/src/boringssl/crypto/hpke/hpke.cc
Line | Count | Source |
1 | | // Copyright 2020 The BoringSSL Authors |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/hpke.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <string.h> |
19 | | |
20 | | #include <openssl/aead.h> |
21 | | #include <openssl/bytestring.h> |
22 | | #include <openssl/curve25519.h> |
23 | | #include <openssl/digest.h> |
24 | | #include <openssl/ec.h> |
25 | | #include <openssl/err.h> |
26 | | #include <openssl/evp_errors.h> |
27 | | #include <openssl/hkdf.h> |
28 | | #include <openssl/mem.h> |
29 | | #include <openssl/mlkem.h> |
30 | | #include <openssl/rand.h> |
31 | | #include <openssl/sha2.h> |
32 | | #include <openssl/xwing.h> |
33 | | |
34 | | #include "../fipsmodule/bcm_interface.h" |
35 | | #include "../fipsmodule/ec/internal.h" |
36 | | #include "../internal.h" |
37 | | |
38 | | |
39 | | // This file implements RFC 9180. |
40 | | |
41 | | #define MAX_SEED_LEN XWING_SEED_LEN |
42 | | #define MAX_SHARED_SECRET_LEN SHA256_DIGEST_LENGTH |
43 | | |
44 | | struct evp_hpke_kem_st { |
45 | | uint16_t id; |
46 | | size_t public_key_len; |
47 | | size_t private_key_len; |
48 | | size_t seed_len; |
49 | | size_t enc_len; |
50 | | int (*init_key)(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
51 | | size_t priv_key_len); |
52 | | int (*generate_key)(EVP_HPKE_KEY *key); |
53 | | int (*encap_with_seed)(const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, |
54 | | size_t *out_shared_secret_len, uint8_t *out_enc, |
55 | | size_t *out_enc_len, size_t max_enc, |
56 | | const uint8_t *peer_public_key, |
57 | | size_t peer_public_key_len, const uint8_t *seed, |
58 | | size_t seed_len); |
59 | | int (*decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
60 | | size_t *out_shared_secret_len, const uint8_t *enc, |
61 | | size_t enc_len); |
62 | | int (*auth_encap_with_seed)(const EVP_HPKE_KEY *key, |
63 | | uint8_t *out_shared_secret, |
64 | | size_t *out_shared_secret_len, uint8_t *out_enc, |
65 | | size_t *out_enc_len, size_t max_enc, |
66 | | const uint8_t *peer_public_key, |
67 | | size_t peer_public_key_len, const uint8_t *seed, |
68 | | size_t seed_len); |
69 | | int (*auth_decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
70 | | size_t *out_shared_secret_len, const uint8_t *enc, |
71 | | size_t enc_len, const uint8_t *peer_public_key, |
72 | | size_t peer_public_key_len); |
73 | | }; |
74 | | |
75 | | struct evp_hpke_kdf_st { |
76 | | uint16_t id; |
77 | | // We only support HKDF-based KDFs. |
78 | | const EVP_MD *(*hkdf_md_func)(void); |
79 | | }; |
80 | | |
81 | | struct evp_hpke_aead_st { |
82 | | uint16_t id; |
83 | | const EVP_AEAD *(*aead_func)(void); |
84 | | }; |
85 | | |
86 | | |
87 | | // Low-level labeled KDF functions. |
88 | | |
89 | | static const char kHpkeVersionId[] = "HPKE-v1"; |
90 | | |
91 | 5.21k | static int add_label_string(CBB *cbb, const char *label) { |
92 | 5.21k | return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label)); |
93 | 5.21k | } |
94 | | |
95 | | static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key, |
96 | | size_t *out_len, const uint8_t *salt, |
97 | | size_t salt_len, const uint8_t *suite_id, |
98 | | size_t suite_id_len, const char *label, |
99 | 1.22k | const uint8_t *ikm, size_t ikm_len) { |
100 | | // labeledIKM = concat("HPKE-v1", suite_id, label, IKM) |
101 | 1.22k | CBB labeled_ikm; |
102 | 1.22k | int ok = CBB_init(&labeled_ikm, 0) && |
103 | 1.22k | add_label_string(&labeled_ikm, kHpkeVersionId) && |
104 | 1.22k | CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) && |
105 | 1.22k | add_label_string(&labeled_ikm, label) && |
106 | 1.22k | CBB_add_bytes(&labeled_ikm, ikm, ikm_len) && |
107 | 1.22k | HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm), |
108 | 1.22k | CBB_len(&labeled_ikm), salt, salt_len); |
109 | 1.22k | CBB_cleanup(&labeled_ikm); |
110 | 1.22k | return ok; |
111 | 1.22k | } |
112 | | |
113 | | static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key, |
114 | | size_t out_len, const uint8_t *prk, |
115 | | size_t prk_len, const uint8_t *suite_id, |
116 | | size_t suite_id_len, const char *label, |
117 | 1.22k | const uint8_t *info, size_t info_len) { |
118 | | // labeledInfo = concat(I2OSP(L, 2), "HPKE-v1", suite_id, label, info) |
119 | 1.22k | CBB labeled_info; |
120 | 1.22k | int ok = CBB_init(&labeled_info, 0) && // |
121 | 1.22k | CBB_add_u16(&labeled_info, out_len) && |
122 | 1.22k | add_label_string(&labeled_info, kHpkeVersionId) && |
123 | 1.22k | CBB_add_bytes(&labeled_info, suite_id, suite_id_len) && |
124 | 1.22k | add_label_string(&labeled_info, label) && |
125 | 1.22k | CBB_add_bytes(&labeled_info, info, info_len) && |
126 | 1.22k | HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len, |
127 | 1.22k | CBB_data(&labeled_info), CBB_len(&labeled_info)); |
128 | 1.22k | CBB_cleanup(&labeled_info); |
129 | 1.22k | return ok; |
130 | 1.22k | } |
131 | | |
132 | | |
133 | | // KEM implementations. |
134 | | |
135 | | // dhkem_extract_and_expand implements the ExtractAndExpand operation in the |
136 | | // DHKEM construction. See section 4.1 of RFC 9180. |
137 | | static int dhkem_extract_and_expand(uint16_t kem_id, const EVP_MD *hkdf_md, |
138 | | uint8_t *out_key, size_t out_len, |
139 | | const uint8_t *dh, size_t dh_len, |
140 | | const uint8_t *kem_context, |
141 | 307 | size_t kem_context_len) { |
142 | | // concat("KEM", I2OSP(kem_id, 2)) |
143 | 307 | uint8_t suite_id[5] = {'K', 'E', 'M', static_cast<uint8_t>(kem_id >> 8), |
144 | 307 | static_cast<uint8_t>(kem_id & 0xff)}; |
145 | 307 | uint8_t prk[EVP_MAX_MD_SIZE]; |
146 | 307 | size_t prk_len; |
147 | 307 | return hpke_labeled_extract(hkdf_md, prk, &prk_len, nullptr, 0, suite_id, |
148 | 307 | sizeof(suite_id), "eae_prk", dh, dh_len) && |
149 | 307 | hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, suite_id, |
150 | 307 | sizeof(suite_id), "shared_secret", kem_context, |
151 | 307 | kem_context_len); |
152 | 307 | } |
153 | | |
154 | | static int x25519_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
155 | 12.4k | size_t priv_key_len) { |
156 | 12.4k | if (priv_key_len != X25519_PRIVATE_KEY_LEN) { |
157 | 609 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
158 | 609 | return 0; |
159 | 609 | } |
160 | | |
161 | 11.8k | OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); |
162 | 11.8k | X25519_public_from_private(key->public_key, priv_key); |
163 | 11.8k | return 1; |
164 | 12.4k | } |
165 | | |
166 | 0 | static int x25519_generate_key(EVP_HPKE_KEY *key) { |
167 | 0 | X25519_keypair(key->public_key, key->private_key); |
168 | 0 | return 1; |
169 | 0 | } |
170 | | |
171 | | static int x25519_encap_with_seed( |
172 | | const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, |
173 | | size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, |
174 | | size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, |
175 | 0 | const uint8_t *seed, size_t seed_len) { |
176 | 0 | if (max_enc < X25519_PUBLIC_VALUE_LEN) { |
177 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
178 | 0 | return 0; |
179 | 0 | } |
180 | 0 | if (seed_len != X25519_PRIVATE_KEY_LEN) { |
181 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
182 | 0 | return 0; |
183 | 0 | } |
184 | 0 | X25519_public_from_private(out_enc, seed); |
185 | |
|
186 | 0 | uint8_t dh[X25519_SHARED_KEY_LEN]; |
187 | 0 | if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN || |
188 | 0 | !X25519(dh, seed, peer_public_key)) { |
