/src/boringssl/crypto/evp/evp_asn1.cc
Line | Count | Source |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/evp.h> |
16 | | |
17 | | #include <string.h> |
18 | | |
19 | | #include <array> |
20 | | |
21 | | #include <openssl/bytestring.h> |
22 | | #include <openssl/dsa.h> |
23 | | #include <openssl/ec_key.h> |
24 | | #include <openssl/err.h> |
25 | | #include <openssl/rsa.h> |
26 | | #include <openssl/span.h> |
27 | | |
28 | | #include "internal.h" |
29 | | #include "../bytestring/internal.h" |
30 | | #include "../internal.h" |
31 | | |
32 | | |
33 | | EVP_PKEY *EVP_PKEY_from_subject_public_key_info(const uint8_t *in, size_t len, |
34 | | const EVP_PKEY_ALG *const *algs, |
35 | 264k | size_t num_algs) { |
36 | | // Parse the SubjectPublicKeyInfo. |
37 | 264k | CBS cbs, spki, algorithm, oid, key; |
38 | 264k | CBS_init(&cbs, in, len); |
39 | 264k | if (!CBS_get_asn1(&cbs, &spki, CBS_ASN1_SEQUENCE) || |
40 | 264k | !CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || |
41 | 264k | !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
42 | 264k | !CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) || |
43 | 264k | CBS_len(&spki) != 0 || // |
44 | 264k | CBS_len(&cbs) != 0) { |
45 | 149 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
46 | 149 | return nullptr; |
47 | 149 | } |
48 | | |
49 | 264k | bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
50 | 264k | if (ret == nullptr) { |
51 | 0 | return nullptr; |
52 | 0 | } |
53 | 1.09M | for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) { |
54 | 1.09M | if (alg->method->pub_decode == nullptr || |
55 | 1.09M | bssl::Span(alg->method->oid, alg->method->oid_len) != oid) { |
56 | 801k | continue; |
57 | 801k | } |
58 | | // Every key type we support encodes the key as a byte string with the same |
59 | | // conversion to BIT STRING, so perform that common conversion ahead of |
60 | | // time, but only after the OID is recognized as supported. |
61 | 294k | CBS key_bytes = key; |
62 | 294k | uint8_t padding; |
63 | 294k | if (!CBS_get_u8(&key_bytes, &padding) || padding != 0) { |
64 | 146 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
65 | 146 | return nullptr; |
66 | 146 | } |
67 | 294k | CBS params = algorithm; |
68 | 294k | switch (alg->method->pub_decode(alg, ret.get(), ¶ms, &key_bytes)) { |
69 | 57.4k | case evp_decode_error: |
70 | 57.4k | return nullptr; |
71 | 178k | case evp_decode_ok: |
72 | 178k | return ret.release(); |
73 | 58.3k | case evp_decode_unsupported: |
74 | | // Continue trying other algorithms. |
75 | 58.3k | break; |
76 | 294k | } |
77 | 294k | } |
78 | | |
79 | 28.1k | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
80 | 28.1k | return nullptr; |
81 | 264k | } |
82 | | |
83 | 2.45k | int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) { |
84 | 2.45k | if (key->ameth == nullptr || key->ameth->pub_encode == nullptr) { |
85 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
86 | 0 | return 0; |
87 | 0 | } |
88 | | |
89 | 2.45k | return key->ameth->pub_encode(cbb, key); |
90 | 2.45k | } |
91 | | |
92 | | EVP_PKEY *EVP_PKEY_from_private_key_info(const uint8_t *in, size_t len, |
93 | | const EVP_PKEY_ALG *const *algs, |
94 | 16.8k | size_t num_algs) { |
