Coverage Report

Created: 2025-11-03 06:30

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/boringssl/crypto/fipsmodule/sha/sha512.cc.inc
Line
Count
Source
1
// Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include <string.h>
16
17
#include <openssl/mem.h>
18
19
#include "../../internal.h"
20
#include "../bcm_interface.h"
21
#include "../service_indicator/internal.h"
22
#include "internal.h"
23
24
25
// The 32-bit hash algorithms share a common byte-order neutral collector and
26
// padding function implementations that operate on unaligned data,
27
// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
28
// this writing, so there is no need for a common collector/padding
29
// implementation yet.
30
31
static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha);
32
33
427k
bcm_infallible BCM_sha384_init(SHA512_CTX *sha) {
34
427k
  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
35
427k
  sha->h[1] = UINT64_C(0x629a292a367cd507);
36
427k
  sha->h[2] = UINT64_C(0x9159015a3070dd17);
37
427k
  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
38
427k
  sha->h[4] = UINT64_C(0x67332667ffc00b31);
39
427k
  sha->h[5] = UINT64_C(0x8eb44a8768581511);
40
427k
  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
41
427k
  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
42
43
427k
  sha->bytes_so_far_low = 0;
44
427k
  sha->bytes_so_far_high = 0;
45
427k
  sha->num = 0;
46
427k
  sha->md_len = SHA384_DIGEST_LENGTH;
47
427k
  return bcm_infallible::approved;
48
427k
}
49
50
51
10.9k
bcm_infallible BCM_sha512_init(SHA512_CTX *sha) {
52
10.9k
  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
53
10.9k
  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
54
10.9k
  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
55
10.9k
  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
56
10.9k
  sha->h[4] = UINT64_C(0x510e527fade682d1);
57
10.9k
  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
58
10.9k
  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
59
10.9k
  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
60
61
10.9k
  sha->bytes_so_far_low = 0;
62
10.9k
  sha->bytes_so_far_high = 0;
63
10.9k
  sha->num = 0;
64
10.9k
  sha->md_len = SHA512_DIGEST_LENGTH;
65
10.9k
  return bcm_infallible::approved;
66
10.9k
}
67
68
0
bcm_infallible BCM_sha512_256_init(SHA512_CTX *sha) {
69
0
  sha->h[0] = UINT64_C(0x22312194fc2bf72c);
70
0
  sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
71
0
  sha->h[2] = UINT64_C(0x2393b86b6f53b151);
72
0
  sha->h[3] = UINT64_C(0x963877195940eabd);
73
0
  sha->h[4] = UINT64_C(0x96283ee2a88effe3);
74
0
  sha->h[5] = UINT64_C(0xbe5e1e2553863992);
75
0
  sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
76
0
  sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
77
78
0
  sha->bytes_so_far_low = 0;
79
0
  sha->bytes_so_far_high = 0;
80
0
  sha->num = 0;
81
0
  sha->md_len = SHA512_256_DIGEST_LENGTH;
82
0
  return bcm_infallible::approved;
83
0
}
84
85
#if !defined(SHA512_ASM)
86
static void sha512_block_data_order(uint64_t state[8], const uint8_t *in,
87
                                    size_t num_blocks);
88
#endif
89
90
91
bcm_infallible BCM_sha384_final(uint8_t out[SHA384_DIGEST_LENGTH],
92
495k
                                SHA512_CTX *sha) {
93
  // This function must be paired with |BCM_sha384_init|, which sets
94
  // |sha->md_len| to |SHA384_DIGEST_LENGTH|.