189 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
190 | 0 | return 0; |
191 | 0 | } |
192 | | |
193 | 0 | uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN]; |
194 | 0 | OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN); |
195 | 0 | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key, |
196 | 0 | X25519_PUBLIC_VALUE_LEN); |
197 | 0 | if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret, |
198 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
199 | 0 | kem_context, sizeof(kem_context))) { |
200 | 0 | return 0; |
201 | 0 | } |
202 | | |
203 | 0 | *out_enc_len = X25519_PUBLIC_VALUE_LEN; |
204 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
205 | 0 | return 1; |
206 | 0 | } |
207 | | |
208 | | static int x25519_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
209 | | size_t *out_shared_secret_len, const uint8_t *enc, |
210 | 317 | size_t enc_len) { |
211 | 317 | uint8_t dh[X25519_SHARED_KEY_LEN]; |
212 | 317 | if (enc_len != X25519_PUBLIC_VALUE_LEN || |
213 | 310 | !X25519(dh, key->private_key, enc)) { |
214 | 10 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
215 | 10 | return 0; |
216 | 10 | } |
217 | | |
218 | 307 | uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN]; |
219 | 307 | OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); |
220 | 307 | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key, |
221 | 307 | X25519_PUBLIC_VALUE_LEN); |
222 | 307 | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
223 | 307 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
224 | 307 | kem_context, sizeof(kem_context))) { |
225 | 0 | return 0; |
226 | 0 | } |
227 | | |
228 | 307 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
229 | 307 | return 1; |
230 | 307 | } |
231 | | |
232 | | static int x25519_auth_encap_with_seed( |
233 | | const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
234 | | size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, |
235 | | size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, |
236 | 0 | const uint8_t *seed, size_t seed_len) { |
237 | 0 | if (max_enc < X25519_PUBLIC_VALUE_LEN) { |
238 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
239 | 0 | return 0; |
240 | 0 | } |
241 | 0 | if (seed_len != X25519_PRIVATE_KEY_LEN) { |
242 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
243 | 0 | return 0; |
244 | 0 | } |
245 | 0 | X25519_public_from_private(out_enc, seed); |
246 | |
|
247 | 0 | uint8_t dh[2 * X25519_SHARED_KEY_LEN]; |
248 | 0 | if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN || |
249 | 0 | !X25519(dh, seed, peer_public_key) || |
250 | 0 | !X25519(dh + X25519_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
251 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
252 | 0 | return 0; |
253 | 0 | } |
254 | | |
255 | 0 | uint8_t kem_context[3 * X25519_PUBLIC_VALUE_LEN]; |
256 | 0 | OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN); |
257 | 0 | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key, |
258 | 0 | X25519_PUBLIC_VALUE_LEN); |
259 | 0 | OPENSSL_memcpy(kem_context + 2 * X25519_PUBLIC_VALUE_LEN, key->public_key, |
260 | 0 | X25519_PUBLIC_VALUE_LEN); |
261 | 0 | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
262 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
263 | 0 | kem_context, sizeof(kem_context))) { |
264 | 0 | return 0; |
265 | 0 | } |
266 | | |
267 | 0 | *out_enc_len = X25519_PUBLIC_VALUE_LEN; |
268 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
269 | 0 | return 1; |
270 | 0 | } |
271 | | |
272 | | static int x25519_auth_decap(const EVP_HPKE_KEY *key, |
273 | | uint8_t *out_shared_secret, |
274 | | size_t *out_shared_secret_len, const uint8_t *enc, |
275 | | size_t enc_len, const uint8_t *peer_public_key, |
276 | 0 | size_t peer_public_key_len) { |
277 | 0 | uint8_t dh[2 * X25519_SHARED_KEY_LEN]; |
278 | 0 | if (enc_len != X25519_PUBLIC_VALUE_LEN || |
279 | 0 | peer_public_key_len != X25519_PUBLIC_VALUE_LEN || |
280 | 0 | !X25519(dh, key->private_key, enc) || |
281 | 0 | !X25519(dh + X25519_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
282 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
283 | 0 | return 0; |
284 | 0 | } |
285 | | |
286 | 0 | uint8_t kem_context[3 * X25519_PUBLIC_VALUE_LEN]; |
287 | 0 | OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); |
288 | 0 | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key, |
289 | 0 | X25519_PUBLIC_VALUE_LEN); |
290 | 0 | OPENSSL_memcpy(kem_context + 2 * X25519_PUBLIC_VALUE_LEN, peer_public_key, |
291 | 0 | X25519_PUBLIC_VALUE_LEN); |
292 | 0 | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
293 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
294 | 0 | kem_context, sizeof(kem_context))) { |
295 | 0 | return 0; |
296 | 0 | } |
297 | | |
298 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
299 | 0 | return 1; |
300 | 0 | } |
301 | | |
302 | 12.4k | const EVP_HPKE_KEM *EVP_hpke_x25519_hkdf_sha256(void) { |
303 | 12.4k | static const EVP_HPKE_KEM kKEM = { |
304 | 12.4k | /*id=*/EVP_HPKE_DHKEM_X25519_HKDF_SHA256, |
305 | 12.4k | /*public_key_len=*/X25519_PUBLIC_VALUE_LEN, |
306 | 12.4k | /*private_key_len=*/X25519_PRIVATE_KEY_LEN, |
307 | 12.4k | /*seed_len=*/X25519_PRIVATE_KEY_LEN, |
308 | 12.4k | /*enc_len=*/X25519_PUBLIC_VALUE_LEN, |
309 | 12.4k | x25519_init_key, |
310 | 12.4k | x25519_generate_key, |
311 | 12.4k | x25519_encap_with_seed, |
312 | 12.4k | x25519_decap, |
313 | 12.4k | x25519_auth_encap_with_seed, |
314 | 12.4k | x25519_auth_decap, |
315 | 12.4k | }; |
316 | 12.4k | return &kKEM; |
317 | 12.4k | } |
318 | | |
319 | 0 | #define P256_PRIVATE_KEY_LEN 32 |
320 | 0 | #define P256_PUBLIC_KEY_LEN 65 |
321 | 0 | #define P256_PUBLIC_VALUE_LEN 65 |
322 | 0 | #define P256_SEED_LEN 32 |
323 | 0 | #define P256_SHARED_KEY_LEN 32 |
324 | | |
325 | | static int p256_public_from_private(uint8_t out_pub[P256_PUBLIC_VALUE_LEN], |
326 | 0 | const uint8_t priv[P256_PRIVATE_KEY_LEN]) { |
327 | 0 | const EC_GROUP *const group = EC_group_p256(); |
328 | 0 | const uint8_t kAllZeros[P256_PRIVATE_KEY_LEN] = {0}; |
329 | 0 | EC_SCALAR private_scalar; |
330 | 0 | EC_JACOBIAN public_point; |
331 | 0 | EC_AFFINE public_point_affine; |
332 | |
|
333 | 0 | if (CRYPTO_memcmp(kAllZeros, priv, sizeof(kAllZeros)) == 0) { |
334 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
335 | 0 | return 0; |
336 | 0 | } |
337 | | |
338 | 0 | if (!ec_scalar_from_bytes(group, &private_scalar, priv, |
339 | 0 | P256_PRIVATE_KEY_LEN) || |
340 | 0 | !ec_point_mul_scalar_base(group, &public_point, &private_scalar) || |
341 | 0 | !ec_jacobian_to_affine(group, &public_point_affine, &public_point)) { |
342 | 0 | return 0; |
343 | 0 | } |
344 | | |
345 | 0 | size_t out_len_x, out_len_y; |
346 | 0 | out_pub[0] = POINT_CONVERSION_UNCOMPRESSED; |
347 | 0 | ec_felem_to_bytes(group, &out_pub[1], &out_len_x, &public_point_affine.X); |
348 | 0 | ec_felem_to_bytes(group, &out_pub[33], &out_len_y, &public_point_affine.Y); |
349 | 0 | return 1; |
350 | 0 | } |
351 | | |
352 | | static int p256_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
353 | 0 | size_t priv_key_len) { |
354 | 0 | if (priv_key_len != P256_PRIVATE_KEY_LEN) { |
355 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
356 | 0 | return 0; |
357 | 0 | } |
358 | | |
359 | 0 | if (!p256_public_from_private(key->public_key, priv_key)) { |
360 | 0 | return 0; |
361 | 0 | } |
362 | | |
363 | 0 | OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); |
364 | 0 | return 1; |
365 | 0 | } |
366 | | |
