/src/boringssl/crypto/fipsmodule/dh/dh.cc.inc
Line | Count | Source |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/dh.h> |
16 | | |
17 | | #include <string.h> |
18 | | |
19 | | #include <iterator> |
20 | | |
21 | | #include <openssl/bn.h> |
22 | | #include <openssl/digest.h> |
23 | | #include <openssl/err.h> |
24 | | #include <openssl/mem.h> |
25 | | |
26 | | #include "../../internal.h" |
27 | | #include "../bn/internal.h" |
28 | | #include "../service_indicator/internal.h" |
29 | | #include "internal.h" |
30 | | |
31 | | |
32 | 0 | DH *DH_new(void) { |
33 | 0 | DH *dh = reinterpret_cast<DH *>(OPENSSL_zalloc(sizeof(DH))); |
34 | 0 | if (dh == nullptr) { |
35 | 0 | return nullptr; |
36 | 0 | } |
37 | | |
38 | 0 | CRYPTO_MUTEX_init(&dh->method_mont_p_lock); |
39 | 0 | dh->references = 1; |
40 | 0 | return dh; |
41 | 0 | } |
42 | | |
43 | 0 | void DH_free(DH *dh) { |
44 | 0 | if (dh == nullptr) { |
45 | 0 | return; |
46 | 0 | } |
47 | | |
48 | 0 | if (!CRYPTO_refcount_dec_and_test_zero(&dh->references)) { |
49 | 0 | return; |
50 | 0 | } |
51 | | |
52 | 0 | BN_MONT_CTX_free(dh->method_mont_p); |
53 | 0 | BN_clear_free(dh->p); |
54 | 0 | BN_clear_free(dh->g); |
55 | 0 | BN_clear_free(dh->q); |
56 | 0 | BN_clear_free(dh->pub_key); |
57 | 0 | BN_clear_free(dh->priv_key); |
58 | 0 | CRYPTO_MUTEX_cleanup(&dh->method_mont_p_lock); |
59 | |
|
60 | 0 | OPENSSL_free(dh); |
61 | 0 | } |
62 | | |
63 | 0 | unsigned DH_bits(const DH *dh) { return BN_num_bits(dh->p); } |
64 | | |
65 | 0 | const BIGNUM *DH_get0_pub_key(const DH *dh) { return dh->pub_key; } |
66 | | |
67 | 0 | const BIGNUM *DH_get0_priv_key(const DH *dh) { return dh->priv_key; } |
68 | | |
69 | 0 | const BIGNUM *DH_get0_p(const DH *dh) { return dh->p; } |
70 | | |
71 | 0 | const BIGNUM *DH_get0_q(const DH *dh) { return dh->q; } |
72 | | |
73 | 0 | const BIGNUM *DH_get0_g(const DH *dh) { return dh->g; } |
74 | | |
75 | | void DH_get0_key(const DH *dh, const BIGNUM **out_pub_key, |
76 | 0 | const BIGNUM **out_priv_key) { |
77 | 0 | if (out_pub_key != nullptr) { |
78 | 0 | *out_pub_key = dh->pub_key; |
79 | 0 | } |
80 | 0 | if (out_priv_key != nullptr) { |
81 | 0 | *out_priv_key = dh->priv_key; |
82 | 0 | } |
83 | 0 | } |
84 | | |
85 | 0 | int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) { |
86 | 0 | if (pub_key != nullptr) { |
87 | 0 | BN_free(dh->pub_key); |
88 | 0 | dh->pub_key = pub_key; |
89 | 0 | } |
90 | |
|
91 | 0 | if (priv_key != nullptr) { |
92 | 0 | BN_free(dh->priv_key); |
93 | 0 | dh->priv_key = priv_key; |
94 | 0 | } |
95 | |
|
96 | 0 | return 1; |
97 | 0 | } |
98 | | |
99 | | void DH_get0_pqg(const DH *dh, const BIGNUM **out_p, const BIGNUM **out_q, |
100 | 0 | const BIGNUM **out_g) { |
101 | 0 | if (out_p != nullptr) { |
102 | 0 | *out_p = dh->p; |
103 | 0 | } |
104 | 0 | if (out_q != nullptr) { |
105 | 0 | *out_q = dh->q; |
106 | 0 | } |
107 | 0 | if (out_g != nullptr) { |
108 | 0 | *out_g = dh->g; |
109 | 0 | } |
