 0 | uint8_t *MD4(const uint8_t *data, size_t len, uint8_t out[MD4_DIGEST_LENGTH]) { |
27 | 0 | MD4_CTX ctx; |
28 | 0 | MD4_Init(&ctx); |
29 | 0 | MD4_Update(&ctx, data, len); |
30 | 0 | MD4_Final(out, &ctx); |
31 | |
|
32 | 0 | return out; |
33 | 0 | } |
34 | | |
35 | | // Implemented from RFC 1186 The MD4 Message-Digest Algorithm. |
36 | | |
37 | 28.4k | int MD4_Init(MD4_CTX *md4) { |
38 | 28.4k | OPENSSL_memset(md4, 0, sizeof(MD4_CTX)); |
39 | 28.4k | md4->h[0] = 0x67452301UL; |
40 | 28.4k | md4->h[1] = 0xefcdab89UL; |
41 | 28.4k | md4->h[2] = 0x98badcfeUL; |
42 | 28.4k | md4->h[3] = 0x10325476UL; |
43 | 28.4k | return 1; |
44 | 28.4k | } |
45 | | |
46 | | static void md4_block_data_order(uint32_t *state, const uint8_t *data, |
47 | | size_t num); |
48 | | |
49 | 0 | void MD4_Transform(MD4_CTX *c, const uint8_t data[MD4_CBLOCK]) { |
50 | 0 | md4_block_data_order(c->h, data, 1); |
51 | 0 | } |
52 | | |
53 | | namespace { |
54 | | struct MD4Traits { |
55 | | using HashContext = MD4_CTX; |
56 | | static constexpr size_t kBlockSize = MD4_CBLOCK; |
57 | | static constexpr bool kLengthIsBigEndian = false; |
58 | | static void HashBlocks(uint32_t *state, const uint8_t *data, |
59 | 28.9k | size_t num_blocks) { |
60 | 28.9k | md4_block_data_order(state, data, num_blocks); |
61 | 28.9k | } |
62 | | }; |
63 | | } // namespace |
64 | | |
65 | 28.7k | int MD4_Update(MD4_CTX *c, const void *data, size_t len) { |
66 | 28.7k | bssl::crypto_md32_update<MD4Traits>( |
67 | 28.7k | c, bssl::Span(static_cast<const uint8_t *>(data), len)); |
68 | 28.7k | return 1; |
69 | 28.7k | } |
70 | | |
71 | 28.4k | int MD4_Final(uint8_t out[MD4_DIGEST_LENGTH], MD4_CTX *c) { |
72 | 28.4k | bssl::crypto_md32_final<MD4Traits>(c); |
73 | 28.4k | CRYPTO_store_u32_le(out, c->h[0]); |
74 | 28.4k | CRYPTO_store_u32_le(out + 4, c->h[1]); |
75 | 28.4k | CRYPTO_store_u32_le(out + 8, c->h[2]); |
76 | 28.4k | CRYPTO_store_u32_le(out + 12, c->h[3]); |
77 | 28.4k | return 1; |
78 | 28.4k | } |
79 | | |
80 | | // As pointed out by Wei Dai <weidai@eskimo.com>, the above can be |
81 | | // simplified to the code below. Wei attributes these optimizations |
82 | | // to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. |
83 | 1.58M | #define F(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) |
84 | 1.58M | #define G(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) |
85 | 1.58M | #define H(b, c, d) ((b) ^ (c) ^ (d)) |