367 | | static int p256_private_key_from_seed(uint8_t out_priv[P256_PRIVATE_KEY_LEN], |
368 | 0 | const uint8_t seed[P256_SEED_LEN]) { |
369 | | // https://www.rfc-editor.org/rfc/rfc9180.html#name-derivekeypair |
370 | 0 | const uint8_t suite_id[5] = {'K', 'E', 'M', |
371 | 0 | EVP_HPKE_DHKEM_P256_HKDF_SHA256 >> 8, |
372 | 0 | EVP_HPKE_DHKEM_P256_HKDF_SHA256 & 0xff}; |
373 | |
|
374 | 0 | uint8_t dkp_prk[32]; |
375 | 0 | size_t dkp_prk_len; |
376 | 0 | if (!hpke_labeled_extract(EVP_sha256(), dkp_prk, &dkp_prk_len, nullptr, 0, |
377 | 0 | suite_id, sizeof(suite_id), "dkp_prk", seed, |
378 | 0 | P256_SEED_LEN)) { |
379 | 0 | return 0; |
380 | 0 | } |
381 | 0 | assert(dkp_prk_len == sizeof(dkp_prk)); |
382 | | |
383 | 0 | const EC_GROUP *const group = EC_group_p256(); |
384 | 0 | EC_SCALAR private_scalar; |
385 | |
|
386 | 0 | for (unsigned counter = 0; counter < 256; counter++) { |
387 | 0 | const uint8_t counter_byte = counter & 0xff; |
388 | 0 | if (!hpke_labeled_expand(EVP_sha256(), out_priv, P256_PRIVATE_KEY_LEN, |
389 | 0 | dkp_prk, sizeof(dkp_prk), suite_id, |
390 | 0 | sizeof(suite_id), "candidate", &counter_byte, |
391 | 0 | sizeof(counter_byte))) { |
392 | 0 | return 0; |
393 | 0 | } |
394 | | |
395 | | // This checks that the scalar is less than the order. |
396 | 0 | if (ec_scalar_from_bytes(group, &private_scalar, out_priv, |
397 | 0 | P256_PRIVATE_KEY_LEN)) { |
398 | 0 | return 1; |
399 | 0 | } |
400 | 0 | } |
401 | | |
402 | | // This happens with probability of 2^-(32*256). |
403 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
404 | 0 | return 0; |
405 | 0 | } |
406 | | |
407 | 0 | static int p256_generate_key(EVP_HPKE_KEY *key) { |
408 | 0 | uint8_t seed[P256_SEED_LEN]; |
409 | 0 | RAND_bytes(seed, sizeof(seed)); |
410 | 0 | if (!p256_private_key_from_seed(key->private_key, seed) || |
411 | 0 | !p256_public_from_private(key->public_key, key->private_key)) { |
412 | 0 | return 0; |
413 | 0 | } |
414 | 0 | return 1; |
415 | 0 | } |
416 | | |
417 | | static int p256(uint8_t out_dh[P256_SHARED_KEY_LEN], |
418 | | const uint8_t my_private[P256_PRIVATE_KEY_LEN], |
419 | 0 | const uint8_t their_public[P256_PUBLIC_VALUE_LEN]) { |
420 | 0 | const EC_GROUP *const group = EC_group_p256(); |
421 | 0 | EC_SCALAR private_scalar; |
422 | 0 | EC_FELEM x, y; |
423 | 0 | EC_JACOBIAN shared_point, their_point; |
424 | 0 | EC_AFFINE their_point_affine, shared_point_affine; |
425 | |
|
426 | 0 | if (their_public[0] != POINT_CONVERSION_UNCOMPRESSED || |
427 | 0 | !ec_felem_from_bytes(group, &x, &their_public[1], 32) || |
428 | 0 | !ec_felem_from_bytes(group, &y, &their_public[33], 32) || |
429 | 0 | !ec_point_set_affine_coordinates(group, &their_point_affine, &x, &y) || |
430 | 0 | !ec_scalar_from_bytes(group, &private_scalar, my_private, |
431 | 0 | P256_PRIVATE_KEY_LEN)) { |
432 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
433 | 0 | return 0; |
434 | 0 | } |
435 | | |
436 | 0 | ec_affine_to_jacobian(group, &their_point, &their_point_affine); |
437 | 0 | if (!ec_point_mul_scalar(group, &shared_point, &their_point, |
438 | 0 | &private_scalar) || |
439 | 0 | !ec_jacobian_to_affine(group, &shared_point_affine, &shared_point)) { |
440 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
441 | 0 | return 0; |
442 | 0 | } |
443 | | |
444 | 0 | size_t out_len; |
445 | 0 | ec_felem_to_bytes(group, out_dh, &out_len, &shared_point_affine.X); |
446 | 0 | assert(out_len == P256_SHARED_KEY_LEN); |
447 | 0 | return 1; |
448 | 0 | } |
449 | | |
450 | | static int p256_encap_with_seed(const EVP_HPKE_KEM *kem, |
451 | | uint8_t *out_shared_secret, |
452 | | size_t *out_shared_secret_len, uint8_t *out_enc, |
453 | | size_t *out_enc_len, size_t max_enc, |
454 | | const uint8_t *peer_public_key, |
455 | | size_t peer_public_key_len, const uint8_t *seed, |
456 | 0 | size_t seed_len) { |
457 | 0 | if (max_enc < P256_PUBLIC_VALUE_LEN) { |
458 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
459 | 0 | return 0; |
460 | 0 | } |
461 | 0 | if (seed_len != P256_SEED_LEN) { |
462 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
463 | 0 | return 0; |
464 | 0 | } |
465 | 0 | uint8_t private_key[P256_PRIVATE_KEY_LEN]; |
466 | 0 | if (!p256_private_key_from_seed(private_key, seed)) { |
467 | 0 | return 0; |
468 | 0 | } |
469 | 0 | p256_public_from_private(out_enc, private_key); |
470 | |
|
471 | 0 | uint8_t dh[P256_SHARED_KEY_LEN]; |
472 | 0 | if (peer_public_key_len != P256_PUBLIC_VALUE_LEN || |
473 | 0 | !p256(dh, private_key, peer_public_key)) { |
474 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
475 | 0 | return 0; |
476 | 0 | } |
477 | | |
478 | 0 | uint8_t kem_context[2 * P256_PUBLIC_VALUE_LEN]; |
479 | 0 | OPENSSL_memcpy(kem_context, out_enc, P256_PUBLIC_VALUE_LEN); |
480 | 0 | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, peer_public_key, |
481 | 0 | P256_PUBLIC_VALUE_LEN); |
482 | 0 | if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret, |
483 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
484 | 0 | kem_context, sizeof(kem_context))) { |
485 | 0 | return 0; |
486 | 0 | } |
487 | | |
488 | 0 | *out_enc_len = P256_PUBLIC_VALUE_LEN; |
489 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
490 | 0 | return 1; |
491 | 0 | } |
492 | | |
493 | | static int p256_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
494 | | size_t *out_shared_secret_len, const uint8_t *enc, |
495 | 0 | size_t enc_len) { |
496 | 0 | uint8_t dh[P256_SHARED_KEY_LEN]; |
497 | 0 | if (enc_len != P256_PUBLIC_VALUE_LEN || // |
498 | 0 | !p256(dh, key->private_key, enc)) { |
499 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
500 | 0 | return 0; |
501 | 0 | } |
502 | | |
503 | 0 | uint8_t kem_context[2 * P256_PUBLIC_VALUE_LEN]; |
504 | 0 | OPENSSL_memcpy(kem_context, enc, P256_PUBLIC_VALUE_LEN); |
505 | 0 | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, key->public_key, |
506 | 0 | P256_PUBLIC_VALUE_LEN); |
507 | 0 | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
508 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
509 | 0 | kem_context, sizeof(kem_context))) { |
510 | 0 | return 0; |
511 | 0 | } |
512 | | |
513 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
514 | 0 | return 1; |
515 | 0 | } |
516 | | |
517 | | static int p256_auth_encap_with_seed( |
518 | | const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
519 | | size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, |
520 | | size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, |
521 | 0 | const uint8_t *seed, size_t seed_len) { |
522 | 0 | if (max_enc < P256_PUBLIC_VALUE_LEN) { |
523 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
524 | 0 | return 0; |
525 | 0 | } |
526 | 0 | if (seed_len != P256_SEED_LEN) { |
527 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
528 | 0 | return 0; |
529 | 0 | } |
530 | 0 | uint8_t private_key[P256_PRIVATE_KEY_LEN]; |
531 | 0 | if (!p256_private_key_from_seed(private_key, seed)) { |
532 | 0 | return 0; |
533 | 0 | } |
534 | 0 | p256_public_from_private(out_enc, private_key); |
535 | |
|
536 | 0 | uint8_t dh[2 * P256_SHARED_KEY_LEN]; |
537 | 0 | if (peer_public_key_len != P256_PUBLIC_VALUE_LEN || |
538 | 0 | !p256(dh, private_key, peer_public_key) || |
539 | 0 | !p256(dh + P256_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
540 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
541 | 0 | return 0; |
542 | 0 | } |
543 | | |
544 | 0 | uint8_t kem_context[3 * P256_PUBLIC_VALUE_LEN]; |
545 | 0 | OPENSSL_memcpy(kem_context, out_enc, P256_PUBLIC_VALUE_LEN); |
