/src/boringssl/crypto/fipsmodule/sha/sha512.cc.inc
Line | Count | Source |
1 | | // Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <string.h> |
16 | | |
17 | | #include <openssl/mem.h> |
18 | | |
19 | | #include "../../internal.h" |
20 | | #include "../bcm_interface.h" |
21 | | #include "../service_indicator/internal.h" |
22 | | #include "internal.h" |
23 | | |
24 | | |
25 | | // The 32-bit hash algorithms share a common byte-order neutral collector and |
26 | | // padding function implementations that operate on unaligned data, |
27 | | // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of |
28 | | // this writing, so there is no need for a common collector/padding |
29 | | // implementation yet. |
30 | | |
31 | | static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha); |
32 | | |
33 | 427k | bcm_infallible BCM_sha384_init(SHA512_CTX *sha) { |
34 | 427k | sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); |
35 | 427k | sha->h[1] = UINT64_C(0x629a292a367cd507); |
36 | 427k | sha->h[2] = UINT64_C(0x9159015a3070dd17); |
37 | 427k | sha->h[3] = UINT64_C(0x152fecd8f70e5939); |
38 | 427k | sha->h[4] = UINT64_C(0x67332667ffc00b31); |
39 | 427k | sha->h[5] = UINT64_C(0x8eb44a8768581511); |
40 | 427k | sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7); |
41 | 427k | sha->h[7] = UINT64_C(0x47b5481dbefa4fa4); |
42 | | |
43 | 427k | sha->bytes_so_far_low = 0; |
44 | 427k | sha->bytes_so_far_high = 0; |
45 | 427k | sha->num = 0; |
46 | 427k | sha->md_len = SHA384_DIGEST_LENGTH; |
47 | 427k | return bcm_infallible::approved; |
48 | 427k | } |
49 | | |
50 | | |
51 | 10.9k | bcm_infallible BCM_sha512_init(SHA512_CTX *sha) { |
52 | 10.9k | sha->h[0] = UINT64_C(0x6a09e667f3bcc908); |
53 | 10.9k | sha->h[1] = UINT64_C(0xbb67ae8584caa73b); |
54 | 10.9k | sha->h[2] = UINT64_C(0x3c6ef372fe94f82b); |
55 | 10.9k | sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1); |
56 | 10.9k | sha->h[4] = UINT64_C(0x510e527fade682d1); |
57 | 10.9k | sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f); |
58 | 10.9k | sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b); |
59 | 10.9k | sha->h[7] = UINT64_C(0x5be0cd19137e2179); |
60 | | |
61 | 10.9k | sha->bytes_so_far_low = 0; |
62 | 10.9k | sha->bytes_so_far_high = 0; |
63 | 10.9k | sha->num = 0; |
64 | 10.9k | sha->md_len = SHA512_DIGEST_LENGTH; |
65 | 10.9k | return bcm_infallible::approved; |
66 | 10.9k | } |
67 | | |
68 | 0 | bcm_infallible BCM_sha512_256_init(SHA512_CTX *sha) { |
69 | 0 | sha->h[0] = UINT64_C(0x22312194fc2bf72c); |
70 | 0 | sha->h[1] = UINT64_C(0x9f555fa3c84c64c2); |
71 | 0 | sha->h[2] = UINT64_C(0x2393b86b6f53b151); |
72 | 0 | sha->h[3] = UINT64_C(0x963877195940eabd); |
73 | 0 | sha->h[4] = UINT64_C(0x96283ee2a88effe3); |
74 | 0 | sha->h[5] = UINT64_C(0xbe5e1e2553863992); |
75 | 0 | sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa); |
76 | 0 | sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2); |
77 | |
|
78 | 0 | sha->bytes_so_far_low = 0; |
79 | 0 | sha->bytes_so_far_high = 0; |
80 | 0 | sha->num = 0; |
81 | 0 | sha->md_len = SHA512_256_DIGEST_LENGTH; |
82 | 0 | return bcm_infallible::approved; |
83 | 0 | } |
84 | | |
85 | | #if !defined(SHA512_ASM) |
86 | | static void sha512_block_data_order(uint64_t state[8], const uint8_t *in, |
87 | | size_t num_blocks); |
88 | | #endif |
89 | | |
90 | | |
91 | | bcm_infallible BCM_sha384_final(uint8_t out[SHA384_DIGEST_LENGTH], |
92 | 495k | SHA512_CTX *sha) { |
93 | | // This function must be paired with |BCM_sha384_init|, which sets |
94 | | // |sha->md_len| to |SHA384_DIGEST_LENGTH|. |
95 | 495k | assert(sha->md_len == SHA384_DIGEST_LENGTH); |
96 | 495k | sha512_final_impl(out, SHA384_DIGEST_LENGTH, sha); |
97 | 495k | return bcm_infallible::approved; |
98 | 495k | } |
99 | | |
100 | | bcm_infallible BCM_sha384_update(SHA512_CTX *sha, const void *data, |
101 | 1.10M | size_t len) { |
102 | 1.10M | return BCM_sha512_update(sha, data, len); |
103 | 1.10M | } |
104 | | |
105 | | bcm_infallible BCM_sha512_256_update(SHA512_CTX *sha, const void *data, |
106 | 0 | size_t len) { |
107 | 0 | return BCM_sha512_update(sha, data, len); |
108 | 0 | } |
109 | | |
110 | | bcm_infallible BCM_sha512_256_final(uint8_t out[SHA512_256_DIGEST_LENGTH], |
111 | 0 | SHA512_CTX *sha) { |
112 | | // This function must be paired with |BCM_sha512_256_init|, which sets |
113 | | // |sha->md_len| to |SHA512_256_DIGEST_LENGTH|. |
114 | 0 | assert(sha->md_len == SHA512_256_DIGEST_LENGTH); |
115 | 0 | sha512_final_impl(out, SHA512_256_DIGEST_LENGTH, sha); |
116 | 0 | return bcm_infallible::approved; |
117 | 0 | } |
118 | | |
119 | | bcm_infallible BCM_sha512_transform(SHA512_CTX *c, |
120 | 0 | const uint8_t block[SHA512_CBLOCK]) { |
121 | 0 | sha512_block_data_order(c->h, block, 1); |
