Coverage Report

Created: 2025-11-17 06:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/boringssl/crypto/evp/scrypt.cc
Line
Count
Source
1
// Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include <openssl/evp.h>
16
17
#include <assert.h>
18
19
#include <openssl/err.h>
20
#include <openssl/mem.h>
21
22
#include "../internal.h"
23
24
25
// This file implements scrypt, described in RFC 7914.
26
//
27
// Note scrypt refers to both "blocks" and a "block size" parameter, r. These
28
// are two different notions of blocks. A Salsa20 block is 64 bytes long,
29
// represented in this implementation by 16 |uint32_t|s. |r| determines the
30
// number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r|
31
// Salsa20 blocks. This implementation refers to them as Salsa20 blocks and
32
// scrypt blocks, respectively.
33
34
// A block_t is a Salsa20 block.
35
typedef struct {
36
  uint32_t words[16];
37
} block_t;
38
39
static_assert(sizeof(block_t) == 64, "block_t has padding");
40
41
// salsa208_word_specification implements the Salsa20/8 core function, also
42
// described in RFC 7914, section 3. It modifies the block at |inout|
43
// in-place.
44
0
static void salsa208_word_specification(block_t *inout) {
45
0
  block_t x;
46
0
  OPENSSL_memcpy(&x, inout, sizeof(x));
47
48
0
  for (int i = 8; i > 0; i -= 2) {
49
0
    x.words[4] ^= CRYPTO_rotl_u32(x.words[0] + x.words[12], 7);
50
0
    x.words[8] ^= CRYPTO_rotl_u32(x.words[4] + x.words[0], 9);
51
0
    x.words[12] ^= CRYPTO_rotl_u32(x.words[8] + x.words[4], 13);
52
0
    x.words[0] ^= CRYPTO_rotl_u32(x.words[12] + x.words[8], 18);
53
0
    x.words[9] ^= CRYPTO_rotl_u32(x.words[5] + x.words[1], 7);
54
0
    x.words[13] ^= CRYPTO_rotl_u32(x.words[9] + x.words[5], 9);
55
0
    x.words[1] ^= CRYPTO_rotl_u32(x.words[13] + x.words[9], 13);
56
0
    x.words[5] ^= CRYPTO_rotl_u32(x.words[1] + x.words[13], 18);
57
0
    x.words[14] ^= CRYPTO_rotl_u32(x.words[10] + x.words[6], 7);
58
0
    x.words[2] ^= CRYPTO_rotl_u32(x.words[14] + x.words[10], 9);
59
0
    x.words[6] ^= CRYPTO_rotl_u32(x.words[2] + x.words[14], 13);
60
0
    x.words[10] ^= CRYPTO_rotl_u32(x.words[6] + x.words[2], 18);
61
0
    x.words[3] ^= CRYPTO_rotl_u32(x.words[15] + x.words[11], 7);
62
0
    x.words[7] ^= CRYPTO_rotl_u32(x.words[3] + x.words[15], 9);
63
0
    x.words[11] ^= CRYPTO_rotl_u32(x.words[7] + x.words[3], 13);
64
0
    x.words[15] ^= CRYPTO_rotl_u32(x.words[11] + x.words[7], 18);
65
0
    x.words[1] ^= CRYPTO_rotl_u32(x.words[0] + x.words[3], 7);
66
0
    x.words[2] ^= CRYPTO_rotl_u32(x.words[1] + x.words[0], 9);
67
0
    x.words[3] ^= CRYPTO_rotl_u32(x.words[2] + x.words[1], 13);
68
0
    x.words[0] ^= CRYPTO_rotl_u32(x.words[3] + x.words[2], 18);
69
0
    x.words[6] ^= CRYPTO_rotl_u32(x.words[5] + x.words[4], 7);
70
0
    x.words[7] ^= CRYPTO_rotl_u32(x.words[6] + x.words[5], 9);
71
0
    x.words[4] ^= CRYPTO_rotl_u32(x.words[7] + x.words[6], 13);
72
0
    x.words[5] ^= CRYPTO_rotl_u32(x.words[4] + x.words[7], 18);
73
0
    x.words[11] ^= CRYPTO_rotl_u32(x.words[10] + x.words[9], 7);
74
0
    x.words[8] ^= CRYPTO_rotl_u32(x.words[11] + x.words[10], 9);
75
0
    x.words[9] ^= CRYPTO_rotl_u32(x.words[8] + x.words[11], 13);
76
0
    x.words[10] ^= CRYPTO_rotl_u32(x.words[9] + x.words[8], 18);
77
0
    x.words[12] ^= CRYPTO_rotl_u32(x.words[15] + x.words[14], 7);
78
0
    x.words[13] ^= CRYPTO_rotl_u32(x.words[12] + x.words[15], 9);
79
0
    x.words[14] ^= CRYPTO_rotl_u32(x.words[13] + x.words[12], 13);
80
0
    x.words[15] ^= CRYPTO_rotl_u32(x.words[14] + x.words[13], 18);
81
0
  }
82
83
0
  for (int i = 0; i < 16; ++i) {
84
0
    inout->words[i] += x.words[i];
85
0
  }
86
0
}
87
88
// xor_block sets |*out| to be |*a| XOR |*b|.
