Coverage Report

Created: 2025-12-07 06:13

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/boringssl/crypto/cipher/e_tls.cc
Line
Count
Source
1
// Copyright 2014 The BoringSSL Authors
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include <assert.h>
16
#include <limits.h>
17
#include <string.h>
18
19
#include <openssl/aead.h>
20
#include <openssl/cipher.h>
21
#include <openssl/err.h>
22
#include <openssl/hmac.h>
23
#include <openssl/md5.h>
24
#include <openssl/mem.h>
25
#include <openssl/sha.h>
26
27
#include "../fipsmodule/cipher/internal.h"
28
#include "../internal.h"
29
#include "internal.h"
30
31
32
typedef struct {
33
  EVP_CIPHER_CTX cipher_ctx;
34
  HMAC_CTX *hmac_ctx;
35
  // mac_key is the portion of the key used for the MAC. It is retained
36
  // separately for the constant-time CBC code.
37
  uint8_t mac_key[EVP_MAX_MD_SIZE];
38
  uint8_t mac_key_len;
39
  // implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
40
  // IV.
41
  char implicit_iv;
42
} AEAD_TLS_CTX;
43
44
static_assert(EVP_MAX_MD_SIZE < 256, "mac_key_len does not fit in uint8_t");
45
46
static_assert(sizeof(((EVP_AEAD_CTX *)nullptr)->state) >= sizeof(AEAD_TLS_CTX),
47
              "AEAD state is too small");
48
static_assert(alignof(union evp_aead_ctx_st_state) >= alignof(AEAD_TLS_CTX),
49
              "AEAD state has insufficient alignment");
50
51
60.6k
static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
52
60.6k
  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
53
60.6k
  EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
54
60.6k
  HMAC_CTX_free(tls_ctx->hmac_ctx);
55
60.6k
}
56
57
static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
58
                         size_t tag_len, enum evp_aead_direction_t dir,
59
                         const EVP_CIPHER *cipher, const EVP_MD *md,
60
60.6k
                         char implicit_iv) {
61
60.6k
  if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && tag_len != EVP_MD_size(md)) {
62
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
63
0
    return 0;
64
0
  }
65
66
60.6k
  if (key_len != EVP_AEAD_key_length(ctx->aead)) {
67
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
68
0
    return 0;
69
0
  }
70
71
60.6k
  size_t mac_key_len = EVP_MD_size(md);
72
60.6k
  size_t enc_key_len = EVP_CIPHER_key_length(cipher);
73
60.6k
  assert(mac_key_len + enc_key_len +
74
60.6k
             (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) ==
75
60.6k
         key_len);
76
77
60.6k
  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
78
60.6k
  tls_ctx->hmac_ctx = HMAC_CTX_new();
79
60.6k
  if (!tls_ctx->hmac_ctx) {
80
0
    return 0;
81
0
  }
82
60.6k
  EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
83
60.6k
  assert(mac_key_len <= EVP_MAX_MD_SIZE);
84
60.6k
  OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len);
85
60.6k
  tls_ctx->mac_key_len = (uint8_t)mac_key_len;
86
60.6k
  tls_ctx->implicit_iv = implicit_iv;
87
88
60.6k
  if (!EVP_CipherInit_ex(
89
60.6k
          &tls_ctx->cipher_ctx, cipher, nullptr, &key[mac_key_len],
90
60.6k
          implicit_iv ? &key[mac_key_len + enc_key_len] : nullptr,
91
60.6k
          dir == evp_aead_seal) ||
92
60.6k
      !HMAC_Init_ex(tls_ctx->hmac_ctx, key, mac_key_len, md, nullptr)) {
93
0
    aead_tls_cleanup(ctx);
94
0
    return 0;
95
0
  }
96
60.6k
  EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
97
98
60.6k
  return 1;
99
60.6k
}
100
101
static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len,
102
6.28k
                               const size_t extra_in_len) {
103
6.28k
  assert(extra_in_len == 0);
104
6.28k
  const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
105
106
6.28k
  const size_t hmac_len = HMAC_size(tls_ctx->hmac_ctx);
107
6.28k
  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) {
108
    // The NULL cipher.