546 | 0 | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, peer_public_key, |
547 | 0 | P256_PUBLIC_VALUE_LEN); |
548 | 0 | OPENSSL_memcpy(kem_context + 2 * P256_PUBLIC_VALUE_LEN, key->public_key, |
549 | 0 | P256_PUBLIC_VALUE_LEN); |
550 | 0 | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
551 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
552 | 0 | kem_context, sizeof(kem_context))) { |
553 | 0 | return 0; |
554 | 0 | } |
555 | | |
556 | 0 | *out_enc_len = P256_PUBLIC_VALUE_LEN; |
557 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
558 | 0 | return 1; |
559 | 0 | } |
560 | | |
561 | | static int p256_auth_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
562 | | size_t *out_shared_secret_len, const uint8_t *enc, |
563 | | size_t enc_len, const uint8_t *peer_public_key, |
564 | 0 | size_t peer_public_key_len) { |
565 | 0 | uint8_t dh[2 * P256_SHARED_KEY_LEN]; |
566 | 0 | if (enc_len != P256_PUBLIC_VALUE_LEN || |
567 | 0 | peer_public_key_len != P256_PUBLIC_VALUE_LEN || |
568 | 0 | !p256(dh, key->private_key, enc) || |
569 | 0 | !p256(dh + P256_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
570 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
571 | 0 | return 0; |
572 | 0 | } |
573 | | |
574 | 0 | uint8_t kem_context[3 * P256_PUBLIC_VALUE_LEN]; |
575 | 0 | OPENSSL_memcpy(kem_context, enc, P256_PUBLIC_VALUE_LEN); |
576 | 0 | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, key->public_key, |
577 | 0 | P256_PUBLIC_VALUE_LEN); |
578 | 0 | OPENSSL_memcpy(kem_context + 2 * P256_PUBLIC_VALUE_LEN, peer_public_key, |
579 | 0 | P256_PUBLIC_VALUE_LEN); |
580 | 0 | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
581 | 0 | SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
582 | 0 | kem_context, sizeof(kem_context))) { |
583 | 0 | return 0; |
584 | 0 | } |
585 | | |
586 | 0 | *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
587 | 0 | return 1; |
588 | 0 | } |
589 | | |
590 | 0 | const EVP_HPKE_KEM *EVP_hpke_p256_hkdf_sha256(void) { |
591 | 0 | static const EVP_HPKE_KEM kKEM = { |
592 | 0 | /*id=*/EVP_HPKE_DHKEM_P256_HKDF_SHA256, |
593 | 0 | /*public_key_len=*/P256_PUBLIC_KEY_LEN, |
594 | 0 | /*private_key_len=*/P256_PRIVATE_KEY_LEN, |
595 | 0 | /*seed_len=*/P256_SEED_LEN, |
596 | 0 | /*enc_len=*/P256_PUBLIC_VALUE_LEN, |
597 | 0 | p256_init_key, |
598 | 0 | p256_generate_key, |
599 | 0 | p256_encap_with_seed, |
600 | 0 | p256_decap, |
601 | 0 | p256_auth_encap_with_seed, |
602 | 0 | p256_auth_decap, |
603 | 0 | }; |
604 | 0 | return &kKEM; |
605 | 0 | } |
606 | | |
607 | 0 | #define XWING_PRIVATE_KEY_LEN XWING_PRIVATE_KEY_BYTES |
608 | 0 | #define XWING_PUBLIC_KEY_LEN XWING_PUBLIC_KEY_BYTES |
609 | 0 | #define XWING_PUBLIC_VALUE_LEN XWING_CIPHERTEXT_BYTES |
610 | 0 | #define XWING_SEED_LEN 64 |
611 | 0 | #define XWING_SHARED_KEY_LEN XWING_SHARED_SECRET_BYTES |
612 | | |
613 | | static int xwing_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
614 | 0 | size_t priv_key_len) { |
615 | 0 | CBS cbs; |
616 | 0 | CBS_init(&cbs, priv_key, priv_key_len); |
617 | 0 | XWING_private_key private_key; |
618 | 0 | if (!XWING_parse_private_key(&private_key, &cbs) || CBS_len(&cbs) != 0) { |
619 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
620 | 0 | return 0; |
621 | 0 | } |
622 | | |
623 | 0 | if (!XWING_public_from_private(key->public_key, &private_key)) { |
624 | 0 | return 0; |
625 | 0 | } |
626 | | |
627 | 0 | if (priv_key_len > sizeof(key->private_key)) { |
628 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
629 | 0 | return 0; |
630 | 0 | } |
631 | 0 | OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); |
632 | 0 | return 1; |
633 | 0 | } |
634 | | |
635 | 0 | static int xwing_generate_key(EVP_HPKE_KEY *key) { |
636 | 0 | XWING_private_key private_key; |
637 | 0 | if (!XWING_generate_key(key->public_key, &private_key)) { |
638 | 0 | return 0; |
639 | 0 | } |
640 | | |
641 | 0 | CBB cbb; |
642 | 0 | CBB_init_fixed(&cbb, key->private_key, XWING_PRIVATE_KEY_LEN); |
643 | 0 | if (!XWING_marshal_private_key(&cbb, &private_key) || |
644 | 0 | CBB_len(&cbb) != XWING_PRIVATE_KEY_LEN) { |
645 | 0 | return 0; |
646 | 0 | } |
647 | | |
648 | 0 | return 1; |
649 | 0 | } |
650 | | |
651 | | static int xwing_encap_with_seed(const EVP_HPKE_KEM *kem, |
652 | | uint8_t *out_shared_secret, |
653 | | size_t *out_shared_secret_len, |
654 | | uint8_t *out_enc, size_t *out_enc_len, |
655 | | size_t max_enc, const uint8_t *peer_public_key, |
656 | | size_t peer_public_key_len, |
657 | 0 | const uint8_t *seed, size_t seed_len) { |
658 | 0 | if (max_enc < XWING_PUBLIC_VALUE_LEN) { |
659 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
660 | 0 | return 0; |
661 | 0 | } |
662 | 0 | if (peer_public_key_len != XWING_PUBLIC_KEY_LEN || |
663 | 0 | seed_len != XWING_SEED_LEN) { |
664 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
665 | 0 | return 0; |
666 | 0 | } |
667 | | |
668 | 0 | if (!XWING_encap_external_entropy(out_enc, out_shared_secret, peer_public_key, |
669 | 0 | seed)) { |
670 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
671 | 0 | return 0; |
672 | 0 | } |
673 | | |
674 | 0 | *out_enc_len = XWING_PUBLIC_VALUE_LEN; |
675 | 0 | *out_shared_secret_len = XWING_SHARED_KEY_LEN; |
676 | 0 | return 1; |
677 | 0 | } |
678 | | |
679 | | static int xwing_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
680 | | size_t *out_shared_secret_len, const uint8_t *enc, |
681 | 0 | size_t enc_len) { |
682 | 0 | if (enc_len != XWING_PUBLIC_VALUE_LEN) { |
683 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
684 | 0 | return 0; |
685 | 0 | } |
686 | | |
687 | 0 | CBS cbs; |
688 | 0 | CBS_init(&cbs, key->private_key, XWING_PRIVATE_KEY_LEN); |
689 | 0 | XWING_private_key private_key; |
690 | 0 | if (!XWING_parse_private_key(&private_key, &cbs)) { |
691 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
692 | 0 | return 0; |
693 | 0 | } |
694 | | |
695 | 0 | if (!XWING_decap(out_shared_secret, enc, &private_key)) { |
696 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
697 | 0 | return 0; |
698 | 0 | } |
699 | | |
700 | 0 | *out_shared_secret_len = XWING_SHARED_KEY_LEN; |
701 | 0 | return 1; |
702 | 0 | } |
703 | | |
704 | 0 | const EVP_HPKE_KEM *EVP_hpke_xwing(void) { |
705 | 0 | static const EVP_HPKE_KEM kKEM = { |
706 | 0 | /*id=*/EVP_HPKE_XWING, |
707 | 0 | /*public_key_len=*/XWING_PUBLIC_KEY_LEN, |
708 | 0 | /*private_key_len=*/XWING_PRIVATE_KEY_LEN, |
709 | 0 | /*seed_len=*/XWING_SEED_LEN, |
710 | 0 | /*enc_len=*/XWING_PUBLIC_VALUE_LEN, |
711 | 0 | xwing_init_key, |
712 | 0 | xwing_generate_key, |
713 | 0 | xwing_encap_with_seed, |
714 | 0 | xwing_decap, |
715 | | // X-Wing doesn't support authenticated encapsulation/decapsulation: |
716 | | // https://datatracker.ietf.org/doc/html/draft-connolly-cfrg-xwing-kem-08#name-use-in-hpke |
717 | 0 | /* auth_encap_with_seed= */ nullptr, |
718 | 0 | /* auth_decap= */ nullptr, |
719 | 0 | }; |
720 | 0 | return &kKEM; |
721 | 0 | } |
722 | | |
723 | | namespace { |
724 | | |
725 | | template <uint16_t KEM_ID, size_t PUBLIC_KEY_BYTES, size_t CIPHERTEXT_BYTES, |
726 | | size_t ENCAP_ENTROPY_BYTES, |
727 | | |
728 | | typename PrivateKey, typename PublicKey, |
729 | | |
730 | | int (*PrivateKeyFromSeed)(PrivateKey *, const uint8_t *, size_t), |
731 | | void (*PublicFromPrivate)(PublicKey *, const PrivateKey *), |
732 | | int (*MarshalPublicKey)(CBB *, const PublicKey *), |
733 | | void (*GenerateKey)(uint8_t *, uint8_t *, PrivateKey *), |
734 | | int (*ParsePublicKey)(PublicKey *, CBS *), |
