/src/boringssl/crypto/fipsmodule/entropy/sha512.cc.inc
Line | Count | Source |
1 | | // Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <stdint.h> |
16 | | #include <string.h> |
17 | | |
18 | | |
19 | | // This is a copy of the SHA-384 code for the purpose of isolating the jitter |
20 | | // entropy source certification from any changes to the normal implementation. |
21 | | |
22 | | namespace bssl::entropy { |
23 | | namespace { |
24 | | |
25 | | constexpr size_t kSHA384Block = 128; |
26 | | constexpr size_t kSHA384DigestLength = (384 / 8); |
27 | | |
28 | | struct SHA512_CTX { |
29 | | uint64_t h[8]; |
30 | | uint64_t Nl, Nh; |
31 | | uint8_t p[kSHA384Block]; |
32 | | unsigned num, md_len; |
33 | | }; |
34 | | |
35 | 0 | uint64_t CRYPTO_bswap8(uint64_t x) { return __builtin_bswap64(x); } |
36 | | |
37 | 0 | uint64_t CRYPTO_load_u64_be(const void *ptr) { |
38 | 0 | uint64_t ret; |
39 | 0 | memcpy(&ret, ptr, sizeof(ret)); |
40 | 0 | return CRYPTO_bswap8(ret); |
41 | 0 | } |
42 | | |
43 | 0 | void CRYPTO_store_u64_be(void *out, uint64_t v) { |
44 | 0 | v = CRYPTO_bswap8(v); |
45 | 0 | memcpy(out, &v, sizeof(v)); |
46 | 0 | } |
47 | | |
48 | 0 | uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) { |
49 | 0 | return (value >> shift) | (value << ((-shift) & 63)); |
50 | 0 | } |
51 | | |
52 | | void sha512_update(SHA512_CTX *c, const void *in_data, size_t len); |
53 | | void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha); |
54 | | |
55 | 0 | void SHA384_Init(SHA512_CTX *sha) { |
56 | 0 | sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); |
57 | 0 | sha->h[1] = UINT64_C(0x629a292a367cd507); |
58 | 0 | sha->h[2] = UINT64_C(0x9159015a3070dd17); |
59 | 0 | sha->h[3] = UINT64_C(0x152fecd8f70e5939); |
60 | 0 | sha->h[4] = UINT64_C(0x67332667ffc00b31); |
61 | 0 | sha->h[5] = UINT64_C(0x8eb44a8768581511); |
62 | 0 | sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7); |
63 | 0 | sha->h[7] = UINT64_C(0x47b5481dbefa4fa4); |
64 | |
|
65 | 0 | sha->Nl = 0; |
66 | 0 | sha->Nh = 0; |
67 | 0 | sha->num = 0; |
68 | 0 | sha->md_len = kSHA384DigestLength; |
69 | 0 | return; |
70 | 0 | } |
71 | | |
72 | 0 | void SHA384_Final(uint8_t out[kSHA384DigestLength], SHA512_CTX *sha) { |
73 | | // This function must be paired with |SHA384_Init|, which sets |
74 | | // |sha->md_len| to |kSHA384DigestLength|. |
75 | 0 | sha512_final_impl(out, kSHA384DigestLength, sha); |
76 | 0 | return; |
77 | 0 | } |
78 | | |
79 | 0 | void SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) { |
80 | 0 | return sha512_update(sha, data, len); |
81 | 0 | } |
82 | | |
83 | | void sha512_block_data_order(uint64_t state[8], const uint8_t *in, |
84 | | size_t num_blocks); |
85 | | |
86 | 0 | void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) { |
87 | 0 | uint8_t *p = sha->p; |
88 | 0 | size_t n = sha->num; |
89 | |
|
90 | 0 | p[n] = 0x80; // There always is a room for one |
91 | 0 | n++; |
92 | 0 | if (n > (sizeof(sha->p) - 16)) { |
93 | 0 | memset(p + n, 0, sizeof(sha->p) - n); |
94 | 0 | n = 0; |
95 | 0 | sha512_block_data_order(sha->h, p, 1); |
96 | 0 | } |
97 | |
|
98 | 0 | memset(p + n, 0, sizeof(sha->p) - 16 - n); |
99 | 0 | CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh); |
100 | 0 | CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl); |
101 | |
|
102 | 0 | sha512_block_data_order(sha->h, p, 1); |
103 | |
|
104 | 0 | const size_t out_words = md_len / 8; |
105 | 0 | for (size_t i = 0; i < out_words; i++) { |
106 | 0 | CRYPTO_store_u64_be(out, sha->h[i]); |
107 | 0 | out += 8; |
108 | 0 | } |
109 | 0 | } |
110 | | |
111 | | const uint64_t K512[80] = { |
112 | | UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), |
113 | | UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), |
114 | | UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), |
115 | | UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), |
116 | | UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), |
117 | | UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), |
118 | | UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), |
119 | | UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), |
120 | | UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), |
121 | | UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), |
122 | | UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), |
123 | | UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), |