109
0
    return hmac_len;
110
0
  }
111
112
6.28k
  const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
113
  // An overflow of |in_len + hmac_len| doesn't affect the result mod
114
  // |block_size|, provided that |block_size| is a smaller power of two.
115
6.28k
  assert(block_size != 0 && (block_size & (block_size - 1)) == 0);
116
6.28k
  const size_t pad_len = block_size - (in_len + hmac_len) % block_size;
117
6.28k
  return hmac_len + pad_len;
118
6.28k
}
119
120
static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
121
                                 uint8_t *out_tag, size_t *out_tag_len,
122
                                 const size_t max_out_tag_len,
123
                                 const uint8_t *nonce, const size_t nonce_len,
124
                                 const uint8_t *in, const size_t in_len,
125
                                 const uint8_t *extra_in,
126
                                 const size_t extra_in_len, const uint8_t *ad,
127
1.04k
                                 const size_t ad_len) {
128
1.04k
  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
129
130
1.04k
  if (!tls_ctx->cipher_ctx.encrypt) {
131
    // Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
132
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
133
0
    return 0;
134
0
  }
135
136
1.04k
  if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) {
137
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
138
0
    return 0;
139
0
  }
140
141
1.04k
  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
142
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
143
0
    return 0;
144
0
  }
145
146
1.04k
  if (ad_len != 13 - 2 /* length bytes */) {
147
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
148
0
    return 0;
149
0
  }
150
151
  // To allow for CBC mode which changes cipher length, |ad| doesn't include the
152
  // length for legacy ciphers.
153
1.04k
  uint8_t ad_extra[2];
154
1.04k
  ad_extra[0] = (uint8_t)(in_len >> 8);
155
1.04k
  ad_extra[1] = (uint8_t)(in_len & 0xff);
156
157
  // Compute the MAC. This must be first in case the operation is being done
158
  // in-place.
159
1.04k
  uint8_t mac[EVP_MAX_MD_SIZE];
160
1.04k
  unsigned mac_len;
161
1.04k
  if (!HMAC_Init_ex(tls_ctx->hmac_ctx, nullptr, 0, nullptr, nullptr) ||
162
1.04k
      !HMAC_Update(tls_ctx->hmac_ctx, ad, ad_len) ||
163
1.04k
      !HMAC_Update(tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) ||
164
1.04k
      !HMAC_Update(tls_ctx->hmac_ctx, in, in_len) ||
165
1.04k
      !HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len)) {
166
0
    return 0;
167
0
  }
168
169
  // Configure the explicit IV.
170
1.04k
  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
171
1.04k
      !tls_ctx->implicit_iv &&
172
756
      !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, nullptr, nullptr, nullptr,
173
756
                          nonce)) {
174
0
    return 0;
175
0
  }
176
177
  // Encrypt the input.
178
1.04k
  size_t len;
179
1.04k
  if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out, &len, in_len, in,
180
1.04k
                            in_len)) {
181
0
    return 0;
182
0
  }
183
184
1.04k
  unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
185
186
  // Feed the MAC into the cipher in two steps. First complete the final partial
187
  // block from encrypting the input and split the result between |out| and
188
  // |out_tag|. Then feed the rest.
