/src/boringssl/crypto/dsa/dsa.cc
Line | Count | Source |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/dsa.h> |
16 | | |
17 | | #include <string.h> |
18 | | |
19 | | #include <openssl/bn.h> |
20 | | #include <openssl/dh.h> |
21 | | #include <openssl/digest.h> |
22 | | #include <openssl/engine.h> |
23 | | #include <openssl/err.h> |
24 | | #include <openssl/ex_data.h> |
25 | | #include <openssl/mem.h> |
26 | | #include <openssl/rand.h> |
27 | | #include <openssl/sha2.h> |
28 | | |
29 | | #include "../fipsmodule/bn/internal.h" |
30 | | #include "../fipsmodule/dh/internal.h" |
31 | | #include "../internal.h" |
32 | | #include "../mem_internal.h" |
33 | | #include "internal.h" |
34 | | |
35 | | |
36 | | using namespace bssl; |
37 | | |
38 | | static_assert(OPENSSL_DSA_MAX_MODULUS_BITS <= |
39 | | BN_MONTGOMERY_MAX_WORDS * BN_BITS2, |
40 | | "Max DSA size too big for Montgomery arithmetic"); |
41 | | |
42 | | // Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of |
43 | | // Miller-Rabin. |
44 | 0 | #define DSS_prime_checks 50 |
45 | | |
46 | | static int dsa_sign_setup(const DSAImpl *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv, |
47 | | BIGNUM **out_r); |
48 | | |
49 | | static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; |
50 | | |
51 | 6.81k | DSA *DSA_new() { return New<DSAImpl>(); } |
52 | | |
53 | 6.81k | DSAImpl::DSAImpl() : RefCounted(CheckSubClass()) { |
54 | 6.81k | CRYPTO_MUTEX_init(&method_mont_lock); |
55 | 6.81k | CRYPTO_new_ex_data(&ex_data); |
56 | 6.81k | } |
57 | | |
58 | 6.81k | DSAImpl::~DSAImpl() { |
59 | 6.81k | CRYPTO_free_ex_data(&g_ex_data_class, &ex_data); |
60 | | |
61 | 6.81k | BN_clear_free(p); |
62 | 6.81k | BN_clear_free(q); |
63 | 6.81k | BN_clear_free(g); |
64 | 6.81k | BN_clear_free(pub_key); |
65 | 6.81k | BN_clear_free(priv_key); |
66 | 6.81k | BN_MONT_CTX_free(method_mont_p); |
67 | 6.81k | BN_MONT_CTX_free(method_mont_q); |
68 | 6.81k | CRYPTO_MUTEX_cleanup(&method_mont_lock); |
69 | 6.81k | } |
70 | | |
71 | 870 | void DSA_free(DSA *dsa) { |
72 | 870 | if (dsa == nullptr) { |
73 | 0 | return; |
74 | 0 | } |
75 | 870 | auto *impl = FromOpaque(dsa); |
76 | 870 | impl->DecRefInternal(); |
77 | 870 | } |
78 | | |
79 | 0 | int DSA_up_ref(DSA *dsa) { |
80 | 0 | auto *impl = FromOpaque(dsa); |
81 | 0 | impl->UpRefInternal(); |
82 | 0 | return 1; |
83 | 0 | } |
84 | | |
85 | 0 | unsigned DSA_bits(const DSA *dsa) { |
86 | 0 | auto *impl = FromOpaque(dsa); |
87 | 0 | return BN_num_bits(impl->p); |
88 | 0 | } |
89 | | |
90 | 0 | const BIGNUM *DSA_get0_pub_key(const DSA *dsa) { |
91 | 0 | auto *impl = FromOpaque(dsa); |
92 | 0 | return impl->pub_key; |
93 | 0 | } |
94 | | |
95 | 0 | const BIGNUM *DSA_get0_priv_key(const DSA *dsa) { |
96 | 0 | auto *impl = FromOpaque(dsa); |
97 | 0 | return impl->priv_key; |
98 | 0 | } |
99 | | |
100 | 0 | const BIGNUM *DSA_get0_p(const DSA *dsa) { |
101 | 0 | auto *impl = FromOpaque(dsa); |
102 | 0 | return impl->p; |
103 | 0 | } |
104 | | |
105 | 0 | const BIGNUM *DSA_get0_q(const DSA *dsa) { |
106 | 0 | auto *impl = FromOpaque(dsa); |
107 | 0 | return impl->q; |
108 | 0 | } |
109 | | |
110 | 0 | const BIGNUM *DSA_get0_g(const DSA *dsa) { |
111 | 0 | auto *impl = FromOpaque(dsa); |
112 | 0 | return impl->g; |
113 | 0 | } |
114 | | |
115 | | void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key, |
116 | 0 | const BIGNUM **out_priv_key) { |
117 | 0 | auto *impl = FromOpaque(dsa); |
118 | 0 | if (out_pub_key != nullptr) { |
119 | 0 | *out_pub_key = impl->pub_key; |
120 | 0 | } |
121 | 0 | if (out_priv_key != nullptr) { |
122 | 0 | *out_priv_key = impl->priv_key; |
123 | 0 | } |
124 | 0 | } |
125 | | |
126 | | void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q, |
127 | 0 | const BIGNUM **out_g) { |
128 | 0 | auto *impl = FromOpaque(dsa); |