110 | 0 | } |
111 | | |
112 | 0 | int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) { |
113 | 0 | if ((dh->p == nullptr && p == nullptr) || |
114 | 0 | (dh->g == nullptr && g == nullptr)) { |
115 | 0 | return 0; |
116 | 0 | } |
117 | | |
118 | 0 | if (p != nullptr) { |
119 | 0 | BN_free(dh->p); |
120 | 0 | dh->p = p; |
121 | 0 | } |
122 | |
|
123 | 0 | if (q != nullptr) { |
124 | 0 | BN_free(dh->q); |
125 | 0 | dh->q = q; |
126 | 0 | } |
127 | |
|
128 | 0 | if (g != nullptr) { |
129 | 0 | BN_free(dh->g); |
130 | 0 | dh->g = g; |
131 | 0 | } |
132 | | |
133 | | // Invalidate the cached Montgomery parameters. |
134 | 0 | BN_MONT_CTX_free(dh->method_mont_p); |
135 | 0 | dh->method_mont_p = nullptr; |
136 | 0 | return 1; |
137 | 0 | } |
138 | | |
139 | 0 | int DH_set_length(DH *dh, unsigned priv_length) { |
140 | 0 | dh->priv_length = priv_length; |
141 | 0 | return 1; |
142 | 0 | } |
143 | | |
144 | 0 | int DH_generate_key(DH *dh) { |
145 | 0 | boringssl_ensure_ffdh_self_test(); |
146 | |
|
147 | 0 | if (!dh_check_params_fast(dh)) { |
148 | 0 | return 0; |
149 | 0 | } |
150 | | |
151 | 0 | int ok = 0; |
152 | 0 | bool generate_new_key = false; |
153 | 0 | BIGNUM *pub_key = nullptr, *priv_key = nullptr; |
154 | |
|
155 | 0 | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
156 | 0 | if (ctx == nullptr) { |
157 | 0 | goto err; |
158 | 0 | } |
159 | | |
160 | 0 | if (dh->priv_key == nullptr) { |
161 | 0 | priv_key = BN_new(); |
162 | 0 | if (priv_key == nullptr) { |
163 | 0 | goto err; |
164 | 0 | } |
165 | 0 | generate_new_key = true; |
166 | 0 | } else { |
167 | 0 | priv_key = dh->priv_key; |
168 | 0 | } |
169 | | |
170 | 0 | if (dh->pub_key == nullptr) { |
171 | 0 | pub_key = BN_new(); |
172 | 0 | if (pub_key == nullptr) { |
173 | 0 | goto err; |
174 | 0 | } |
175 | 0 | } else { |
176 | 0 | pub_key = dh->pub_key; |
177 | 0 | } |
178 | | |
179 | 0 | if (!BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, |
180 | 0 | dh->p, ctx.get())) { |
181 | 0 | goto err; |
182 | 0 | } |
183 | | |
184 | 0 | if (generate_new_key) { |
185 | 0 | if (dh->q) { |
186 | | // Section 5.6.1.1.4 of SP 800-56A Rev3 generates a private key uniformly |
187 | | // from [1, min(2^N-1, q-1)]. |
188 | | // |
189 | | // Although SP 800-56A Rev3 now permits a private key length N, |
190 | | // |dh->priv_length| historically was ignored when q is available. We |
191 | | // continue to ignore it and interpret such a configuration as N = len(q). |
192 | 0 | if (!BN_rand_range_ex(priv_key, 1, dh->q)) { |
193 | 0 | goto err; |
194 | 0 | } |
195 | 0 | } else { |
196 | | // If q is unspecified, we expect p to be a safe prime, with g generating |
197 | | // the (p-1)/2 subgroup. So, we use q = (p-1)/2. (If g generates a smaller |
198 | | // prime-order subgroup, q will still divide (p-1)/2.) |
199 | | // |
200 | | // We set N from |dh->priv_length|. Section 5.6.1.1.4 of SP 800-56A Rev3 |
201 | | // says to reject N > len(q), or N > num_bits(p) - 1. However, this logic |