189
190
1.04k
  const size_t early_mac_len =
191
1.04k
      (block_size - (in_len % block_size)) % block_size;
192
1.04k
  if (early_mac_len != 0) {
193
375
    assert(len + block_size - early_mac_len == in_len);
194
375
    uint8_t buf[EVP_MAX_BLOCK_LENGTH];
195
375
    size_t buf_len;
196
375
    if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, buf, &buf_len, sizeof(buf),
197
375
                              mac, early_mac_len)) {
198
0
      return 0;
199
0
    }
200
375
    assert(buf_len == block_size);
201
375
    OPENSSL_memcpy(out + len, buf, block_size - early_mac_len);
202
375
    OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len);
203
375
  }
204
1.04k
  size_t tag_len = early_mac_len;
205
206
1.04k
  if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
207
1.04k
                            max_out_tag_len - tag_len, mac + tag_len,
208
1.04k
                            mac_len - tag_len)) {
209
0
    return 0;
210
0
  }
211
1.04k
  tag_len += len;
212
213
1.04k
  if (block_size > 1) {
214
1.04k
    assert(block_size <= 256);
215
1.04k
    assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
216
217
    // Compute padding and feed that into the cipher.
218
1.04k
    uint8_t padding[256];
219
1.04k
    unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
220
1.04k
    OPENSSL_memset(padding, padding_len - 1, padding_len);
221
1.04k
    if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
222
1.04k
                              max_out_tag_len - tag_len, padding,
223
1.04k
                              padding_len)) {
224
0
      return 0;
225
0
    }
226
1.04k
    tag_len += len;
227
1.04k
  }
228
229
1.04k
  if (!EVP_EncryptFinal_ex2(&tls_ctx->cipher_ctx, out_tag + tag_len, &len,
230
1.04k
                            max_out_tag_len - tag_len)) {
231
0
    return 0;
232
0
  }
233
1.04k
  assert(len == 0);  // Padding is explicit.
234
1.04k
  assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len));
235
236
1.04k
  *out_tag_len = tag_len;
237
1.04k
  return 1;
238
1.04k
}
239
240
static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
241
                         size_t max_out_len, const uint8_t *nonce,
242
                         size_t nonce_len, const uint8_t *in, size_t in_len,
243
4.38k
                         const uint8_t *ad, size_t ad_len) {
244
4.38k
  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
245
246
4.38k
  if (tls_ctx->cipher_ctx.encrypt) {
247
    // Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
248
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
249
0
    return 0;
250
0
  }
251
252
4.38k
  if (in_len < HMAC_size(tls_ctx->hmac_ctx)) {
253
14
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
254
14
    return 0;
255
14
  }
256
257
4.36k
  if (max_out_len < in_len) {
258
    // This requires that the caller provide space for the MAC, even though it
259
    // will always be removed on return.
260
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
261
0
    return 0;
262
0
  }
263
264
4.36k
  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
265
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
266
0
    return 0;
267
0
  }
268
269
4.36k
  if (ad_len != 13 - 2 /* length bytes */) {
270
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
271
0
    return 0;
272
0
  }
273
274
  // Configure the explicit IV.
275
4.36k
  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
276
4.36k
      !tls_ctx->implicit_iv &&
277
1.04k
      !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, nullptr, nullptr, nullptr,
278
1.04k
                          nonce)) {
279
0
    return 0;
280
0
  }
281
282
  // Decrypt to get the plaintext + MAC + padding.
283
4.36k
  size_t total = 0;
284
4.36k
  size_t len;
285
4.36k
  if (!EVP_DecryptUpdate_ex(&tls_ctx->cipher_ctx, out, &len, max_out_len, in,
286
4.36k
                            in_len)) {
287
0
    return 0;
288
0
  }
289
4.36k
  total += len;
290
4.36k
  if (!EVP_DecryptFinal_ex2(&tls_ctx->cipher_ctx, out + total, &len,
291
4.36k
                            max_out_len - total)) {
292
63
    return 0;
293
63
  }
294
4.30k
  total += len;
295
4.30k
  assert(total == in_len);
296
297
4.30k
  CONSTTIME_SECRET(out, total);
298
299
  // Remove CBC padding. Code from here on is timing-sensitive with respect to
300
  // |padding_ok| and |data_plus_mac_len| for CBC ciphers.