124 | | UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), |
125 | | UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), |
126 | | UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), |
127 | | UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), |
128 | | UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), |
129 | | UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), |
130 | | UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), |
131 | | UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), |
132 | | UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), |
133 | | UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), |
134 | | UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), |
135 | | UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), |
136 | | UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), |
137 | | UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), |
138 | | UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), |
139 | | UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), |
140 | | UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), |
141 | | UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), |
142 | | UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), |
143 | | UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), |
144 | | UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), |
145 | | UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), |
146 | | UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), |
147 | | UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), |
148 | | UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), |
149 | | UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), |
150 | | UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), |
151 | | UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), |
152 | | }; |
153 | | |
154 | | #define Sigma0(x) \ |
155 | 0 | (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \ |
156 | 0 | CRYPTO_rotr_u64((x), 39)) |
157 | | #define Sigma1(x) \ |
158 | 0 | (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \ |
159 | 0 | CRYPTO_rotr_u64((x), 41)) |
160 | | #define sigma0(x) \ |
161 | 0 | (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7)) |
162 | | #define sigma1(x) \ |
163 | 0 | (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6)) |
164 | | |
165 | 0 | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
166 | 0 | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
167 | | |
168 | | #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ |
169 | 0 | do { \ |
170 | 0 | T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \ |
171 | 0 | h = Sigma0(a) + Maj(a, b, c); \ |
172 | 0 | d += T1; \ |
173 | 0 | h += T1; \ |
174 | 0 | } while (0) |
175 | | |
176 | | #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \ |
177 | 0 | do { \ |
178 | 0 | s0 = X[(j + 1) & 0x0f]; \ |
179 | 0 | s0 = sigma0(s0); \ |
180 | 0 | s1 = X[(j + 14) & 0x0f]; \ |
181 | 0 | s1 = sigma1(s1); \ |
182 | 0 | T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \ |
183 | 0 | ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \ |
184 | 0 | } while (0) |
185 | | |
186 | 0 | void sha512_block_data_order(uint64_t state[8], const uint8_t *in, size_t num) { |
187 | 0 | uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; |
188 | 0 | uint64_t X[16]; |
189 | 0 | int i; |
190 | |
|
191 | 0 | while (num--) { |
192 | 0 | a = state[0]; |
193 | 0 | b = state[1]; |
194 | 0 | c = state[2]; |
195 | 0 | d = state[3]; |
196 | 0 | e = state[4]; |
197 | 0 | f = state[5]; |
198 | 0 | g = state[6]; |
199 | 0 | h = state[7]; |
200 | |
|
201 | 0 | T1 = X[0] = CRYPTO_load_u64_be(in); |
202 | 0 | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
203 | 0 | T1 = X[1] = CRYPTO_load_u64_be(in + 8); |
204 | 0 | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
205 | 0 | T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8); |
206 | 0 | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
207 | 0 | T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8); |
208 | 0 | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
209 | 0 | T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8); |
210 | 0 | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
211 | 0 | T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8); |
212 | 0 | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