202 | | // originally aligned with PKCS#3, which allows num_bits(p). Instead, we |
203 | | // clamp |dh->priv_length| before invoking the algorithm. |
204 | | |
205 | | // Compute M = min(2^N, q). |
206 | 0 | bssl::UniquePtr<BIGNUM> priv_key_limit(BN_new()); |
207 | 0 | if (priv_key_limit == nullptr) { |
208 | 0 | goto err; |
209 | 0 | } |
210 | 0 | if (dh->priv_length == 0 || dh->priv_length >= BN_num_bits(dh->p) - 1) { |
211 | | // M = q = (p - 1) / 2. |
212 | 0 | if (!BN_rshift1(priv_key_limit.get(), dh->p)) { |
213 | 0 | goto err; |
214 | 0 | } |
215 | 0 | } else { |
216 | | // M = 2^N. |
217 | 0 | if (!BN_set_bit(priv_key_limit.get(), dh->priv_length)) { |
218 | 0 | goto err; |
219 | 0 | } |
220 | 0 | } |
221 | | |
222 | | // Choose a private key uniformly from [1, M-1]. |
223 | 0 | if (!BN_rand_range_ex(priv_key, 1, priv_key_limit.get())) { |
224 | 0 | goto err; |
225 | 0 | } |
226 | 0 | } |
227 | 0 | } |
228 | | |
229 | 0 | if (!BN_mod_exp_mont_consttime(pub_key, dh->g, priv_key, dh->p, ctx.get(), |
230 | 0 | dh->method_mont_p)) { |
231 | 0 | goto err; |
232 | 0 | } |
233 | | |
234 | 0 | dh->pub_key = pub_key; |
235 | 0 | dh->priv_key = priv_key; |
236 | 0 | ok = 1; |
237 | |
|
238 | 0 | err: |
239 | 0 | if (ok != 1) { |
240 | 0 | OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); |
241 | 0 | } |
242 | |
|
243 | 0 | if (dh->pub_key == nullptr) { |
244 | 0 | BN_free(pub_key); |
245 | 0 | } |
246 | 0 | if (dh->priv_key == nullptr) { |
247 | 0 | BN_free(priv_key); |
248 | 0 | } |
249 | 0 | return ok; |
250 | 0 | } |
251 | | |
252 | | static int dh_compute_key(DH *dh, BIGNUM *out_shared_key, |
253 | 0 | const BIGNUM *peers_key, BN_CTX *ctx) { |
254 | 0 | if (!dh_check_params_fast(dh)) { |
255 | 0 | return 0; |
256 | 0 | } |
257 | | |
258 | 0 | if (dh->priv_key == nullptr) { |
259 | 0 | OPENSSL_PUT_ERROR(DH, DH_R_NO_PRIVATE_VALUE); |
260 | 0 | return 0; |
261 | 0 | } |
262 | | |
263 | 0 | int check_result; |
264 | 0 | if (!DH_check_pub_key(dh, peers_key, &check_result) || check_result) { |
265 | 0 | OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); |
266 | 0 | return 0; |
267 | 0 | } |
268 | | |
269 | 0 | bssl::BN_CTXScope scope(ctx); |
270 | 0 | BIGNUM *p_minus_1 = BN_CTX_get(ctx); |
271 | 0 | if (!p_minus_1 || |
272 | 0 | !BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, |
273 | 0 | dh->p, ctx)) { |
274 | 0 | return 0; |
275 | 0 | } |
276 | | |
277 | 0 | if (!BN_mod_exp_mont_consttime(out_shared_key, peers_key, dh->priv_key, dh->p, |
278 | 0 | ctx, dh->method_mont_p) || |
279 | 0 | !BN_copy(p_minus_1, dh->p) || !BN_sub_word(p_minus_1, 1)) { |
280 | 0 | OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); |
281 | 0 | return 0; |
282 | 0 | } |
283 | | |
284 | | // This performs the check required by SP 800-56Ar3 section 5.7.1.1 step two. |
285 | 0 | if (BN_cmp_word(out_shared_key, 1) <= 0 || |
286 | 0 | BN_cmp(out_shared_key, p_minus_1) == 0) { |