95
495k
  assert(sha->md_len == SHA384_DIGEST_LENGTH);
96
495k
  sha512_final_impl(out, SHA384_DIGEST_LENGTH, sha);
97
495k
  return bcm_infallible::approved;
98
495k
}
99
100
bcm_infallible BCM_sha384_update(SHA512_CTX *sha, const void *data,
101
1.10M
                                 size_t len) {
102
1.10M
  return BCM_sha512_update(sha, data, len);
103
1.10M
}
104
105
bcm_infallible BCM_sha512_256_update(SHA512_CTX *sha, const void *data,
106
0
                                     size_t len) {
107
0
  return BCM_sha512_update(sha, data, len);
108
0
}
109
110
bcm_infallible BCM_sha512_256_final(uint8_t out[SHA512_256_DIGEST_LENGTH],
111
0
                                    SHA512_CTX *sha) {
112
  // This function must be paired with |BCM_sha512_256_init|, which sets
113
  // |sha->md_len| to |SHA512_256_DIGEST_LENGTH|.
114
0
  assert(sha->md_len == SHA512_256_DIGEST_LENGTH);
115
0
  sha512_final_impl(out, SHA512_256_DIGEST_LENGTH, sha);
116
0
  return bcm_infallible::approved;
117
0
}
118
119
bcm_infallible BCM_sha512_transform(SHA512_CTX *c,
120
0
                                    const uint8_t block[SHA512_CBLOCK]) {
121
0
  sha512_block_data_order(c->h, block, 1);
122
0
  return bcm_infallible::approved;
123
0
}
124
125
bcm_infallible BCM_sha512_update(SHA512_CTX *c, const void *in_data,
126
1.11M
                                 size_t len) {
127
1.11M
  uint8_t *p = c->p;
128
1.11M
  const uint8_t *data = reinterpret_cast<const uint8_t *>(in_data);
129
130
1.11M
  if (len == 0) {
131
35.4k
    return bcm_infallible::approved;
132
35.4k
  }
133
134
1.08M
  c->bytes_so_far_low += len;
135
1.08M
  if (c->bytes_so_far_low < len) {
136
0
    c->bytes_so_far_high++;
137
0
  }
138
139
1.08M
  if (c->num != 0) {
140
432k
    size_t n = sizeof(c->p) - c->num;
141
142
432k
    if (len < n) {
143
406k
      OPENSSL_memcpy(p + c->num, data, len);
144
406k
      c->num += (unsigned int)len;
145
406k
      return bcm_infallible::approved;
146
406k
    } else {
147
25.8k
      OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
148
25.8k
      len -= n;
149
25.8k
      data += n;
150
25.8k
      sha512_block_data_order(c->h, p, 1);
151
25.8k
    }
152
432k
  }
153
154
675k
  if (len >= sizeof(c->p)) {
155
227k
    sha512_block_data_order(c->h, data, len / sizeof(c->p));
156
227k
    data += len;
157
227k
    len %= sizeof(c->p);
158
227k
    data -= len;
159
227k
  }
160
161
675k
  if (len != 0) {
162
505k
    OPENSSL_memcpy(p, data, len);
163
505k
    c->num = (int)len;
164
505k
  }
165
166
675k
  return bcm_infallible::approved;
167
1.08M
}
168
169
bcm_infallible BCM_sha512_final(uint8_t out[SHA512_DIGEST_LENGTH],
170
10.9k
                                SHA512_CTX *sha) {
171
  // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match
172
  // the size hint, but calling code often pairs |BCM_sha384_init| with
173
  // |BCM_sha512_final| and expects |sha->md_len| to carry the size over.
174
  //
175
  // TODO(davidben): Add an assert and fix code to match them up.