95 | | // Parse the PrivateKeyInfo. |
96 | 16.8k | CBS cbs, pkcs8, oid, algorithm, key; |
97 | 16.8k | uint64_t version; |
98 | 16.8k | CBS_init(&cbs, in, len); |
99 | 16.8k | if (!CBS_get_asn1(&cbs, &pkcs8, CBS_ASN1_SEQUENCE) || |
100 | 16.8k | !CBS_get_asn1_uint64(&pkcs8, &version) || version != 0 || |
101 | 11.9k | !CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) || |
102 | 9.46k | !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
103 | 9.44k | !CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING) || |
104 | | // A PrivateKeyInfo ends with a SET of Attributes which we ignore. |
105 | 9.39k | CBS_len(&cbs) != 0) { |
106 | 7.48k | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
107 | 7.48k | return nullptr; |
108 | 7.48k | } |
109 | | |
110 | 9.39k | bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
111 | 9.39k | if (ret == nullptr) { |
112 | 0 | return nullptr; |
113 | 0 | } |
114 | 43.1k | for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) { |
115 | 43.1k | if (alg->method->priv_decode == nullptr || |
116 | 43.1k | bssl::Span(alg->method->oid, alg->method->oid_len) != oid) { |
117 | 30.3k | continue; |
118 | 30.3k | } |
119 | 12.7k | CBS params = algorithm, key_copy = key; |
120 | 12.7k | switch (alg->method->priv_decode(alg, ret.get(), ¶ms, &key_copy)) { |
121 | 6.56k | case evp_decode_error: |
122 | 6.56k | return nullptr; |
123 | 2.08k | case evp_decode_ok: |
124 | 2.08k | return ret.release(); |
125 | 4.11k | case evp_decode_unsupported: |
126 | | // Continue trying other algorithms. |
127 | 4.11k | break; |
128 | 12.7k | } |
129 | 12.7k | } |
130 | | |
131 | 739 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
132 | 739 | return nullptr; |
133 | 9.39k | } |
134 | | |
135 | 1.62k | int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) { |
136 | 1.62k | if (key->ameth == nullptr || key->ameth->priv_encode == nullptr) { |
137 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
138 | 0 | return 0; |
139 | 0 | } |
140 | | |
141 | 1.62k | return key->ameth->priv_encode(cbb, key); |
142 | 1.62k | } |
143 | | |
144 | 2.21k | EVP_PKEY *EVP_parse_public_key(CBS *cbs) { |
145 | 2.21k | CBS elem; |
146 | 2.21k | if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) { |
147 | 500 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
148 | 500 | return nullptr; |
149 | 500 | } |
150 | | |
151 | 1.71k | auto algs = bssl::GetDefaultEVPAlgorithms(); |
152 | 1.71k | return EVP_PKEY_from_subject_public_key_info(CBS_data(&elem), CBS_len(&elem), |
153 | 1.71k | algs.data(), algs.size()); |
154 | 2.21k | } |
155 | | |
156 | 19.1k | EVP_PKEY *EVP_parse_private_key(CBS *cbs) { |
157 | 19.1k | CBS elem; |
158 | 19.1k | if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) { |
159 | 2.24k | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
160 | 2.24k | return nullptr; |
161 | 2.24k | } |
162 | | |
163 | 16.8k | auto algs = bssl::GetDefaultEVPAlgorithms(); |
164 | 16.8k | return EVP_PKEY_from_private_key_info(CBS_data(&elem), CBS_len(&elem), |
165 | 16.8k | algs.data(), algs.size()); |
166 | 19.1k | } |
167 | | |
168 | 4.32k | static bssl::UniquePtr<EVP_PKEY> old_priv_decode(CBS *cbs, int type) { |
169 | 4.32k | bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