301
4.30k
  size_t data_plus_mac_len;
302
4.30k
  crypto_word_t padding_ok;
303
4.30k
  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
304
4.30k
    if (!EVP_tls_cbc_remove_padding(
305
4.30k
            &padding_ok, &data_plus_mac_len, out, total,
306
4.30k
            EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
307
4.30k
            HMAC_size(tls_ctx->hmac_ctx))) {
308
      // Publicly invalid. This can be rejected in non-constant time.
309
0
      OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
310
0
      return 0;
311
0
    }
312
4.30k
  } else {
313
0
    padding_ok = CONSTTIME_TRUE_W;
314
0
    data_plus_mac_len = total;
315
    // |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
316
    // already been checked against the MAC size at the top of the function.
317
0
    assert(data_plus_mac_len >= HMAC_size(tls_ctx->hmac_ctx));
318
0
  }
319
4.30k
  size_t data_len = data_plus_mac_len - HMAC_size(tls_ctx->hmac_ctx);
320
321
  // At this point, if the padding is valid, the first |data_plus_mac_len| bytes
322
  // after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is
323
  // still large enough to extract a MAC, but it will be irrelevant.
324
325
  // To allow for CBC mode which changes cipher length, |ad| doesn't include the
326
  // length for legacy ciphers.
327
4.30k
  uint8_t ad_fixed[13];
328
4.30k
  OPENSSL_memcpy(ad_fixed, ad, 11);
329
4.30k
  ad_fixed[11] = (uint8_t)(data_len >> 8);
330
4.30k
  ad_fixed[12] = (uint8_t)(data_len & 0xff);
331
4.30k
  ad_len += 2;
332
333
  // Compute the MAC and extract the one in the record.
334
4.30k
  uint8_t mac[EVP_MAX_MD_SIZE];
335
4.30k
  size_t mac_len;
336
4.30k
  uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
337
4.30k
  uint8_t *record_mac;
338
4.30k
  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
339
4.30k
      EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx->md)) {
340
4.30k
    if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx->md, mac, &mac_len,
341
4.30k
                                   ad_fixed, out, data_len, total,
342
4.30k
                                   tls_ctx->mac_key, tls_ctx->mac_key_len)) {
343
0
      OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
344
0
      return 0;
345
0
    }
346
4.30k
    assert(mac_len == HMAC_size(tls_ctx->hmac_ctx));
347
348
4.30k
    record_mac = record_mac_tmp;
349
4.30k
    EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
350
4.30k
  } else {
351
    // We should support the constant-time path for all CBC-mode ciphers
352
    // implemented.
353
0
    assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
354
355
0
    unsigned mac_len_u;
356
0
    if (!HMAC_Init_ex(tls_ctx->hmac_ctx, nullptr, 0, nullptr, nullptr) ||
357
0
        !HMAC_Update(tls_ctx->hmac_ctx, ad_fixed, ad_len) ||
358
0
        !HMAC_Update(tls_ctx->hmac_ctx, out, data_len) ||
359
0
        !HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len_u)) {
360
0
      return 0;
361
0
    }
362
0
    mac_len = mac_len_u;
363
364
0
    assert(mac_len == HMAC_size(tls_ctx->hmac_ctx));
365
0
    record_mac = &out[data_len];
366
0
  }
367
368
  // Perform the MAC check and the padding check in constant-time. It should be
369
  // safe to simply perform the padding check first, but it would not be under a
370
  // different choice of MAC location on padding failure. See
371
  // EVP_tls_cbc_remove_padding.
372
4.30k
  crypto_word_t good =
373
4.30k
      constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0);
374
4.30k
  good &= padding_ok;
375
4.30k
  CONSTTIME_DECLASSIFY(&good, sizeof(good));
376
4.30k
  if (!good) {
377
232
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
378
232
    return 0;
379
232
  }
380
381
4.07k
  CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len));
382
4.07k
  CONSTTIME_DECLASSIFY(out, data_len);
383
384
  // End of timing-sensitive code.