86 | | |
87 | | #define R0(a, b, c, d, k, s, t) \ |
88 | 1.58M | do { \ |
89 | 1.58M | (a) += ((k) + (t) + F((b), (c), (d))); \ |
90 | 1.58M | (a) = CRYPTO_rotl_u32(a, s); \ |
91 | 1.58M | } while (0) |
92 | | |
93 | | #define R1(a, b, c, d, k, s, t) \ |
94 | 1.58M | do { \ |
95 | 1.58M | (a) += ((k) + (t) + G((b), (c), (d))); \ |
96 | 1.58M | (a) = CRYPTO_rotl_u32(a, s); \ |
97 | 1.58M | } while (0) |
98 | | |
99 | | #define R2(a, b, c, d, k, s, t) \ |
100 | 1.58M | do { \ |
101 | 1.58M | (a) += ((k) + (t) + H((b), (c), (d))); \ |
102 | 1.58M | (a) = CRYPTO_rotl_u32(a, s); \ |
103 | 1.58M | } while (0) |
104 | | |
105 | | static void md4_block_data_order(uint32_t *state, const uint8_t *data, |
106 | 28.9k | size_t num) { |
107 | 28.9k | uint32_t A, B, C, D; |
108 | 28.9k | uint32_t X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15; |
109 | | |
110 | 28.9k | A = state[0]; |
111 | 28.9k | B = state[1]; |
112 | 28.9k | C = state[2]; |
113 | 28.9k | D = state[3]; |
114 | | |
115 | 127k | for (; num--;) { |
116 | 98.9k | X0 = CRYPTO_load_u32_le(data); |
117 | 98.9k | data += 4; |
118 | 98.9k | X1 = CRYPTO_load_u32_le(data); |
119 | 98.9k | data += 4; |
120 | | // Round 0 |
121 | 98.9k | R0(A, B, C, D, X0, 3, 0); |
122 | 98.9k | X2 = CRYPTO_load_u32_le(data); |
123 | 98.9k | data += 4; |
124 | 98.9k | R0(D, A, B, C, X1, 7, 0); |
125 | 98.9k | X3 = CRYPTO_load_u32_le(data); |
126 | 98.9k | data += 4; |
127 | 98.9k | R0(C, D, A, B, X2, 11, 0); |
128 | 98.9k | X4 = CRYPTO_load_u32_le(data); |
129 | 98.9k | data += 4; |
130 | 98.9k | R0(B, C, D, A, X3, 19, 0); |
131 | 98.9k | X5 = CRYPTO_load_u32_le(data); |
132 | 98.9k | data += 4; |
133 | 98.9k | R0(A, B, C, D, X4, 3, 0); |
134 | 98.9k | X6 = CRYPTO_load_u32_le(data); |
135 | 98.9k | data += 4; |
136 | 98.9k | R0(D, A, B, C, X5, 7, 0); |
137 | 98.9k | X7 = CRYPTO_load_u32_le(data); |
138 | 98.9k | data += 4; |
139 | 98.9k | R0(C, D, A, B, X6, 11, 0); |
140 | 98.9k | X8 = CRYPTO_load_u32_le(data); |
141 | 98.9k | data += 4; |
142 | 98.9k | R0(B, C, D, A, X7, 19, 0); |
143 | 98.9k | X9 = CRYPTO_load_u32_le(data); |
144 | 98.9k | data += 4; |
145 | 98.9k | R0(A, B, C, D, X8, 3, 0); |
146 | 98.9k | X10 = CRYPTO_load_u32_le(data); |
147 | 98.9k | data += 4; |
148 | 98.9k | R0(D, A, B, C, X9, 7, 0); |
149 | 98.9k | X11 = CRYPTO_load_u32_le(data); |
150 | 98.9k | data += 4; |
151 | 98.9k | R0(C, D, A, B, X10, 11, 0); |