170 | 4.32k | if (ret == nullptr) { |
171 | 0 | return nullptr; |
172 | 0 | } |
173 | | |
174 | 4.32k | switch (type) { |
175 | 1.68k | case EVP_PKEY_EC: { |
176 | 1.68k | bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_parse_private_key(cbs, nullptr)); |
177 | 1.68k | if (ec_key == nullptr) { |
178 | 1.68k | return nullptr; |
179 | 1.68k | } |
180 | 1 | EVP_PKEY_assign_EC_KEY(ret.get(), ec_key.release()); |
181 | 1 | return ret; |
182 | 1.68k | } |
183 | 679 | case EVP_PKEY_DSA: { |
184 | 679 | bssl::UniquePtr<DSA> dsa(DSA_parse_private_key(cbs)); |
185 | 679 | if (dsa == nullptr) { |
186 | 674 | return nullptr; |
187 | 674 | } |
188 | 5 | EVP_PKEY_assign_DSA(ret.get(), dsa.release()); |
189 | 5 | return ret; |
190 | 679 | } |
191 | 1.96k | case EVP_PKEY_RSA: { |
192 | 1.96k | bssl::UniquePtr<RSA> rsa(RSA_parse_private_key(cbs)); |
193 | 1.96k | if (rsa == nullptr) { |
194 | 1.96k | return nullptr; |
195 | 1.96k | } |
196 | 1 | EVP_PKEY_assign_RSA(ret.get(), rsa.release()); |
197 | 1 | return ret; |
198 | 1.96k | } |
199 | 0 | default: |
200 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE); |
201 | 0 | return nullptr; |
202 | 4.32k | } |
203 | 4.32k | } |
204 | | |
205 | | EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, |
206 | 4.32k | long len) { |
207 | 4.32k | return bssl::D2IFromCBS( |
208 | 4.32k | out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> { |
209 | | // Parse with the legacy format. |
210 | 4.32k | CBS copy = *cbs; |
211 | 4.32k | bssl::UniquePtr<EVP_PKEY> ret = old_priv_decode(cbs, type); |
212 | 4.32k | if (ret == nullptr) { |
213 | | // Try again with PKCS#8. |
214 | 4.32k | ERR_clear_error(); |
215 | 4.32k | *cbs = copy; |
216 | 4.32k | ret.reset(EVP_parse_private_key(cbs)); |
217 | 4.32k | if (ret == nullptr) { |
218 | 4.32k | return nullptr; |
219 | 4.32k | } |
220 | 0 | if (EVP_PKEY_id(ret.get()) != type) { |
221 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES); |
222 | 0 | return nullptr; |
223 | 0 | } |
224 | 0 | } |
225 | 7 | return ret; |
226 | 4.32k | }); |
227 | 4.32k | } |
228 | | |
229 | | // num_elements parses one SEQUENCE from |in| and returns the number of elements |
230 | | // in it. On parse error, it returns zero. |
231 | 4.32k | static size_t num_elements(const uint8_t *in, size_t in_len) { |
232 | 4.32k | CBS cbs, sequence; |
233 | 4.32k | CBS_init(&cbs, in, (size_t)in_len); |
234 | | |
235 | 4.32k | if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) { |
236 | 478 | return 0; |
237 | 478 | } |
238 | | |
239 | 3.85k | size_t count = 0; |
240 | 24.0k | while (CBS_len(&sequence) > 0) { |
241 | 20.5k | if (!CBS_get_any_asn1_element(&sequence, nullptr, nullptr, nullptr)) { |
242 | 345 | return 0; |
243 | 345 | } |
244 | | |
245 | 20.2k | count++; |
246 | 20.2k | } |
247 | | |
248 | 3.50k | return count; |
249 | 3.85k | } |
250 | | |
251 | 4.77k | EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) { |
252 | 4.77k | if (len < 0) { |
253 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
254 | 0 | return nullptr; |
255 | 0 | } |
256 | | |
257 | | // Parse the input as a PKCS#8 PrivateKeyInfo. |
258 | 4.77k | CBS cbs; |
259 | 4.77k | CBS_init(&cbs, *inp, (size_t)len); |