385
386
4.07k
  *out_len = data_len;
387
4.07k
  return 1;
388
4.30k
}
389
390
static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
391
                                          size_t key_len, size_t tag_len,
392
3.55k
                                          enum evp_aead_direction_t dir) {
393
3.55k
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
394
3.55k
                       EVP_sha1(), 0);
395
3.55k
}
396
397
static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(
398
    EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
399
691
    enum evp_aead_direction_t dir) {
400
691
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
401
691
                       EVP_sha1(), 1);
402
691
}
403
404
static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
405
                                            const uint8_t *key, size_t key_len,
406
                                            size_t tag_len,
407
0
                                            enum evp_aead_direction_t dir) {
408
0
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
409
0
                       EVP_sha256(), 0);
410
0
}
411
412
static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
413
                                          size_t key_len, size_t tag_len,
414
51.1k
                                          enum evp_aead_direction_t dir) {
415
51.1k
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
416
51.1k
                       EVP_sha1(), 0);
417
51.1k
}
418
419
static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(
420
    EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
421
2.26k
    enum evp_aead_direction_t dir) {
422
2.26k
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
423
2.26k
                       EVP_sha1(), 1);
424
2.26k
}
425
426
static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
427
                                           const uint8_t *key, size_t key_len,
428
                                           size_t tag_len,
429
2.86k
                                           enum evp_aead_direction_t dir) {
430
2.86k
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
431
2.86k
                       EVP_sha1(), 0);
432
2.86k
}
433
434
static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(
435
    EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
436
141
    enum evp_aead_direction_t dir) {
437
141
  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
438
141
                       EVP_sha1(), 1);
439
141
}
440
441
static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
442
0
                           size_t *out_iv_len) {
443
0
  const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
444
0
  const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx);
445
0
  if (iv_len <= 1) {
446
0
    OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
447
0
    return 0;
448
0
  }
449
450
0
  *out_iv = tls_ctx->cipher_ctx.iv;
451
0
  *out_iv_len = iv_len;
452
0
  return 1;
453
0
}
454
455
static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
456
    SHA_DIGEST_LENGTH + 16,  // key len (SHA1 + AES128)
457
    16,                      // nonce len (IV)
458
    16 + SHA_DIGEST_LENGTH,  // overhead (padding + SHA1)
459
    SHA_DIGEST_LENGTH,       // max tag length
460
    0,                       // seal_scatter_supports_extra_in
461
462
    nullptr,  // init
463
    aead_aes_128_cbc_sha1_tls_init,
464
    aead_tls_cleanup,
465
    aead_tls_open,
466
    aead_tls_seal_scatter,
467
    nullptr,  // open_gather
468
    nullptr,  // get_iv
469
    aead_tls_tag_len,
470
};
471
472
static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
473
    SHA_DIGEST_LENGTH + 16 + 16,  // key len (SHA1 + AES128 + IV)
474
    0,                            // nonce len
475
    16 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1)
476
    SHA_DIGEST_LENGTH,            // max tag length
477
    0,                            // seal_scatter_supports_extra_in
478
479
    nullptr,  // init
480
    aead_aes_128_cbc_sha1_tls_implicit_iv_init,
481
    aead_tls_cleanup,
482
    aead_tls_open,
483
    aead_tls_seal_scatter,
484