213 | 0 | T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8); |
214 | 0 | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
215 | 0 | T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8); |
216 | 0 | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
217 | 0 | T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8); |
218 | 0 | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
219 | 0 | T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8); |
220 | 0 | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
221 | 0 | T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8); |
222 | 0 | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
223 | 0 | T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8); |
224 | 0 | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
225 | 0 | T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8); |
226 | 0 | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
227 | 0 | T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8); |
228 | 0 | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
229 | 0 | T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8); |
230 | 0 | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
231 | 0 | T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8); |
232 | 0 | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
233 | |
|
234 | 0 | for (i = 16; i < 80; i += 16) { |
235 | 0 | ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); |
236 | 0 | ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); |
237 | 0 | ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); |
238 | 0 | ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); |
239 | 0 | ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); |
240 | 0 | ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); |
241 | 0 | ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); |
242 | 0 | ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); |
243 | 0 | ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); |
244 | 0 | ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); |
245 | 0 | ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); |
246 | 0 | ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); |
247 | 0 | ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); |
248 | 0 | ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); |
249 | 0 | ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); |
250 | 0 | ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); |
251 | 0 | } |
252 | |
|
253 | 0 | state[0] += a; |
254 | 0 | state[1] += b; |
255 | 0 | state[2] += c; |
256 | 0 | state[3] += d; |
257 | 0 | state[4] += e; |
258 | 0 | state[5] += f; |
259 | 0 | state[6] += g; |
260 | 0 | state[7] += h; |
261 | |
|
262 | 0 | in += 16 * 8; |
263 | 0 | } |
264 | 0 | } |
265 | | |
266 | | #undef Sigma0 |
267 | | #undef Sigma1 |
268 | | #undef sigma0 |
269 | | #undef sigma1 |
270 | | #undef Ch |
271 | | #undef Maj |
272 | | #undef ROUND_00_15 |
273 | | #undef ROUND_16_80 |
274 | | |
275 | 0 | void sha512_update(SHA512_CTX *c, const void *in_data, size_t len) { |
276 | 0 | uint64_t l; |
277 | 0 | uint8_t *p = c->p; |
278 | 0 | const uint8_t *data = reinterpret_cast<const uint8_t *>(in_data); |
279 | |
|
280 | 0 | if (len == 0) { |
281 | 0 | return; |
282 | 0 | } |
283 | | |
284 | 0 | l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff); |
285 | 0 | if (l < c->Nl) { |
286 | 0 | c->Nh++; |
287 | 0 | } |
288 | 0 | if (sizeof(len) >= 8) { |
289 | 0 | c->Nh += (((uint64_t)len) >> 61); |
290 | 0 | } |
291 | 0 | c->Nl = l; |
292 | |
|
293 | 0 | if (c->num != 0) { |
294 | 0 | size_t n = sizeof(c->p) - c->num; |
295 | |
|
296 | 0 | if (len < n) { |
297 | 0 | memcpy(p + c->num, data, len); |
298 | 0 | c->num += (unsigned int)len; |
299 | 0 | return; |
300 | 0 | } else { |
301 | 0 | memcpy(p + c->num, data, n), c->num = 0; |
302 | 0 | len -= n; |
303 | 0 | data += n; |
304 | 0 | sha512_block_data_order(c->h, p, 1); |
305 | 0 | } |
306 | 0 | } |
307 | | |
308 | 0 | if (len >= sizeof(c->p)) { |
309 | 0 | sha512_block_data_order(c->h, data, len / sizeof(c->p)); |
310 | 0 | data += len; |
311 | 0 | len %= sizeof(c->p); |
312 | 0 | data -= len; |
313 | 0 | } |
314 | |
|
315 | 0 | if (len != 0) { |
316 | 0 | memcpy(p, data, len); |
317 | 0 | c->num = (int)len; |
318 | 0 | } |
319 | |
|
320 | 0 | return; |
321 | 0 | } |
322 | | |
323 | | } // namespace |
324 | | } // namespace bssl::entropy |