122 | 0 | return bcm_infallible::approved; |
123 | 0 | } |
124 | | |
125 | | bcm_infallible BCM_sha512_update(SHA512_CTX *c, const void *in_data, |
126 | 1.11M | size_t len) { |
127 | 1.11M | uint8_t *p = c->p; |
128 | 1.11M | const uint8_t *data = reinterpret_cast<const uint8_t *>(in_data); |
129 | | |
130 | 1.11M | if (len == 0) { |
131 | 35.4k | return bcm_infallible::approved; |
132 | 35.4k | } |
133 | | |
134 | 1.08M | c->bytes_so_far_low += len; |
135 | 1.08M | if (c->bytes_so_far_low < len) { |
136 | 0 | c->bytes_so_far_high++; |
137 | 0 | } |
138 | | |
139 | 1.08M | if (c->num != 0) { |
140 | 432k | size_t n = sizeof(c->p) - c->num; |
141 | | |
142 | 432k | if (len < n) { |
143 | 406k | OPENSSL_memcpy(p + c->num, data, len); |
144 | 406k | c->num += (unsigned int)len; |
145 | 406k | return bcm_infallible::approved; |
146 | 406k | } else { |
147 | 25.8k | OPENSSL_memcpy(p + c->num, data, n), c->num = 0; |
148 | 25.8k | len -= n; |
149 | 25.8k | data += n; |
150 | 25.8k | sha512_block_data_order(c->h, p, 1); |
151 | 25.8k | } |
152 | 432k | } |
153 | | |
154 | 675k | if (len >= sizeof(c->p)) { |
155 | 227k | sha512_block_data_order(c->h, data, len / sizeof(c->p)); |
156 | 227k | data += len; |
157 | 227k | len %= sizeof(c->p); |
158 | 227k | data -= len; |
159 | 227k | } |
160 | | |
161 | 675k | if (len != 0) { |
162 | 505k | OPENSSL_memcpy(p, data, len); |
163 | 505k | c->num = (int)len; |
164 | 505k | } |
165 | | |
166 | 675k | return bcm_infallible::approved; |
167 | 1.08M | } |
168 | | |
169 | | bcm_infallible BCM_sha512_final(uint8_t out[SHA512_DIGEST_LENGTH], |
170 | 10.9k | SHA512_CTX *sha) { |
171 | | // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match |
172 | | // the size hint, but calling code often pairs |BCM_sha384_init| with |
173 | | // |BCM_sha512_final| and expects |sha->md_len| to carry the size over. |
174 | | // |
175 | | // TODO(davidben): Add an assert and fix code to match them up. |
176 | 10.9k | sha512_final_impl(out, sha->md_len, sha); |
177 | 10.9k | return bcm_infallible::approved; |
178 | 10.9k | } |
179 | | |
180 | 506k | static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) { |
181 | 506k | uint8_t *p = sha->p; |
182 | 506k | size_t n = sha->num; |
183 | | |
184 | 506k | p[n] = 0x80; // There always is a room for one |
185 | 506k | n++; |
186 | 506k | if (n > (sizeof(sha->p) - 16)) { |
187 | 17.4k | OPENSSL_memset(p + n, 0, sizeof(sha->p) - n); |
188 | 17.4k | n = 0; |
189 | 17.4k | sha512_block_data_order(sha->h, p, 1); |
190 | 17.4k | } |
191 | | |
192 | 506k | OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n); |
193 | 506k | const uint64_t Nh = (uint64_t{sha->bytes_so_far_high} << 3) | |
194 | 506k | (sha->bytes_so_far_low >> (64 - 3)); |
195 | 506k | const uint64_t Nl = sha->bytes_so_far_low << 3; |
196 | 506k | CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, Nh); |
197 | 506k | CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, Nl); |
198 | | |
199 | 506k | sha512_block_data_order(sha->h, p, 1); |
200 | | |
201 | 506k | assert(md_len % 8 == 0); |
202 | 506k | const size_t out_words = md_len / 8; |
203 | 3.56M | for (size_t i = 0; i < out_words; i++) { |
204 | 3.06M | CRYPTO_store_u64_be(out, sha->h[i]); |
205 | 3.06M | out += 8; |
206 | 3.06M | } |
207 | | |
208 | 506k | FIPS_service_indicator_update_state(); |
209 | 506k | } |
210 | | |
211 | | #if !defined(SHA512_ASM) |
212 | | |
213 | | #if !defined(SHA512_ASM_NOHW) |
214 | | static const uint64_t K512[80] = { |
215 | | UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), |
216 | | UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), |
217 | | UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), |
218 | | UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), |
219 | | UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), |
220 | | UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), |
221 | | UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), |
222 | | UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), |
223 | | UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), |
224 | | UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), |
225 | | UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), |
226 | | UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), |
227 | | UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), |
228 | | UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), |
229 | | UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), |
230 | | UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), |
231 | | UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), |
232 | | UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), |