735 | | bcm_infallible (*BCMEncapExternalEntropy)( |
736 | | uint8_t *, uint8_t *, const PublicKey *, const uint8_t *), |
737 | | int (*Decap)(uint8_t *, const uint8_t *, size_t, const PrivateKey *)> |
738 | | struct MLKEMHPKE { |
739 | | // These sizes are common across both ML-KEM-768 and ML-KEM-1024. |
740 | | static constexpr size_t PRIVATE_KEY_LEN = MLKEM_SEED_BYTES; |
741 | | static constexpr size_t SHARED_KEY_LEN = MLKEM_SHARED_SECRET_BYTES; |
742 | | |
743 | | static constexpr uint16_t ID = KEM_ID; |
744 | | static constexpr size_t PUBLIC_KEY_LEN = PUBLIC_KEY_BYTES; |
745 | | static constexpr size_t SEED_LEN = ENCAP_ENTROPY_BYTES; |
746 | | static constexpr size_t ENC_LEN = CIPHERTEXT_BYTES; |
747 | | |
748 | | static int InitKey(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
749 | 0 | size_t priv_key_len) { |
750 | 0 | PrivateKey expanded_private_key; |
751 | 0 | if (!PrivateKeyFromSeed(&expanded_private_key, priv_key, priv_key_len)) { |
752 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
753 | 0 | return 0; |
754 | 0 | } |
755 | 0 | PublicKey public_key; |
756 | 0 | PublicFromPrivate(&public_key, &expanded_private_key); |
757 | 0 | CBB cbb; |
758 | 0 | static_assert(sizeof(key->public_key) >= PUBLIC_KEY_BYTES, |
759 | 0 | "EVP_HPKE_KEY public_key is too small for ML-KEM."); |
760 | 0 | if (!CBB_init_fixed(&cbb, key->public_key, PUBLIC_KEY_BYTES) || |
761 | 0 | !MarshalPublicKey(&cbb, &public_key)) { |
762 | 0 | return 0; |
763 | 0 | } |
764 | | |
765 | 0 | static_assert(sizeof(key->private_key) >= PRIVATE_KEY_LEN, |
766 | 0 | "EVP_HPKE_KEY private_key is too small for ML-KEM"); |
767 | 0 | OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); |
768 | 0 | return 1; |
769 | 0 | } Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)65, 1184ul, 1088ul, 32ul, MLKEM768_private_key, MLKEM768_public_key, &MLKEM768_private_key_from_seed, &MLKEM768_public_from_private, &MLKEM768_marshal_public_key, &MLKEM768_generate_key, &MLKEM768_parse_public_key, &BCM_mlkem768_encap_external_entropy, &MLKEM768_decap>::InitKey(evp_hpke_key_st*, unsigned char const*, unsigned long) Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)66, 1568ul, 1568ul, 32ul, MLKEM1024_private_key, MLKEM1024_public_key, &MLKEM1024_private_key_from_seed, &MLKEM1024_public_from_private, &MLKEM1024_marshal_public_key, &MLKEM1024_generate_key, &MLKEM1024_parse_public_key, &BCM_mlkem1024_encap_external_entropy, &MLKEM1024_decap>::InitKey(evp_hpke_key_st*, unsigned char const*, unsigned long) |
770 | | |
771 | 0 | static int HpkeGenerateKey(EVP_HPKE_KEY *key) { |
772 | 0 | static_assert(sizeof(key->public_key) >= PUBLIC_KEY_BYTES, |
773 | 0 | "EVP_HPKE_KEY public_key is too small for ML-KEM."); |
774 | 0 | static_assert(sizeof(key->private_key) >= PRIVATE_KEY_LEN, |
775 | 0 | "EVP_HPKE_KEY private_key is too small for ML-KEM"); |
776 | 0 | PrivateKey expanded_private_key; |
777 | 0 | GenerateKey(key->public_key, key->private_key, &expanded_private_key); |
778 | |
|
779 | 0 | return 1; |
780 | 0 | } Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)65, 1184ul, 1088ul, 32ul, MLKEM768_private_key, MLKEM768_public_key, &MLKEM768_private_key_from_seed, &MLKEM768_public_from_private, &MLKEM768_marshal_public_key, &MLKEM768_generate_key, &MLKEM768_parse_public_key, &BCM_mlkem768_encap_external_entropy, &MLKEM768_decap>::HpkeGenerateKey(evp_hpke_key_st*) Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)66, 1568ul, 1568ul, 32ul, MLKEM1024_private_key, MLKEM1024_public_key, &MLKEM1024_private_key_from_seed, &MLKEM1024_public_from_private, &MLKEM1024_marshal_public_key, &MLKEM1024_generate_key, &MLKEM1024_parse_public_key, &BCM_mlkem1024_encap_external_entropy, &MLKEM1024_decap>::HpkeGenerateKey(evp_hpke_key_st*) |
781 | | |
782 | | static int EncapWithSeed(const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, |
783 | | size_t *out_shared_secret_len, uint8_t *out_enc, |
784 | | size_t *out_enc_len, size_t max_enc, |
785 | | const uint8_t *peer_public_key, |
786 | | size_t peer_public_key_len, const uint8_t *seed, |
787 | 0 | size_t seed_len) { |
788 | 0 | if (max_enc < CIPHERTEXT_BYTES) { |
789 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
790 | 0 | return 0; |
791 | 0 | } |
792 | 0 | if (peer_public_key_len != PUBLIC_KEY_BYTES || |
793 | 0 | seed_len != ENCAP_ENTROPY_BYTES) { |
794 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
795 | 0 | return 0; |
796 | 0 | } |
797 | | |
798 | 0 | CBS cbs; |
799 | 0 | CBS_init(&cbs, peer_public_key, peer_public_key_len); |
800 | 0 | PublicKey public_key; |
801 | 0 | if (!ParsePublicKey(&public_key, &cbs)) { |
802 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
803 | 0 | return 0; |
804 | 0 | } |
805 | | // The public ML-KEM interface doesn't support providing the encap entropy |
806 | | // so the BCM function is used here. |
807 | 0 | BCMEncapExternalEntropy(out_enc, out_shared_secret, &public_key, seed); |
808 | |
|
809 | 0 | *out_enc_len = CIPHERTEXT_BYTES; |
810 | 0 | *out_shared_secret_len = SHARED_KEY_LEN; |
811 | 0 | return 1; |
812 | 0 | } Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)65, 1184ul, 1088ul, 32ul, MLKEM768_private_key, MLKEM768_public_key, &MLKEM768_private_key_from_seed, &MLKEM768_public_from_private, &MLKEM768_marshal_public_key, &MLKEM768_generate_key, &MLKEM768_parse_public_key, &BCM_mlkem768_encap_external_entropy, &MLKEM768_decap>::EncapWithSeed(evp_hpke_kem_st const*, unsigned char*, unsigned long*, unsigned char*, unsigned long*, unsigned long, unsigned char const*, unsigned long, unsigned char const*, unsigned long) Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)66, 1568ul, 1568ul, 32ul, MLKEM1024_private_key, MLKEM1024_public_key, &MLKEM1024_private_key_from_seed, &MLKEM1024_public_from_private, &MLKEM1024_marshal_public_key, &MLKEM1024_generate_key, &MLKEM1024_parse_public_key, &BCM_mlkem1024_encap_external_entropy, &MLKEM1024_decap>::EncapWithSeed(evp_hpke_kem_st const*, unsigned char*, unsigned long*, unsigned char*, unsigned long*, unsigned long, unsigned char const*, unsigned long, unsigned char const*, unsigned long) |
813 | | |
814 | | static int HpkeDecap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
815 | | size_t *out_shared_secret_len, const uint8_t *enc, |
816 | 0 | size_t enc_len) { |
817 | 0 | PrivateKey private_key; |
818 | 0 | if (!PrivateKeyFromSeed(&private_key, key->private_key, PRIVATE_KEY_LEN)) { |
819 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
820 | 0 | return 0; |
821 | 0 | } |
822 | | |
823 | 0 | if (!Decap(out_shared_secret, enc, enc_len, &private_key)) { |
824 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
825 | 0 | return 0; |
826 | 0 | } |
827 | | |
828 | 0 | *out_shared_secret_len = SHARED_KEY_LEN; |
829 | 0 | return 1; |
830 | 0 | } Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)65, 1184ul, 1088ul, 32ul, MLKEM768_private_key, MLKEM768_public_key, &MLKEM768_private_key_from_seed, &MLKEM768_public_from_private, &MLKEM768_marshal_public_key, &MLKEM768_generate_key, &MLKEM768_parse_public_key, &BCM_mlkem768_encap_external_entropy, &MLKEM768_decap>::HpkeDecap(evp_hpke_key_st const*, unsigned char*, unsigned long*, unsigned char const*, unsigned long) Unexecuted instantiation: hpke.cc:(anonymous namespace)::MLKEMHPKE<(unsigned short)66, 1568ul, 1568ul, 32ul, MLKEM1024_private_key, MLKEM1024_public_key, &MLKEM1024_private_key_from_seed, &MLKEM1024_public_from_private, &MLKEM1024_marshal_public_key, &MLKEM1024_generate_key, &MLKEM1024_parse_public_key, &BCM_mlkem1024_encap_external_entropy, &MLKEM1024_decap>::HpkeDecap(evp_hpke_key_st const*, unsigned char*, unsigned long*, unsigned char const*, unsigned long) |