    nullptr,          // open_gather
485
    aead_tls_get_iv,  // get_iv
486
    aead_tls_tag_len,
487
};
488
489
static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
490
    SHA256_DIGEST_LENGTH + 16,  // key len (SHA256 + AES128)
491
    16,                         // nonce len (IV)
492
    16 + SHA256_DIGEST_LENGTH,  // overhead (padding + SHA256)
493
    SHA256_DIGEST_LENGTH,       // max tag length
494
    0,                          // seal_scatter_supports_extra_in
495
496
    nullptr,  // init
497
    aead_aes_128_cbc_sha256_tls_init,
498
    aead_tls_cleanup,
499
    aead_tls_open,
500
    aead_tls_seal_scatter,
501
    nullptr,  // open_gather
502
    nullptr,  // get_iv
503
    aead_tls_tag_len,
504
};
505
506
static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
507
    SHA_DIGEST_LENGTH + 32,  // key len (SHA1 + AES256)
508
    16,                      // nonce len (IV)
509
    16 + SHA_DIGEST_LENGTH,  // overhead (padding + SHA1)
510
    SHA_DIGEST_LENGTH,       // max tag length
511
    0,                       // seal_scatter_supports_extra_in
512
513
    nullptr,  // init
514
    aead_aes_256_cbc_sha1_tls_init,
515
    aead_tls_cleanup,
516
    aead_tls_open,
517
    aead_tls_seal_scatter,
518
    nullptr,  // open_gather
519
    nullptr,  // get_iv
520
    aead_tls_tag_len,
521
};
522
523
static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
524
    SHA_DIGEST_LENGTH + 32 + 16,  // key len (SHA1 + AES256 + IV)
525
    0,                            // nonce len
526
    16 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1)
527
    SHA_DIGEST_LENGTH,            // max tag length
528
    0,                            // seal_scatter_supports_extra_in
529
530
    nullptr,  // init
531
    aead_aes_256_cbc_sha1_tls_implicit_iv_init,
532
    aead_tls_cleanup,
533
    aead_tls_open,
534
    aead_tls_seal_scatter,
535
    nullptr,          // open_gather
536
    aead_tls_get_iv,  // get_iv
537
    aead_tls_tag_len,
538
};
539
540
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
541
    SHA_DIGEST_LENGTH + 24,  // key len (SHA1 + 3DES)
542
    8,                       // nonce len (IV)
543
    8 + SHA_DIGEST_LENGTH,   // overhead (padding + SHA1)
544
    SHA_DIGEST_LENGTH,       // max tag length
545
    0,                       // seal_scatter_supports_extra_in
546
547
    nullptr,  // init
548
    aead_des_ede3_cbc_sha1_tls_init,
549
    aead_tls_cleanup,
550
    aead_tls_open,
551
    aead_tls_seal_scatter,
552
    nullptr,  // open_gather
553
    nullptr,  // get_iv
554
    aead_tls_tag_len,
555
};
556
557
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
558
    SHA_DIGEST_LENGTH + 24 + 8,  // key len (SHA1 + 3DES + IV)
559
    0,                           // nonce len
560
    8 + SHA_DIGEST_LENGTH,       // overhead (padding + SHA1)
561
    SHA_DIGEST_LENGTH,           // max tag length
562
    0,                           // seal_scatter_supports_extra_in
563
564
    nullptr,  // init
565
    aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
566
    aead_tls_cleanup,
567
    aead_tls_open,
568
    aead_tls_seal_scatter,
569
    nullptr,          // open_gather
570
    aead_tls_get_iv,  // get_iv
571
    aead_tls_tag_len,
572
};
573
574
7.11k
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
575
7.11k
  return &aead_aes_128_cbc_sha1_tls;
576
7.11k
}
577
578
1.38k
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
579
1.38k
  return &aead_aes_128_cbc_sha1_tls_implicit_iv;
580
1.38k
}
581
582
0
const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
583
0
  return &aead_aes_128_cbc_sha256_tls;
584
0
}
585
586
102k
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
587
102k
  return &aead_aes_256_cbc_sha1_tls;
588
102k
}
589
590
4.53k
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
591
4.53k
  return &aead_aes_256_cbc_sha1_tls_implicit_iv;
592
4.53k
}
593
594
5.72k
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
595
5.72k
  return &aead_des_ede3_cbc_sha1_tls;
596
5.72k
}
597
598
282
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
599
282
  return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
600
282
}