233 | | UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), |
234 | | UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), |
235 | | UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), |
236 | | UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), |
237 | | UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), |
238 | | UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), |
239 | | UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), |
240 | | UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), |
241 | | UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), |
242 | | UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), |
243 | | UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), |
244 | | UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), |
245 | | UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), |
246 | | UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), |
247 | | UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), |
248 | | UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), |
249 | | UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), |
250 | | UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), |
251 | | UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), |
252 | | UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), |
253 | | UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), |
254 | | UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), |
255 | | }; |
256 | | |
257 | | #define Sigma0(x) \ |
258 | | (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \ |
259 | | CRYPTO_rotr_u64((x), 39)) |
260 | | #define Sigma1(x) \ |
261 | | (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \ |
262 | | CRYPTO_rotr_u64((x), 41)) |
263 | | #define sigma0(x) \ |
264 | | (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7)) |
265 | | #define sigma1(x) \ |
266 | | (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6)) |
267 | | |
268 | | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
269 | | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
270 | | |
271 | | |
272 | | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
273 | | // This code should give better results on 32-bit CPU with less than |
274 | | // ~24 registers, both size and performance wise... |
275 | | static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in, |
276 | | size_t num) { |
277 | | uint64_t A, E, T; |
278 | | uint64_t X[9 + 80], *F; |
279 | | int i; |
280 | | |
281 | | while (num--) { |
282 | | F = X + 80; |
283 | | A = state[0]; |
284 | | F[1] = state[1]; |
285 | | F[2] = state[2]; |
286 | | F[3] = state[3]; |
287 | | E = state[4]; |
288 | | F[5] = state[5]; |
289 | | F[6] = state[6]; |
290 | | F[7] = state[7]; |
291 | | |
292 | | for (i = 0; i < 16; i++, F--) { |
293 | | T = CRYPTO_load_u64_be(in + i * 8); |
294 | | F[0] = A; |
295 | | F[4] = E; |
296 | | F[8] = T; |
297 | | T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; |
298 | | E = F[3] + T; |
299 | | A = T + Sigma0(A) + Maj(A, F[1], F[2]); |
300 | | } |
301 | | |
302 | | for (; i < 80; i++, F--) { |
303 | | T = sigma0(F[8 + 16 - 1]); |
304 | | T += sigma1(F[8 + 16 - 14]); |
305 | | T += F[8 + 16] + F[8 + 16 - 9]; |
306 | | |
307 | | F[0] = A; |
308 | | F[4] = E; |
309 | | F[8] = T; |
310 | | T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; |
311 | | E = F[3] + T; |
312 | | A = T + Sigma0(A) + Maj(A, F[1], F[2]); |
313 | | } |
314 | | |
315 | | state[0] += A; |
316 | | state[1] += F[1]; |
317 | | state[2] += F[2]; |
318 | | state[3] += F[3]; |
319 | | state[4] += E; |
320 | | state[5] += F[5]; |
321 | | state[6] += F[6]; |
322 | | state[7] += F[7]; |
323 | | |
324 | | in += 16 * 8; |
325 | | } |
326 | | } |
327 | | |
328 | | #else |
329 | | |
330 | | #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ |
331 | | do { \ |
332 | | T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \ |
333 | | h = Sigma0(a) + Maj(a, b, c); \ |
334 | | d += T1; \ |
335 | | h += T1; \ |
336 | | } while (0) |
337 | | |
338 | | #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \ |
339 | | do { \ |
340 | | s0 = X[(j + 1) & 0x0f]; \ |
341 | | s0 = sigma0(s0); \ |
342 | | s1 = X[(j + 14) & 0x0f]; \ |
343 | | s1 = sigma1(s1); \ |
344 | | T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \ |
345 | | ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \ |
346 | | } while (0) |
347 | | |
348 | | static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in, |
349 | | size_t num) { |
350 | | uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; |
351 | | uint64_t X[16]; |
352 | | int i; |
353 | | |
354 | | while (num--) { |
355 | | a = state[0]; |
356 | | b = state[1]; |
357 | | c = state[2]; |
358 | | d = state[3]; |
359 | | e = state[4]; |