831 | | }; |
832 | | |
833 | | using MLKEM768HPKE = |
834 | | MLKEMHPKE<EVP_HPKE_MLKEM768, MLKEM768_PUBLIC_KEY_BYTES, |
835 | | MLKEM768_CIPHERTEXT_BYTES, BCM_MLKEM_ENCAP_ENTROPY, |
836 | | |
837 | | MLKEM768_private_key, MLKEM768_public_key, |
838 | | |
839 | | MLKEM768_private_key_from_seed, MLKEM768_public_from_private, |
840 | | MLKEM768_marshal_public_key, MLKEM768_generate_key, |
841 | | MLKEM768_parse_public_key, BCM_mlkem768_encap_external_entropy, |
842 | | MLKEM768_decap>; |
843 | | |
844 | | using MLKEM1024HPKE = |
845 | | MLKEMHPKE<EVP_HPKE_MLKEM1024, MLKEM1024_PUBLIC_KEY_BYTES, |
846 | | MLKEM1024_CIPHERTEXT_BYTES, BCM_MLKEM_ENCAP_ENTROPY, |
847 | | |
848 | | MLKEM1024_private_key, MLKEM1024_public_key, |
849 | | |
850 | | MLKEM1024_private_key_from_seed, MLKEM1024_public_from_private, |
851 | | MLKEM1024_marshal_public_key, MLKEM1024_generate_key, |
852 | | MLKEM1024_parse_public_key, BCM_mlkem1024_encap_external_entropy, |
853 | | MLKEM1024_decap>; |
854 | | |
855 | | template <typename MLKEM> |
856 | | static const EVP_HPKE_KEM kMLKEM = { |
857 | | /*id=*/MLKEM::ID, |
858 | | /*public_key_len=*/MLKEM::PUBLIC_KEY_LEN, |
859 | | /*private_key_len=*/MLKEM::PRIVATE_KEY_LEN, |
860 | | /*seed_len=*/MLKEM::SEED_LEN, |
861 | | /*enc_len=*/MLKEM::ENC_LEN, |
862 | | MLKEM::InitKey, |
863 | | MLKEM::HpkeGenerateKey, |
864 | | MLKEM::EncapWithSeed, |
865 | | MLKEM::HpkeDecap, |
866 | | // ML-KEM doesn't support authenticated encapsulation/decapsulation: |
867 | | // https://datatracker.ietf.org/doc/draft-ietf-hpke-pq/01/ |
868 | | /*auth_encap_with_seed=*/nullptr, |
869 | | /*auth_decap=*/nullptr, |
870 | | }; |
871 | | |
872 | | } // namespace |
873 | | |
874 | 0 | const EVP_HPKE_KEM *EVP_hpke_mlkem768(void) { return &kMLKEM<MLKEM768HPKE>; } |
875 | 0 | const EVP_HPKE_KEM *EVP_hpke_mlkem1024(void) { return &kMLKEM<MLKEM1024HPKE>; } |
876 | | |
877 | 673 | uint16_t EVP_HPKE_KEM_id(const EVP_HPKE_KEM *kem) { return kem->id; } |
878 | | |
879 | 0 | size_t EVP_HPKE_KEM_public_key_len(const EVP_HPKE_KEM *kem) { |
880 | 0 | return kem->public_key_len; |
881 | 0 | } |
882 | | |
883 | 0 | size_t EVP_HPKE_KEM_private_key_len(const EVP_HPKE_KEM *kem) { |
884 | 0 | return kem->private_key_len; |
885 | 0 | } |
886 | | |
887 | 0 | size_t EVP_HPKE_KEM_enc_len(const EVP_HPKE_KEM *kem) { return kem->enc_len; } |
888 | | |
889 | 36.6k | void EVP_HPKE_KEY_zero(EVP_HPKE_KEY *key) { |
890 | 36.6k | OPENSSL_memset(key, 0, sizeof(EVP_HPKE_KEY)); |
891 | 36.6k | } |
892 | | |
893 | 24.2k | void EVP_HPKE_KEY_cleanup(EVP_HPKE_KEY *key) { |
894 | | // Nothing to clean up for now, but we may introduce a cleanup process in the |
895 | | // future. |
896 | 24.2k | } |
897 | | |
898 | 0 | EVP_HPKE_KEY *EVP_HPKE_KEY_new(void) { |
899 | 0 | EVP_HPKE_KEY *key = |
900 | 0 | reinterpret_cast<EVP_HPKE_KEY *>(OPENSSL_malloc(sizeof(EVP_HPKE_KEY))); |
901 | 0 | if (key == nullptr) { |
902 | 0 | return nullptr; |
903 | 0 | } |
904 | 0 | EVP_HPKE_KEY_zero(key); |
905 | 0 | return key; |
906 | 0 | } |
907 | | |
908 | 0 | void EVP_HPKE_KEY_free(EVP_HPKE_KEY *key) { |
909 | 0 | if (key != nullptr) { |
910 | 0 | EVP_HPKE_KEY_cleanup(key); |
911 | 0 | OPENSSL_free(key); |
912 | 0 | } |
913 | 0 | } |
914 | | |
915 | 6 | int EVP_HPKE_KEY_copy(EVP_HPKE_KEY *dst, const EVP_HPKE_KEY *src) { |
916 | | // For now, |EVP_HPKE_KEY| is trivially copyable. |
917 | 6 | OPENSSL_memcpy(dst, src, sizeof(EVP_HPKE_KEY)); |
918 | 6 | return 1; |
919 | 6 | } |
920 | | |
921 | 0 | void EVP_HPKE_KEY_move(EVP_HPKE_KEY *out, EVP_HPKE_KEY *in) { |
922 | 0 | EVP_HPKE_KEY_cleanup(out); |
923 | | // For now, |EVP_HPKE_KEY| is trivially movable. |
924 | | // Note that Rust may move this structure. See |
925 | | // bssl-crypto/src/scoped.rs:EvpHpkeKey. |
926 | 0 | OPENSSL_memcpy(out, in, sizeof(EVP_HPKE_KEY)); |
927 | 0 | EVP_HPKE_KEY_zero(in); |
928 | 0 | } |
929 | | |
930 | | int EVP_HPKE_KEY_init(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem, |
931 | 12.4k | const uint8_t *priv_key, size_t priv_key_len) { |
932 | 12.4k | EVP_HPKE_KEY_zero(key); |
933 | 12.4k | key->kem = kem; |
934 | 12.4k | if (!kem->init_key(key, priv_key, priv_key_len)) { |
935 | 609 | key->kem = nullptr; |
936 | 609 | return 0; |
937 | 609 | } |
938 | 11.8k | return 1; |
939 | 12.4k | } |
940 | | |
941 | 0 | int EVP_HPKE_KEY_generate(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem) { |
942 | 0 | EVP_HPKE_KEY_zero(key); |
943 | 0 | key->kem = kem; |
944 | 0 | if (!kem->generate_key(key)) { |
945 | 0 | key->kem = nullptr; |
946 | 0 | return 0; |
947 | 0 | } |
948 | 0 | return 1; |
949 | 0 | } |
950 | | |
951 | 673 | const EVP_HPKE_KEM *EVP_HPKE_KEY_kem(const EVP_HPKE_KEY *key) { |
952 | 673 | return key->kem; |
953 | 673 | } |
954 | | |
955 | | int EVP_HPKE_KEY_public_key(const EVP_HPKE_KEY *key, uint8_t *out, |
956 | 673 | size_t *out_len, size_t max_out) { |
957 | 673 | if (max_out < key->kem->public_key_len) { |
958 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
959 | 0 | return 0; |
960 | 0 | } |
961 | 673 | OPENSSL_memcpy(out, key->public_key, key->kem->public_key_len); |
962 | 673 | *out_len = key->kem->public_key_len; |
963 | 673 | return 1; |
964 | 673 | } |
965 | | |
966 | | int EVP_HPKE_KEY_private_key(const EVP_HPKE_KEY *key, uint8_t *out, |
967 | 0 | size_t *out_len, size_t max_out) { |
968 | 0 | if (max_out < key->kem->private_key_len) { |
969 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
970 | 0 | return 0; |
971 | 0 | } |
972 | 0 | OPENSSL_memcpy(out, key->private_key, key->kem->private_key_len); |
973 | 0 | *out_len = key->kem->private_key_len; |
974 | 0 | return 1; |
975 | 0 | } |
976 | | |
977 | | |
978 | | // Supported KDFs and AEADs. |
979 | | |
980 | 317 | const EVP_HPKE_KDF *EVP_hpke_hkdf_sha256(void) { |
981 | 317 | static const EVP_HPKE_KDF kKDF = {EVP_HPKE_HKDF_SHA256, &EVP_sha256}; |
982 | 317 | return &kKDF; |
983 | 317 | } |
984 | | |
985 | 88 | uint16_t EVP_HPKE_KDF_id(const EVP_HPKE_KDF *kdf) { return kdf->id; } |
986 | | |
987 | 0 | const EVP_MD *EVP_HPKE_KDF_hkdf_md(const EVP_HPKE_KDF *kdf) { |
988 | 0 | return kdf->hkdf_md_func(); |
989 | 0 | } |
990 | | |
991 | 1.77k | const EVP_HPKE_AEAD *EVP_hpke_aes_128_gcm(void) { |
992 | 1.77k | static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_128_GCM, |
993 | 1.77k | &EVP_aead_aes_128_gcm}; |
994 | 1.77k | return &kAEAD; |
995 | 1.77k | } |
996 | | |
997 | 732 | const EVP_HPKE_AEAD *EVP_hpke_aes_256_gcm(void) { |
998 | 732 | static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_256_GCM, |
999 | 732 | &EVP_aead_aes_256_gcm}; |
1000 | 732 | return &kAEAD; |
1001 | 732 | } |
1002 | | |
1003 | 728 | const EVP_HPKE_AEAD *EVP_hpke_chacha20_poly1305(void) { |
1004 | 728 | static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_CHACHA20_POLY1305, |
1005 | 728 | &EVP_aead_chacha20_poly1305}; |
1006 | 728 | return &kAEAD; |
1007 | 728 | } |
1008 | | |
1009 | 3.28k | uint16_t EVP_HPKE_AEAD_id(const EVP_HPKE_AEAD *aead) { return aead->id; } |
1010 | | |
1011 | 307 | const EVP_AEAD *EVP_HPKE_AEAD_aead(const EVP_HPKE_AEAD *aead) { |
1012 | 307 | return aead->aead_func(); |
1013 | 307 | } |
1014 | | |
1015 | | |
1016 | | // HPKE implementation. |
1017 | | |
1018 | | // This is strlen("HPKE") + 3 * sizeof(uint16_t). |
1019 | 307 | #define HPKE_SUITE_ID_LEN 10 |
1020 | | |