152 | 98.9k | X12 = CRYPTO_load_u32_le(data); |
153 | 98.9k | data += 4; |
154 | 98.9k | R0(B, C, D, A, X11, 19, 0); |
155 | 98.9k | X13 = CRYPTO_load_u32_le(data); |
156 | 98.9k | data += 4; |
157 | 98.9k | R0(A, B, C, D, X12, 3, 0); |
158 | 98.9k | X14 = CRYPTO_load_u32_le(data); |
159 | 98.9k | data += 4; |
160 | 98.9k | R0(D, A, B, C, X13, 7, 0); |
161 | 98.9k | X15 = CRYPTO_load_u32_le(data); |
162 | 98.9k | data += 4; |
163 | 98.9k | R0(C, D, A, B, X14, 11, 0); |
164 | 98.9k | R0(B, C, D, A, X15, 19, 0); |
165 | | // Round 1 |
166 | 98.9k | R1(A, B, C, D, X0, 3, 0x5A827999L); |
167 | 98.9k | R1(D, A, B, C, X4, 5, 0x5A827999L); |
168 | 98.9k | R1(C, D, A, B, X8, 9, 0x5A827999L); |
169 | 98.9k | R1(B, C, D, A, X12, 13, 0x5A827999L); |
170 | 98.9k | R1(A, B, C, D, X1, 3, 0x5A827999L); |
171 | 98.9k | R1(D, A, B, C, X5, 5, 0x5A827999L); |
172 | 98.9k | R1(C, D, A, B, X9, 9, 0x5A827999L); |
173 | 98.9k | R1(B, C, D, A, X13, 13, 0x5A827999L); |
174 | 98.9k | R1(A, B, C, D, X2, 3, 0x5A827999L); |
175 | 98.9k | R1(D, A, B, C, X6, 5, 0x5A827999L); |
176 | 98.9k | R1(C, D, A, B, X10, 9, 0x5A827999L); |
177 | 98.9k | R1(B, C, D, A, X14, 13, 0x5A827999L); |
178 | 98.9k | R1(A, B, C, D, X3, 3, 0x5A827999L); |
179 | 98.9k | R1(D, A, B, C, X7, 5, 0x5A827999L); |
180 | 98.9k | R1(C, D, A, B, X11, 9, 0x5A827999L); |
181 | 98.9k | R1(B, C, D, A, X15, 13, 0x5A827999L); |
182 | | // Round 2 |
183 | 98.9k | R2(A, B, C, D, X0, 3, 0x6ED9EBA1L); |
184 | 98.9k | R2(D, A, B, C, X8, 9, 0x6ED9EBA1L); |
185 | 98.9k | R2(C, D, A, B, X4, 11, 0x6ED9EBA1L); |
186 | 98.9k | R2(B, C, D, A, X12, 15, 0x6ED9EBA1L); |
187 | 98.9k | R2(A, B, C, D, X2, 3, 0x6ED9EBA1L); |
188 | 98.9k | R2(D, A, B, C, X10, 9, 0x6ED9EBA1L); |
189 | 98.9k | R2(C, D, A, B, X6, 11, 0x6ED9EBA1L); |
190 | 98.9k | R2(B, C, D, A, X14, 15, 0x6ED9EBA1L); |
191 | 98.9k | R2(A, B, C, D, X1, 3, 0x6ED9EBA1L); |
192 | 98.9k | R2(D, A, B, C, X9, 9, 0x6ED9EBA1L); |
193 | 98.9k | R2(C, D, A, B, X5, 11, 0x6ED9EBA1L); |
194 | 98.9k | R2(B, C, D, A, X13, 15, 0x6ED9EBA1L); |
195 | 98.9k | R2(A, B, C, D, X3, 3, 0x6ED9EBA1L); |
196 | 98.9k | R2(D, A, B, C, X11, 9, 0x6ED9EBA1L); |
197 | 98.9k | R2(C, D, A, B, X7, 11, 0x6ED9EBA1L); |
198 | 98.9k | R2(B, C, D, A, X15, 15, 0x6ED9EBA1L); |
199 | | |
200 | 98.9k | A = state[0] += A; |
201 | 98.9k | B = state[1] += B; |
202 | 98.9k | C = state[2] += C; |
203 | 98.9k | D = state[3] += D; |
204 | 98.9k | } |
205 | 28.9k | } |