176
10.9k
  sha512_final_impl(out, sha->md_len, sha);
177
10.9k
  return bcm_infallible::approved;
178
10.9k
}
179
180
506k
static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) {
181
506k
  uint8_t *p = sha->p;
182
506k
  size_t n = sha->num;
183
184
506k
  p[n] = 0x80;  // There always is a room for one
185
506k
  n++;
186
506k
  if (n > (sizeof(sha->p) - 16)) {
187
17.4k
    OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
188
17.4k
    n = 0;
189
17.4k
    sha512_block_data_order(sha->h, p, 1);
190
17.4k
  }
191
192
506k
  OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
193
506k
  const uint64_t Nh = (uint64_t{sha->bytes_so_far_high} << 3) |
194
506k
                      (sha->bytes_so_far_low >> (64 - 3));
195
506k
  const uint64_t Nl = sha->bytes_so_far_low << 3;
196
506k
  CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, Nh);
197
506k
  CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, Nl);
198
199
506k
  sha512_block_data_order(sha->h, p, 1);
200
201
506k
  assert(md_len % 8 == 0);
202
506k
  const size_t out_words = md_len / 8;
203
3.56M
  for (size_t i = 0; i < out_words; i++) {
204
3.06M
    CRYPTO_store_u64_be(out, sha->h[i]);
205
3.06M
    out += 8;
206
3.06M
  }
207
208
506k
  FIPS_service_indicator_update_state();
209
506k
}
210
211
#if !defined(SHA512_ASM)
212
213
#if !defined(SHA512_ASM_NOHW)
214
static const uint64_t K512[80] = {
215
    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
216
    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
217
    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
218
    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
219
    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
220
    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
221
    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
222
    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
223
    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
224
    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
225
    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
226
    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
227
    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
228
    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
229
    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
230
    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
231
    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
232
    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
233
    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
234
    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
235
    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
236
    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
237
    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
238
    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
239
    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
240
    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
241
    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
242
    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
243
    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
244
    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
245
    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
246
    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
247
    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
248
    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
249
    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
250
    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
251
    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
252
    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
253
    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
254
    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
255
};
256
257
#define Sigma0(x)                                        \
258
  (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
259
   CRYPTO_rotr_u64((x), 39))
260
#define Sigma1(x)                                        \
261
  (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
262
   CRYPTO_rotr_u64((x), 41))
263
#define sigma0(x) \
264
  (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
265
#define sigma1(x) \
266
  (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
267
268
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
269
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
270
271
272
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
273
// This code should give better results on 32-bit CPU with less than
274
// ~24 registers, both size and performance wise...
275
static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
276
                                         size_t num) {
277
  uint64_t A, E, T;
278
  uint64_t X[9 + 80], *F;
279
  int i;
280
281
  while (num--) {
282
    F = X + 80;
283
    A = state[0];
284
    F[1] = state[1];
285
    F[2] = state[2];
286
    F[3] = state[3];
287
    E = state[4];
288
    F[5] = state[5];
289
    F[6] = state[6];
290
    F[7] = state[7];
291
292
    for (i = 0; i < 16; i++, F--) {
293
      T = CRYPTO_load_u64_be(in + i * 8);
294
      F[0] = A;
295
      F[4] = E;
296
      F[8] = T;
297
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
298
      E = F[3] + T;
299
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
300
    }
301
302
    for (; i < 80; i++, F--) {
303
      T = sigma0(F[8 + 16 - 1]);
304
      T += sigma1(F[8 + 16 - 14]);
305
      T += F[8 + 16] + F[8 + 16 - 9];
306
307
      F[0] = A;
308
      F[4] = E;
309
      F[8] = T;
310
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
311
      E = F[3] + T;
312