260 | 4.77k | EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
261 | 4.77k | if (ret != nullptr) { |
262 | 447 | if (out != nullptr) { |
263 | 0 | EVP_PKEY_free(*out); |
264 | 0 | *out = ret; |
265 | 0 | } |
266 | 447 | *inp = CBS_data(&cbs); |
267 | 447 | return ret; |
268 | 447 | } |
269 | 4.32k | ERR_clear_error(); |
270 | | |
271 | | // Count the elements to determine the legacy key format. |
272 | 4.32k | switch (num_elements(*inp, (size_t)len)) { |
273 | 1.68k | case 4: |
274 | 1.68k | return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len); |
275 | | |
276 | 679 | case 6: |
277 | 679 | return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len); |
278 | | |
279 | 1.96k | default: |
280 | 1.96k | return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len); |
281 | 4.32k | } |
282 | 4.32k | } |
283 | | |
284 | 0 | int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) { |
285 | 0 | switch (EVP_PKEY_id(key)) { |
286 | 0 | case EVP_PKEY_RSA: |
287 | 0 | return i2d_RSAPublicKey(EVP_PKEY_get0_RSA(key), outp); |
288 | 0 | case EVP_PKEY_DSA: |
289 | 0 | return i2d_DSAPublicKey(EVP_PKEY_get0_DSA(key), outp); |
290 | 0 | case EVP_PKEY_EC: |
291 | 0 | return i2o_ECPublicKey(EVP_PKEY_get0_EC_KEY(key), outp); |
292 | 0 | default: |
293 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
294 | 0 | return -1; |
295 | 0 | } |
296 | 0 | } |
297 | | |
298 | | EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, |
299 | 0 | long len) { |
300 | 0 | return bssl::D2IFromCBS( |
301 | 0 | out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> { |
302 | 0 | bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
303 | 0 | if (ret == nullptr) { |
304 | 0 | return nullptr; |
305 | 0 | } |
306 | 0 | switch (type) { |
307 | 0 | case EVP_PKEY_RSA: { |
308 | 0 | bssl::UniquePtr<RSA> rsa(RSA_parse_public_key(cbs)); |
309 | 0 | if (rsa == nullptr) { |
310 | 0 | return nullptr; |
311 | 0 | } |
312 | 0 | EVP_PKEY_assign_RSA(ret.get(), rsa.release()); |
313 | 0 | return ret; |
314 | 0 | } |
315 | | |
316 | | // Unlike OpenSSL, we do not support EC keys with this API. The raw EC |
317 | | // public key serialization requires knowing the group. In OpenSSL, |
318 | | // calling this function with |EVP_PKEY_EC| and setting |out| to |
319 | | // nullptr does not work. It requires |*out| to include a |
320 | | // partially-initialized |EVP_PKEY| to extract the group. |
321 | 0 | default: |
322 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
323 | 0 | return nullptr; |
324 | 0 | } |
325 | 0 | }); |
326 | 0 | } |
327 | | |
328 | 0 | EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) { |
329 | 0 | return bssl::D2IFromCBS(out, inp, len, EVP_parse_public_key); |
330 | 0 | } |
331 | | |
332 | 0 | int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) { |
333 | 0 | if (pkey == nullptr) { |
334 | 0 | return 0; |
335 | 0 | } |
336 | 0 | return bssl::I2DFromCBB( |
337 | 0 | /*initial_capacity=*/128, outp, |
338 | 0 | [&](CBB *cbb) -> bool { return EVP_marshal_public_key(cbb, pkey); }); |
339 | 0 | } |
340 | | |
341 | | static bssl::UniquePtr<EVP_PKEY> parse_spki( |
342 | 0 | CBS *cbs, bssl::Span<const EVP_PKEY_ALG *const> algs) { |
343 | 0 | CBS spki; |
344 | 0 | if (!CBS_get_asn1_element(cbs, &spki, CBS_ASN1_SEQUENCE)) { |