1021 | | // The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE", |
1022 | | // I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)). |
1023 | | static int hpke_build_suite_id(const EVP_HPKE_CTX *ctx, |
1024 | 307 | uint8_t out[HPKE_SUITE_ID_LEN]) { |
1025 | 307 | CBB cbb; |
1026 | 307 | CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN); |
1027 | 307 | return add_label_string(&cbb, "HPKE") && // |
1028 | 307 | CBB_add_u16(&cbb, ctx->kem->id) && // |
1029 | 307 | CBB_add_u16(&cbb, ctx->kdf->id) && // |
1030 | 307 | CBB_add_u16(&cbb, ctx->aead->id); |
1031 | 307 | } |
1032 | | |
1033 | 307 | #define HPKE_MODE_BASE 0 |
1034 | 0 | #define HPKE_MODE_AUTH 2 |
1035 | | |
1036 | | static int hpke_key_schedule(EVP_HPKE_CTX *ctx, uint8_t mode, |
1037 | | const uint8_t *shared_secret, |
1038 | | size_t shared_secret_len, const uint8_t *info, |
1039 | 307 | size_t info_len) { |
1040 | 307 | uint8_t suite_id[HPKE_SUITE_ID_LEN]; |
1041 | 307 | if (!hpke_build_suite_id(ctx, suite_id)) { |
1042 | 0 | return 0; |
1043 | 0 | } |
1044 | | |
1045 | | // psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id) |
1046 | | // TODO(davidben): Precompute this value and store it with the EVP_HPKE_KDF. |
1047 | 307 | const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func(); |
1048 | 307 | uint8_t psk_id_hash[EVP_MAX_MD_SIZE]; |
1049 | 307 | size_t psk_id_hash_len; |
1050 | 307 | if (!hpke_labeled_extract(hkdf_md, psk_id_hash, &psk_id_hash_len, nullptr, 0, |
1051 | 307 | suite_id, sizeof(suite_id), "psk_id_hash", nullptr, |
1052 | 307 | 0)) { |
1053 | 0 | return 0; |
1054 | 0 | } |
1055 | | |
1056 | | // info_hash = LabeledExtract("", "info_hash", info) |
1057 | 307 | uint8_t info_hash[EVP_MAX_MD_SIZE]; |
1058 | 307 | size_t info_hash_len; |
1059 | 307 | if (!hpke_labeled_extract(hkdf_md, info_hash, &info_hash_len, nullptr, 0, |
1060 | 307 | suite_id, sizeof(suite_id), "info_hash", info, |
1061 | 307 | info_len)) { |
1062 | 0 | return 0; |
1063 | 0 | } |
1064 | | |
1065 | | // key_schedule_context = concat(mode, psk_id_hash, info_hash) |
1066 | 307 | uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE]; |
1067 | 307 | size_t context_len; |
1068 | 307 | CBB context_cbb; |
1069 | 307 | CBB_init_fixed(&context_cbb, context, sizeof(context)); |
1070 | 307 | if (!CBB_add_u8(&context_cbb, mode) || |
1071 | 307 | !CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) || |
1072 | 307 | !CBB_add_bytes(&context_cbb, info_hash, info_hash_len) || |
1073 | 307 | !CBB_finish(&context_cbb, nullptr, &context_len)) { |
1074 | 0 | return 0; |
1075 | 0 | } |
1076 | | |
1077 | | // secret = LabeledExtract(shared_secret, "secret", psk) |
1078 | 307 | uint8_t secret[EVP_MAX_MD_SIZE]; |
1079 | 307 | size_t secret_len; |
1080 | 307 | if (!hpke_labeled_extract(hkdf_md, secret, &secret_len, shared_secret, |
1081 | 307 | shared_secret_len, suite_id, sizeof(suite_id), |
1082 | 307 | "secret", nullptr, 0)) { |
1083 | 0 | return 0; |
1084 | 0 | } |
1085 | | |
1086 | | // key = LabeledExpand(secret, "key", key_schedule_context, Nk) |
1087 | 307 | const EVP_AEAD *aead = EVP_HPKE_AEAD_aead(ctx->aead); |
1088 | 307 | uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; |
1089 | 307 | const size_t kKeyLen = EVP_AEAD_key_length(aead); |
1090 | 307 | if (!hpke_labeled_expand(hkdf_md, key, kKeyLen, secret, secret_len, suite_id, |
1091 | 307 | sizeof(suite_id), "key", context, context_len) || |
1092 | 307 | !EVP_AEAD_CTX_init(&ctx->aead_ctx, aead, key, kKeyLen, |
1093 | 307 | EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)) { |
1094 | 0 | return 0; |
1095 | 0 | } |
1096 | | |
1097 | | // base_nonce = LabeledExpand(secret, "base_nonce", key_schedule_context, Nn) |
1098 | 307 | if (!hpke_labeled_expand(hkdf_md, ctx->base_nonce, |
1099 | 307 | EVP_AEAD_nonce_length(aead), secret, secret_len, |
1100 | 307 | suite_id, sizeof(suite_id), "base_nonce", context, |
1101 | 307 | context_len)) { |
1102 | 0 | return 0; |
1103 | 0 | } |
1104 | | |
1105 | | // exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh) |
1106 | 307 | if (!hpke_labeled_expand(hkdf_md, ctx->exporter_secret, EVP_MD_size(hkdf_md), |
1107 | 307 | secret, secret_len, suite_id, sizeof(suite_id), |
1108 | 307 | "exp", context, context_len)) { |
1109 | 0 | return 0; |
1110 | 0 | } |
1111 | | |
1112 | 307 | return 1; |
1113 | 307 | } |
1114 | | |
1115 | 172k | void EVP_HPKE_CTX_zero(EVP_HPKE_CTX *ctx) { |
1116 | 172k | OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX)); |
1117 | 172k | EVP_AEAD_CTX_zero(&ctx->aead_ctx); |
1118 | 172k | } |
1119 | | |
1120 | 172k | void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) { |
1121 | 172k | EVP_AEAD_CTX_cleanup(&ctx->aead_ctx); |
1122 | 172k | } |
1123 | | |
1124 | 0 | EVP_HPKE_CTX *EVP_HPKE_CTX_new(void) { |
1125 | 0 | EVP_HPKE_CTX *ctx = |
1126 | 0 | reinterpret_cast<EVP_HPKE_CTX *>(OPENSSL_malloc(sizeof(EVP_HPKE_CTX))); |
1127 | 0 | if (ctx == nullptr) { |
1128 | 0 | return nullptr; |
1129 | 0 | } |
1130 | 0 | EVP_HPKE_CTX_zero(ctx); |
1131 | 0 | return ctx; |
1132 | 0 | } |
1133 | | |
1134 | 0 | void EVP_HPKE_CTX_free(EVP_HPKE_CTX *ctx) { |
1135 | 0 | if (ctx != nullptr) { |
1136 | 0 | EVP_HPKE_CTX_cleanup(ctx); |
1137 | 0 | OPENSSL_free(ctx); |
1138 | 0 | } |
1139 | 0 | } |
1140 | | |
1141 | | int EVP_HPKE_CTX_setup_sender(EVP_HPKE_CTX *ctx, uint8_t *out_enc, |
1142 | | size_t *out_enc_len, size_t max_enc, |
1143 | | const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, |
1144 | | const EVP_HPKE_AEAD *aead, |
1145 | | const uint8_t *peer_public_key, |
1146 | | size_t peer_public_key_len, const uint8_t *info, |
1147 | 0 | size_t info_len) { |
1148 | 0 | uint8_t seed[MAX_SEED_LEN]; |
1149 | 0 | RAND_bytes(seed, kem->seed_len); |
1150 | 0 | return EVP_HPKE_CTX_setup_sender_with_seed_for_testing( |
1151 | 0 | ctx, out_enc, out_enc_len, max_enc, kem, kdf, aead, peer_public_key, |
1152 | 0 | peer_public_key_len, info, info_len, seed, kem->seed_len); |
1153 | 0 | } |
1154 | | |
1155 | | int EVP_HPKE_CTX_setup_sender_with_seed_for_testing( |
1156 | | EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, |
1157 | | const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, |
1158 | | const uint8_t *peer_public_key, size_t peer_public_key_len, |
1159 | | const uint8_t *info, size_t info_len, const uint8_t *seed, |
1160 | 0 | size_t seed_len) { |
1161 | 0 | EVP_HPKE_CTX_zero(ctx); |
1162 | 0 | ctx->is_sender = 1; |
1163 | 0 | ctx->kem = kem; |
1164 | 0 | ctx->kdf = kdf; |
1165 | 0 | ctx->aead = aead; |
1166 | 0 | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
1167 | 0 | size_t shared_secret_len; |
1168 | 0 | if (!kem->encap_with_seed(kem, shared_secret, &shared_secret_len, out_enc, |
1169 | 0 | out_enc_len, max_enc, peer_public_key, |
1170 | 0 | peer_public_key_len, seed, seed_len) || |
1171 | 0 | !hpke_key_schedule(ctx, HPKE_MODE_BASE, shared_secret, shared_secret_len, |
1172 | 0 | info, info_len)) { |
1173 | 0 | EVP_HPKE_CTX_cleanup(ctx); |
1174 | 0 | return 0; |
1175 | 0 | } |
1176 | 0 | return 1; |
1177 | 0 | } |
1178 | | |
1179 | | int EVP_HPKE_CTX_setup_recipient(EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key, |
1180 | | const EVP_HPKE_KDF *kdf, |
1181 | | const EVP_HPKE_AEAD *aead, const uint8_t *enc, |
1182 | | size_t enc_len, const uint8_t *info, |
1183 | 317 | size_t info_len) { |
1184 | 317 | EVP_HPKE_CTX_zero(ctx); |
1185 | 317 | ctx->is_sender = 0; |
1186 | 317 | ctx->kem = key->kem; |
1187 | 317 | ctx->kdf = kdf; |
1188 | 317 | ctx->aead = aead; |