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
313
    }
314
315
    state[0] += A;
316
    state[1] += F[1];
317
    state[2] += F[2];
318
    state[3] += F[3];
319
    state[4] += E;
320
    state[5] += F[5];
321
    state[6] += F[6];
322
    state[7] += F[7];
323
324
    in += 16 * 8;
325
  }
326
}
327
328
#else
329
330
#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
331
  do {                                           \
332
    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
333
    h = Sigma0(a) + Maj(a, b, c);                \
334
    d += T1;                                     \
335
    h += T1;                                     \
336
  } while (0)
337
338
#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
339
  do {                                                 \
340
    s0 = X[(j + 1) & 0x0f];                            \
341
    s0 = sigma0(s0);                                   \
342
    s1 = X[(j + 14) & 0x0f];                           \
343
    s1 = sigma1(s1);                                   \
344
    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
345
    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
346
  } while (0)
347
348
static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
349
                                         size_t num) {
350
  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
351
  uint64_t X[16];
352
  int i;
353
354
  while (num--) {
355
    a = state[0];
356
    b = state[1];
357
    c = state[2];
358
    d = state[3];
359
    e = state[4];
360
    f = state[5];
361
    g = state[6];
362
    h = state[7];
363
364
    T1 = X[0] = CRYPTO_load_u64_be(in);
365
    ROUND_00_15(0, a, b, c, d, e, f, g, h);
366
    T1 = X[1] = CRYPTO_load_u64_be(in + 8);
367
    ROUND_00_15(1, h, a, b, c, d, e, f, g);
368
    T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
369
    ROUND_00_15(2, g, h, a, b, c, d, e, f);
370
    T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
371
    ROUND_00_15(3, f, g, h, a, b, c, d, e);
372
    T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
373
    ROUND_00_15(4, e, f, g, h, a, b, c, d);
374
    T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
375
    ROUND_00_15(5, d, e, f, g, h, a, b, c);
376
    T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
377
    ROUND_00_15(6, c, d, e, f, g, h, a, b);
378
    T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
379
    ROUND_00_15(7, b, c, d, e, f, g, h, a);
380
    T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
381
    ROUND_00_15(8, a, b, c, d, e, f, g, h);
382
    T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
383
    ROUND_00_15(9, h, a, b, c, d, e, f, g);
384
    T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
385
    ROUND_00_15(10, g, h, a, b, c, d, e, f);
386
    T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
387
    ROUND_00_15(11, f, g, h, a, b, c, d, e);
388
    T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
389
    ROUND_00_15(12, e, f, g, h, a, b, c, d);
390
    T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
391
    ROUND_00_15(13, d, e, f, g, h, a, b, c);
392
    T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
393
    ROUND_00_15(14, c, d, e, f, g, h, a, b);
394
    T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
395
    ROUND_00_15(15, b, c, d, e, f, g, h, a);
396
397
    for (i = 16; i < 80; i += 16) {
398
      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
399
      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
400
      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
401
      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
402
      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
403
      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
404
      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
405
      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
406
      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
407
      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
408
      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
409
      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
410
      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
411
      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
412
      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
413
      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
414
    }
415
416
    state[0] += a;
417
    state[1] += b;
418
    state[2] += c;
419
    state[3] += d;
420
    state[4] += e;
421
    state[5] += f;
422
    state[6] += g;
423
    state[7] += h;
424
425
    in += 16 * 8;
426
  }
427
}
428
429
#endif
430
431
#endif  // !SHA512_ASM_NOHW
432
433
static void sha512_block_data_order(uint64_t state[8], const uint8_t *data,
434
777k
                                    size_t num) {
435
#if defined(SHA512_ASM_HW)
436
  if (sha512_hw_capable()) {
437
    sha512_block_data_order_hw(state, data, num);
438
    return;
439
  }
440
#endif
441
777k
#if defined(SHA512_ASM_AVX)
442
777k
  if (sha512_avx_capable()) {
443
0
    sha512_block_data_order_avx(state, data, num);
444
0
    return;
445
0
  }
446
777k
#endif
447
#if defined(SHA512_ASM_SSSE3)
448
  if (sha512_ssse3_capable()) {
449
    sha512_block_data_order_ssse3(state, data, num);
450
    return;
451
  }
452
#endif
453
#if defined(SHA512_ASM_NEON)
454
  if (CRYPTO_is_NEON_capable()) {
455
    sha512_block_data_order_neon(state, data, num);
456
    return;
457
  }
458
#endif
459
777k
  sha512_block_data_order_nohw(state, data, num);
460
777k
}
461
462
#endif  // !SHA512_ASM
463
464
#undef Sigma0
465
#undef Sigma1
466
#undef sigma0
467
#undef sigma1
468
#undef Ch
469
#undef Maj
470
#undef ROUND_00_15
471
#undef ROUND_16_80