287 | 0 | OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); |
288 | 0 | return 0; |
289 | 0 | } |
290 | | |
291 | 0 | return 1; |
292 | 0 | } |
293 | | |
294 | | int dh_compute_key_padded_no_self_test(unsigned char *out, |
295 | 0 | const BIGNUM *peers_key, DH *dh) { |
296 | 0 | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
297 | 0 | if (ctx == nullptr) { |
298 | 0 | return -1; |
299 | 0 | } |
300 | 0 | bssl::BN_CTXScope scope(ctx.get()); |
301 | 0 | int dh_size = DH_size(dh); |
302 | 0 | BIGNUM *shared_key = BN_CTX_get(ctx.get()); |
303 | 0 | if (shared_key == nullptr || |
304 | 0 | !dh_compute_key(dh, shared_key, peers_key, ctx.get()) || |
305 | 0 | !BN_bn2bin_padded(out, dh_size, shared_key)) { |
306 | 0 | return -1; |
307 | 0 | } |
308 | 0 | return dh_size; |
309 | 0 | } |
310 | | |
311 | 0 | int DH_compute_key_padded(unsigned char *out, const BIGNUM *peers_key, DH *dh) { |
312 | 0 | boringssl_ensure_ffdh_self_test(); |
313 | |
|
314 | 0 | return dh_compute_key_padded_no_self_test(out, peers_key, dh); |
315 | 0 | } |
316 | | |
317 | 0 | int DH_compute_key(unsigned char *out, const BIGNUM *peers_key, DH *dh) { |
318 | 0 | boringssl_ensure_ffdh_self_test(); |
319 | |
|
320 | 0 | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
321 | 0 | if (ctx == nullptr) { |
322 | 0 | return -1; |
323 | 0 | } |
324 | 0 | bssl::BN_CTXScope scope(ctx.get()); |
325 | 0 | BIGNUM *shared_key = BN_CTX_get(ctx.get()); |
326 | 0 | if (shared_key == nullptr || |
327 | 0 | !dh_compute_key(dh, shared_key, peers_key, ctx.get())) { |
328 | 0 | return -1; |
329 | 0 | } |
330 | | // A |BIGNUM|'s byte count fits in |int|. |
331 | 0 | return static_cast<int>(BN_bn2bin(shared_key, out)); |
332 | 0 | } |
333 | | |
334 | | int DH_compute_key_hashed(DH *dh, uint8_t *out, size_t *out_len, |
335 | | size_t max_out_len, const BIGNUM *peers_key, |
336 | 0 | const EVP_MD *digest) { |
337 | 0 | *out_len = SIZE_MAX; |
338 | |
|
339 | 0 | const size_t digest_len = EVP_MD_size(digest); |
340 | 0 | if (digest_len > max_out_len) { |
341 | 0 | return 0; |
342 | 0 | } |
343 | | |
344 | 0 | FIPS_service_indicator_lock_state(); |
345 | |
|
346 | 0 | int ret = 0; |
347 | 0 | const size_t dh_len = DH_size(dh); |
348 | 0 | uint8_t *shared_bytes = reinterpret_cast<uint8_t *>(OPENSSL_malloc(dh_len)); |
349 | 0 | unsigned out_len_unsigned; |
350 | 0 | if (!shared_bytes || |
351 | | // SP 800-56A is ambiguous about whether the output should be padded prior |
352 | | // to revision three. But revision three, section C.1, awkwardly specifies |
353 | | // padding to the length of p. |
354 | | // |
355 | | // Also, padded output avoids side-channels, so is always strongly |
356 | | // advisable. |
357 | 0 | DH_compute_key_padded(shared_bytes, peers_key, dh) != (int)dh_len || |
358 | 0 | !EVP_Digest(shared_bytes, dh_len, out, &out_len_unsigned, digest, |
359 | 0 | nullptr) || |
360 | 0 | out_len_unsigned != digest_len) { |