1189 | 317 | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
1190 | 317 | size_t shared_secret_len; |
1191 | 317 | if (!key->kem->decap(key, shared_secret, &shared_secret_len, enc, enc_len) || |
1192 | 307 | !hpke_key_schedule(ctx, HPKE_MODE_BASE, shared_secret, shared_secret_len, |
1193 | 307 | info, info_len)) { |
1194 | 10 | EVP_HPKE_CTX_cleanup(ctx); |
1195 | 10 | return 0; |
1196 | 10 | } |
1197 | 307 | return 1; |
1198 | 317 | } |
1199 | | |
1200 | | |
1201 | | int EVP_HPKE_CTX_setup_auth_sender( |
1202 | | EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, |
1203 | | const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, |
1204 | | const uint8_t *peer_public_key, size_t peer_public_key_len, |
1205 | 0 | const uint8_t *info, size_t info_len) { |
1206 | 0 | uint8_t seed[MAX_SEED_LEN]; |
1207 | 0 | RAND_bytes(seed, key->kem->seed_len); |
1208 | 0 | return EVP_HPKE_CTX_setup_auth_sender_with_seed_for_testing( |
1209 | 0 | ctx, out_enc, out_enc_len, max_enc, key, kdf, aead, peer_public_key, |
1210 | 0 | peer_public_key_len, info, info_len, seed, key->kem->seed_len); |
1211 | 0 | } |
1212 | | |
1213 | | int EVP_HPKE_CTX_setup_auth_sender_with_seed_for_testing( |
1214 | | EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, |
1215 | | const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, |
1216 | | const uint8_t *peer_public_key, size_t peer_public_key_len, |
1217 | | const uint8_t *info, size_t info_len, const uint8_t *seed, |
1218 | 0 | size_t seed_len) { |
1219 | 0 | if (key->kem->auth_encap_with_seed == nullptr) { |
1220 | | // Not all HPKE KEMs support AuthEncap. |
1221 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
1222 | 0 | return 0; |
1223 | 0 | } |
1224 | | |
1225 | 0 | EVP_HPKE_CTX_zero(ctx); |
1226 | 0 | ctx->is_sender = 1; |
1227 | 0 | ctx->kem = key->kem; |
1228 | 0 | ctx->kdf = kdf; |
1229 | 0 | ctx->aead = aead; |
1230 | 0 | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
1231 | 0 | size_t shared_secret_len; |
1232 | 0 | if (!key->kem->auth_encap_with_seed( |
1233 | 0 | key, shared_secret, &shared_secret_len, out_enc, out_enc_len, max_enc, |
1234 | 0 | peer_public_key, peer_public_key_len, seed, seed_len) || |
1235 | 0 | !hpke_key_schedule(ctx, HPKE_MODE_AUTH, shared_secret, shared_secret_len, |
1236 | 0 | info, info_len)) { |
1237 | 0 | EVP_HPKE_CTX_cleanup(ctx); |
1238 | 0 | return 0; |
1239 | 0 | } |
1240 | 0 | return 1; |
1241 | 0 | } |
1242 | | |
1243 | | int EVP_HPKE_CTX_setup_auth_recipient( |
1244 | | EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, |
1245 | | const EVP_HPKE_AEAD *aead, const uint8_t *enc, size_t enc_len, |
1246 | | const uint8_t *info, size_t info_len, const uint8_t *peer_public_key, |
1247 | 0 | size_t peer_public_key_len) { |
1248 | 0 | if (key->kem->auth_decap == nullptr) { |
1249 | | // Not all HPKE KEMs support AuthDecap. |
1250 | 0 | OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
1251 | 0 | return 0; |
1252 | 0 | } |
1253 | | |
1254 | 0 | EVP_HPKE_CTX_zero(ctx); |
1255 | 0 | ctx->is_sender = 0; |
1256 | 0 | ctx->kem = key->kem; |
1257 | 0 | ctx->kdf = kdf; |
1258 | 0 | ctx->aead = aead; |
1259 | 0 | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
1260 | 0 | size_t shared_secret_len; |
1261 | 0 | if (!key->kem->auth_decap(key, shared_secret, &shared_secret_len, enc, |
1262 | 0 | enc_len, peer_public_key, peer_public_key_len) || |
1263 | 0 | !hpke_key_schedule(ctx, HPKE_MODE_AUTH, shared_secret, shared_secret_len, |
1264 | 0 | info, info_len)) { |
1265 | 0 | EVP_HPKE_CTX_cleanup(ctx); |
1266 | 0 | return 0; |
1267 | 0 | } |
1268 | 0 | return 1; |
1269 | 0 | } |
1270 | | |
1271 | | static void hpke_nonce(const EVP_HPKE_CTX *ctx, uint8_t *out_nonce, |
1272 | 41 | size_t nonce_len) { |
1273 | 41 | assert(nonce_len >= 8); |
1274 | | |
1275 | | // Write padded big-endian bytes of |ctx->seq| to |out_nonce|. |
1276 | 41 | OPENSSL_memset(out_nonce, 0, nonce_len); |
1277 | 41 | uint64_t seq_copy = ctx->seq; |
1278 | 369 | for (size_t i = 0; i < 8; i++) { |
1279 | 328 | out_nonce[nonce_len - i - 1] = seq_copy & 0xff; |
1280 | 328 | seq_copy >>= 8; |
1281 | 328 | } |
1282 | | |
1283 | | // XOR the encoded sequence with the |ctx->base_nonce|. |
1284 | 533 | for (size_t i = 0; i < nonce_len; i++) { |
1285 | 492 | out_nonce[i] ^= ctx->base_nonce[i]; |
1286 | 492 | } |
1287 | 41 | } |
1288 | | |
1289 | | int EVP_HPKE_CTX_open(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len, |
1290 | | size_t max_out_len, const uint8_t *in, size_t in_len, |
1291 | 41 | const uint8_t *ad, size_t ad_len) { |
1292 | 41 | if (ctx->is_sender) { |
1293 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
1294 | 0 | return 0; |
1295 | 0 | } |
1296 | 41 | if (ctx->seq == UINT64_MAX) { |
1297 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
1298 | 0 | return 0; |
1299 | 0 | } |
1300 | | |
1301 | 41 | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
1302 | 41 | const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead); |
1303 | 41 | hpke_nonce(ctx, nonce, nonce_len); |
1304 | | |
1305 | 41 | if (!EVP_AEAD_CTX_open(&ctx->aead_ctx, out, out_len, max_out_len, nonce, |
1306 | 41 | nonce_len, in, in_len, ad, ad_len)) { |
1307 | 41 | return 0; |
1308 | 41 | } |
1309 | 0 | ctx->seq++; |
1310 | 0 | return 1; |
1311 | 41 | } |
1312 | | |
1313 | | int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len, |
1314 | | size_t max_out_len, const uint8_t *in, size_t in_len, |
1315 | 0 | const uint8_t *ad, size_t ad_len) { |
1316 | 0 | if (!ctx->is_sender) { |
1317 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
1318 | 0 | return 0; |
1319 | 0 | } |
1320 | 0 | if (ctx->seq == UINT64_MAX) { |
1321 | 0 | OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
1322 | 0 | return 0; |
1323 | 0 | } |
1324 | | |
1325 | 0 | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
1326 | 0 | const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead); |
1327 | 0 | hpke_nonce(ctx, nonce, nonce_len); |
1328 | |
|
1329 | 0 | if (!EVP_AEAD_CTX_seal(&ctx->aead_ctx, out, out_len, max_out_len, nonce, |
1330 | 0 | nonce_len, in, in_len, ad, ad_len)) { |
1331 | 0 | return 0; |
1332 | 0 | } |
1333 | 0 | ctx->seq++; |
1334 | 0 | return 1; |
1335 | 0 | } |
1336 | | |
1337 | | int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *ctx, uint8_t *out, |
1338 | | size_t secret_len, const uint8_t *context, |
1339 | 0 | size_t context_len) { |
1340 | 0 | uint8_t suite_id[HPKE_SUITE_ID_LEN]; |
1341 | 0 | if (!hpke_build_suite_id(ctx, suite_id)) { |
1342 | 0 | return 0; |
1343 | 0 | } |
1344 | 0 | const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func(); |
1345 | 0 | if (!hpke_labeled_expand(hkdf_md, out, secret_len, ctx->exporter_secret, |
1346 | 0 | EVP_MD_size(hkdf_md), suite_id, sizeof(suite_id), |
1347 | 0 | "sec", context, context_len)) { |
1348 | 0 | return 0; |
1349 | 0 | } |
1350 | 0 | return 1; |
1351 | 0 | } |
1352 | | |
1353 | 0 | size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *ctx) { |
1354 | 0 | assert(ctx->is_sender); |
1355 | 0 | return EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(&ctx->aead_ctx)); |
1356 | 0 | } |
1357 | | |
1358 | 0 | const EVP_HPKE_KEM *EVP_HPKE_CTX_kem(const EVP_HPKE_CTX *ctx) { |
1359 | 0 | return ctx->kem; |
1360 | 0 | } |
1361 | | |
1362 | 58 | const EVP_HPKE_AEAD *EVP_HPKE_CTX_aead(const EVP_HPKE_CTX *ctx) { |
1363 | 58 | return ctx->aead; |
1364 | 58 | } |
1365 | | |
1366 | 88 | const EVP_HPKE_KDF *EVP_HPKE_CTX_kdf(const EVP_HPKE_CTX *ctx) { |
1367 | 88 | return ctx->kdf; |
1368 | 88 | } |