89
0
static void xor_block(block_t *out, const block_t *a, const block_t *b) {
90
0
  for (size_t i = 0; i < 16; i++) {
91
0
    out->words[i] = a->words[i] ^ b->words[i];
92
0
  }
93
0
}
94
95
// scryptBlockMix implements the function described in RFC 7914, section 4. B'
96
// is written to |out|. |out| and |B| may not alias and must be each one scrypt
97
// block (2 * |r| Salsa20 blocks) long.
98
0
static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) {
99
0
  assert(out != B);
100
101
0
  block_t X;
102
0
  OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X));
103
0
  for (uint64_t i = 0; i < r * 2; i++) {
104
0
    xor_block(&X, &X, &B[i]);
105
0
    salsa208_word_specification(&X);
106
107
    // This implements the permutation in step 3.
108
0
    OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X));
109
0
  }
110
0
}
111
112
// scryptROMix implements the function described in RFC 7914, section 5.  |B| is
113
// an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and
114
// |V| are scratch space allocated by the caller. |T| must have space for one
115
// scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt
116
// blocks (2 * |r| * |N| Salsa20 blocks).
117
static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T,
118
0
                        block_t *V) {
119
  // Steps 1 and 2.
120
0
  OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t));
121
0
  for (uint64_t i = 1; i < N; i++) {
122
0
    scryptBlockMix(&V[2 * r * i /* scrypt block i */],
123
0
                   &V[2 * r * (i - 1) /* scrypt block i-1 */], r);
124
0
  }
125
0
  scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r);
126
127
  // Step 3.
128
0
  for (uint64_t i = 0; i < N; i++) {
129
    // Note this assumes |N| <= 2^32 and is a power of 2.
130
0
    uint32_t j = B[2 * r - 1].words[0] & (N - 1);
131
0
    for (size_t k = 0; k < 2 * r; k++) {
132
0
      xor_block(&T[k], &B[k], &V[2 * r * j + k]);
133
0
    }
134
0
    scryptBlockMix(B, T, r);
135
0
  }
136
0
}
137
138
// SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the
139
// bounds on p in section 6:
140
//
141
//   p <= ((2^32-1) * hLen) / MFLen iff
142
//   p <= ((2^32-1) * 32) / (128 * r) iff
143
//   p * r <= (2^30-1)
144
0
#define SCRYPT_PR_MAX ((1 << 30) - 1)
145
146
// SCRYPT_MAX_MEM is the default maximum memory that may be allocated by
147
// |EVP_PBE_scrypt|.
148
0
#define SCRYPT_MAX_MEM (1024 * 1024 * 65)
149
150
int EVP_PBE_scrypt(const char *password, size_t password_len,
151
                   const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r,
152
                   uint64_t p, size_t max_mem, uint8_t *out_key,
153
0
                   size_t key_len) {
154
0
  if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r ||
155
      // |N| must be a power of two.
156
0
      N < 2 || (N & (N - 1)) ||
157
      // We only support |N| <= 2^32 in |scryptROMix|.
158
0
      N > UINT64_C(1) << 32 ||
159
      // Check that |N| < 2^(128×r / 8).
160
0
      (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) {
161
0
    OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS);
162
0
    return 0;
163
0
  }
164
165
  // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N|
166
  // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s.
167
0
  if (max_mem == 0) {
168
0
    max_mem = SCRYPT_MAX_MEM;
169
0
  }
170
171
0
  size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t));
172
0
  if (max_scrypt_blocks < p + 1 || max_scrypt_blocks - p - 1 < N) {
173
0
    OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
174
0
    return 0;
175
0
  }
176
177
  // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which
178
  // is no bigger than uint64_t, so none of these operations may overflow.
179
0
  static_assert(UINT64_MAX >= SIZE_MAX, "size_t exceeds uint64_t");
180
0
  size_t B_blocks = p * 2 * r;
181
0
  size_t B_bytes = B_blocks * sizeof(block_t);
182
0
  size_t T_blocks = 2 * r;
183
0
  size_t V_blocks = N * 2 * r;
184
0
  block_t *B = reinterpret_cast<block_t *>(
185
0
      OPENSSL_calloc(B_blocks + T_blocks + V_blocks, sizeof(block_t)));
186
0
  if (B == nullptr) {
187
0
    return 0;
188
0
  }
189
190
0
  int ret = 0;
191
0
  block_t *T = B + B_blocks;
192
0
  block_t *V = T + T_blocks;
193
194
  // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure
195
  // or |iterations| of 0 (we pass 1 here). This is consistent with
196
  // the documented failure conditions of EVP_PBE_scrypt.
197
0
  if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1,
198
0
                         EVP_sha256(), B_bytes, (uint8_t *)B)) {
199
0
    goto err;
200
0
  }
201
202
0
  for (uint64_t i = 0; i < p; i++) {
203
0
    scryptROMix(B + 2 * r * i, r, N, T, V);
204
0
  }
205
206
0
  if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1,
207
0
                         EVP_sha256(), key_len, out_key)) {
208
0
    goto err;
209
0
  }
210
211
0
  ret = 1;
212
213
0
err:
214
0
  OPENSSL_free(B);
215
0
  return ret;
216
0
}