361 | 0 | goto err; |
362 | 0 | } |
363 | | |
364 | 0 | *out_len = digest_len; |
365 | 0 | ret = 1; |
366 | |
|
367 | 0 | err: |
368 | 0 | FIPS_service_indicator_unlock_state(); |
369 | 0 | OPENSSL_free(shared_bytes); |
370 | 0 | return ret; |
371 | 0 | } |
372 | | |
373 | 0 | int DH_size(const DH *dh) { return BN_num_bytes(dh->p); } |
374 | | |
375 | 0 | unsigned DH_num_bits(const DH *dh) { return BN_num_bits(dh->p); } |
376 | | |
377 | 0 | int DH_up_ref(DH *dh) { |
378 | 0 | CRYPTO_refcount_inc(&dh->references); |
379 | 0 | return 1; |
380 | 0 | } |
381 | | |
382 | 0 | DH *DH_get_rfc7919_2048(void) { |
383 | | // This is the prime from https://tools.ietf.org/html/rfc7919#appendix-A.1, |
384 | | // which is specifically approved for FIPS in appendix D of SP 800-56Ar3. |
385 | 0 | static const BN_ULONG kFFDHE2048Data[] = { |
386 | 0 | TOBN(0xffffffff, 0xffffffff), TOBN(0x886b4238, 0x61285c97), |
387 | 0 | TOBN(0xc6f34a26, 0xc1b2effa), TOBN(0xc58ef183, 0x7d1683b2), |
388 | 0 | TOBN(0x3bb5fcbc, 0x2ec22005), TOBN(0xc3fe3b1b, 0x4c6fad73), |
389 | 0 | TOBN(0x8e4f1232, 0xeef28183), TOBN(0x9172fe9c, 0xe98583ff), |
390 | 0 | TOBN(0xc03404cd, 0x28342f61), TOBN(0x9e02fce1, 0xcdf7e2ec), |
391 | 0 | TOBN(0x0b07a7c8, 0xee0a6d70), TOBN(0xae56ede7, 0x6372bb19), |
392 | 0 | TOBN(0x1d4f42a3, 0xde394df4), TOBN(0xb96adab7, 0x60d7f468), |
393 | 0 | TOBN(0xd108a94b, 0xb2c8e3fb), TOBN(0xbc0ab182, 0xb324fb61), |
394 | 0 | TOBN(0x30acca4f, 0x483a797a), TOBN(0x1df158a1, 0x36ade735), |
395 | 0 | TOBN(0xe2a689da, 0xf3efe872), TOBN(0x984f0c70, 0xe0e68b77), |
396 | 0 | TOBN(0xb557135e, 0x7f57c935), TOBN(0x85636555, 0x3ded1af3), |
397 | 0 | TOBN(0x2433f51f, 0x5f066ed0), TOBN(0xd3df1ed5, 0xd5fd6561), |
398 | 0 | TOBN(0xf681b202, 0xaec4617a), TOBN(0x7d2fe363, 0x630c75d8), |
399 | 0 | TOBN(0xcc939dce, 0x249b3ef9), TOBN(0xa9e13641, 0x146433fb), |
400 | 0 | TOBN(0xd8b9c583, 0xce2d3695), TOBN(0xafdc5620, 0x273d3cf1), |
401 | 0 | TOBN(0xadf85458, 0xa2bb4a9a), TOBN(0xffffffff, 0xffffffff), |
402 | 0 | }; |
403 | |
|
404 | 0 | bssl::UniquePtr<BIGNUM> ffdhe2048_p(BN_new()); |
405 | 0 | bssl::UniquePtr<BIGNUM> ffdhe2048_q(BN_new()); |
406 | 0 | bssl::UniquePtr<BIGNUM> ffdhe2048_g(BN_new()); |
407 | 0 | bssl::UniquePtr<DH> dh(DH_new()); |
408 | 0 | if (!ffdhe2048_p || !ffdhe2048_q || !ffdhe2048_g || !dh) { |
409 | 0 | return nullptr; |
410 | 0 | } |
411 | | |
412 | 0 | bn_set_static_words(ffdhe2048_p.get(), kFFDHE2048Data, |
413 | 0 | std::size(kFFDHE2048Data)); |
414 | |
|
415 | 0 | if (!BN_rshift1(ffdhe2048_q.get(), ffdhe2048_p.get()) || |
416 | 0 | !BN_set_word(ffdhe2048_g.get(), 2) || |
417 | 0 | !DH_set0_pqg(dh.get(), ffdhe2048_p.get(), ffdhe2048_q.get(), |
418 | 0 | ffdhe2048_g.get())) { |
419 | 0 | return nullptr; |
420 | 0 | } |
421 | | // |DH_set0_pqg| takes ownership on success. |
422 | 0 | ffdhe2048_p.release(); |
423 | 0 | ffdhe2048_q.release(); |
424 | 0 | ffdhe2048_g.release(); |
425 | |
|
426 | 0 | return dh.release(); |
427 | 0 | } |