345 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
346 | 0 | return nullptr; |
347 | 0 | } |
348 | 0 | return bssl::UniquePtr<EVP_PKEY>(EVP_PKEY_from_subject_public_key_info( |
349 | 0 | CBS_data(&spki), CBS_len(&spki), algs.data(), algs.size())); |
350 | 0 | } |
351 | | |
352 | 0 | static bssl::UniquePtr<EVP_PKEY> parse_spki(CBS *cbs, const EVP_PKEY_ALG *alg) { |
353 | 0 | return parse_spki(cbs, bssl::Span(&alg, 1)); |
354 | 0 | } |
355 | | |
356 | 0 | RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) { |
357 | 0 | return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<RSA> { |
358 | 0 | bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_rsa()); |
359 | 0 | if (pkey == nullptr) { |
360 | 0 | return nullptr; |
361 | 0 | } |
362 | 0 | return bssl::UniquePtr<RSA>(EVP_PKEY_get1_RSA(pkey.get())); |
363 | 0 | }); |
364 | 0 | } |
365 | | |
366 | 0 | int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) { |
367 | 0 | if (rsa == nullptr) { |
368 | 0 | return 0; |
369 | 0 | } |
370 | | |
371 | 0 | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
372 | 0 | if (pkey == nullptr || |
373 | 0 | !EVP_PKEY_set1_RSA(pkey.get(), const_cast<RSA *>(rsa))) { |
374 | 0 | return -1; |
375 | 0 | } |
376 | | |
377 | 0 | return i2d_PUBKEY(pkey.get(), outp); |
378 | 0 | } |
379 | | |
380 | 0 | DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) { |
381 | 0 | return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<DSA> { |
382 | 0 | bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_dsa()); |
383 | 0 | if (pkey == nullptr) { |
384 | 0 | return nullptr; |
385 | 0 | } |
386 | 0 | return bssl::UniquePtr<DSA>(EVP_PKEY_get1_DSA(pkey.get())); |
387 | 0 | }); |
388 | 0 | } |
389 | | |
390 | 0 | int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) { |
391 | 0 | if (dsa == nullptr) { |
392 | 0 | return 0; |
393 | 0 | } |
394 | | |
395 | 0 | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
396 | 0 | if (pkey == nullptr || |
397 | 0 | !EVP_PKEY_set1_DSA(pkey.get(), const_cast<DSA *>(dsa))) { |
398 | 0 | return -1; |
399 | 0 | } |
400 | | |
401 | 0 | return i2d_PUBKEY(pkey.get(), outp); |
402 | 0 | } |
403 | | |
404 | 0 | EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) { |
405 | 0 | return bssl::D2IFromCBS( |
406 | 0 | out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<EC_KEY> { |
407 | 0 | const EVP_PKEY_ALG *const algs[] = { |
408 | 0 | EVP_pkey_ec_p224(), EVP_pkey_ec_p256(), EVP_pkey_ec_p384(), |
409 | 0 | EVP_pkey_ec_p521()}; |
410 | 0 | bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, algs); |
411 | 0 | if (pkey == nullptr) { |
412 | 0 | return nullptr; |
413 | 0 | } |
414 | 0 | return bssl::UniquePtr<EC_KEY>(EVP_PKEY_get1_EC_KEY(pkey.get())); |
415 | 0 | }); |
416 | 0 | } |
417 | | |
418 | 0 | int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) { |
419 | 0 | if (ec_key == nullptr) { |
420 | 0 | return 0; |
421 | 0 | } |
422 | | |
423 | 0 | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
424 | 0 | if (pkey == nullptr || |
425 | 0 | !EVP_PKEY_set1_EC_KEY(pkey.get(), const_cast<EC_KEY *>(ec_key))) { |
426 | 0 | return -1; |
427 | 0 | } |
428 | | |
429 | 0 | return i2d_PUBKEY(pkey.get(), outp); |
430 | 0 | } |