360 | | f = state[5]; |
361 | | g = state[6]; |
362 | | h = state[7]; |
363 | | |
364 | | T1 = X[0] = CRYPTO_load_u64_be(in); |
365 | | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
366 | | T1 = X[1] = CRYPTO_load_u64_be(in + 8); |
367 | | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
368 | | T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8); |
369 | | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
370 | | T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8); |
371 | | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
372 | | T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8); |
373 | | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
374 | | T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8); |
375 | | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
376 | | T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8); |
377 | | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
378 | | T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8); |
379 | | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
380 | | T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8); |
381 | | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
382 | | T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8); |
383 | | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
384 | | T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8); |
385 | | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
386 | | T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8); |
387 | | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
388 | | T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8); |
389 | | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
390 | | T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8); |
391 | | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
392 | | T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8); |
393 | | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
394 | | T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8); |
395 | | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
396 | | |
397 | | for (i = 16; i < 80; i += 16) { |
398 | | ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); |
399 | | ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); |
400 | | ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); |
401 | | ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); |
402 | | ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); |
403 | | ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); |
404 | | ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); |
405 | | ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); |
406 | | ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); |
407 | | ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); |
408 | | ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); |
409 | | ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); |
410 | | ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); |
411 | | ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); |
412 | | ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); |
413 | | ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); |
414 | | } |
415 | | |
416 | | state[0] += a; |
417 | | state[1] += b; |
418 | | state[2] += c; |
419 | | state[3] += d; |
420 | | state[4] += e; |
421 | | state[5] += f; |
422 | | state[6] += g; |
423 | | state[7] += h; |
424 | | |
425 | | in += 16 * 8; |
426 | | } |
427 | | } |
428 | | |
429 | | #endif |
430 | | |
431 | | #endif // !SHA512_ASM_NOHW |
432 | | |
433 | | static void sha512_block_data_order(uint64_t state[8], const uint8_t *data, |
434 | 777k | size_t num) { |
435 | | #if defined(SHA512_ASM_HW) |
436 | | if (sha512_hw_capable()) { |
437 | | sha512_block_data_order_hw(state, data, num); |
438 | | return; |
439 | | } |
440 | | #endif |
441 | 777k | #if defined(SHA512_ASM_AVX) |
442 | 777k | if (sha512_avx_capable()) { |
443 | 0 | sha512_block_data_order_avx(state, data, num); |
444 | 0 | return; |
445 | 0 | } |
446 | 777k | #endif |
447 | | #if defined(SHA512_ASM_SSSE3) |
448 | | if (sha512_ssse3_capable()) { |
449 | | sha512_block_data_order_ssse3(state, data, num); |
450 | | return; |
451 | | } |
452 | | #endif |
453 | | #if defined(SHA512_ASM_NEON) |
454 | | if (CRYPTO_is_NEON_capable()) { |
455 | | sha512_block_data_order_neon(state, data, num); |
456 | | return; |
457 | | } |
458 | | #endif |
459 | 777k | sha512_block_data_order_nohw(state, data, num); |
460 | 777k | } |
461 | | |
462 | | #endif // !SHA512_ASM |
463 | | |
464 | | #undef Sigma0 |
465 | | #undef Sigma1 |
466 | | #undef sigma0 |
467 | | #undef sigma1 |
468 | | #undef Ch |
469 | | #undef Maj |
470 | | #undef ROUND_00_15 |
471 | | #undef ROUND_16_80 |