129 | 0 | if (out_p != nullptr) { |
130 | 0 | *out_p = impl->p; |
131 | 0 | } |
132 | 0 | if (out_q != nullptr) { |
133 | 0 | *out_q = impl->q; |
134 | 0 | } |
135 | 0 | if (out_g != nullptr) { |
136 | 0 | *out_g = impl->g; |
137 | 0 | } |
138 | 0 | } |
139 | | |
140 | 0 | int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) { |
141 | 0 | auto *impl = FromOpaque(dsa); |
142 | |
|
143 | 0 | if (impl->pub_key == nullptr && pub_key == nullptr) { |
144 | 0 | return 0; |
145 | 0 | } |
146 | | |
147 | 0 | if (pub_key != nullptr) { |
148 | 0 | BN_free(impl->pub_key); |
149 | 0 | impl->pub_key = pub_key; |
150 | 0 | } |
151 | 0 | if (priv_key != nullptr) { |
152 | 0 | BN_free(impl->priv_key); |
153 | 0 | impl->priv_key = priv_key; |
154 | 0 | } |
155 | |
|
156 | 0 | return 1; |
157 | 0 | } |
158 | | |
159 | 0 | int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) { |
160 | 0 | auto *impl = FromOpaque(dsa); |
161 | |
|
162 | 0 | if ((impl->p == nullptr && p == nullptr) || |
163 | 0 | (impl->q == nullptr && q == nullptr) || |
164 | 0 | (impl->g == nullptr && g == nullptr)) { |
165 | 0 | return 0; |
166 | 0 | } |
167 | | |
168 | 0 | if (p != nullptr) { |
169 | 0 | BN_free(impl->p); |
170 | 0 | impl->p = p; |
171 | 0 | } |
172 | 0 | if (q != nullptr) { |
173 | 0 | BN_free(impl->q); |
174 | 0 | impl->q = q; |
175 | 0 | } |
176 | 0 | if (g != nullptr) { |
177 | 0 | BN_free(impl->g); |
178 | 0 | impl->g = g; |
179 | 0 | } |
180 | |
|
181 | 0 | BN_MONT_CTX_free(impl->method_mont_p); |
182 | 0 | impl->method_mont_p = nullptr; |
183 | 0 | BN_MONT_CTX_free(impl->method_mont_q); |
184 | 0 | impl->method_mont_q = nullptr; |
185 | 0 | return 1; |
186 | 0 | } |
187 | | |
188 | | int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in, |
189 | | size_t seed_len, int *out_counter, |
190 | 0 | unsigned long *out_h, BN_GENCB *cb) { |
191 | 0 | auto *impl = FromOpaque(dsa); |
192 | |
|
193 | 0 | if (bits > OPENSSL_DSA_MAX_MODULUS_BITS) { |
194 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); |
195 | 0 | return 0; |
196 | 0 | } |
197 | | |
198 | 0 | unsigned char seed[SHA256_DIGEST_LENGTH]; |
199 | 0 | unsigned char md[SHA256_DIGEST_LENGTH]; |
200 | 0 | unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH]; |
201 | 0 | BIGNUM *r0, *W, *X, *c, *test; |
202 | 0 | BIGNUM *g = nullptr, *q = nullptr, *p = nullptr; |
203 | 0 | int k, n = 0, m = 0; |
204 | 0 | int counter = 0; |
205 | 0 | int r = 0; |
206 | 0 | unsigned int h = 2; |
207 | 0 | const EVP_MD *evpmd; |
208 | |
|
209 | 0 | evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1(); |
210 | 0 | size_t qsize = EVP_MD_size(evpmd); |
211 | |
|
212 | 0 | if (bits < 512) { |
213 | 0 | bits = 512; |
214 | 0 | } |
215 | |
|
216 | 0 | bits = (bits + 63) / 64 * 64; |
217 | |
|
218 | 0 | if (seed_in != nullptr) { |
219 | 0 | if (seed_len < qsize) { |
220 | 0 | return 0; |
221 | 0 | } |
222 | 0 | if (seed_len > qsize) { |
223 | | // Only consume as much seed as is expected. |
224 | 0 | seed_len = qsize; |
225 | 0 | } |
226 | 0 | OPENSSL_memcpy(seed, seed_in, seed_len); |
227 | 0 | } |
228 | | |
229 | 0 | UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
230 | 0 | if (ctx == nullptr) { |
231 | 0 | return 0; |
232 | 0 | } |
233 | 0 | BN_CTXScope scope(ctx.get()); |
234 | |
|
235 | 0 | r0 = BN_CTX_get(ctx.get()); |
236 | 0 | g = BN_CTX_get(ctx.get()); |
237 | 0 | W = BN_CTX_get(ctx.get()); |
238 | 0 | q = BN_CTX_get(ctx.get()); |
239 | 0 | X = BN_CTX_get(ctx.get()); |
240 | 0 | c = BN_CTX_get(ctx.get()); |
241 | 0 | p = BN_CTX_get(ctx.get()); |
242 | 0 | test = BN_CTX_get(ctx.get()); |
243 | |
|
244 | 0 | if (test == nullptr || !BN_lshift(test, BN_value_one(), bits - 1)) { |
245 | 0 | return 0; |
246 | 0 | } |
247 | | |
248 | 0 | for (;;) { |
249 | | // Find q. |
250 | 0 | for (;;) { |
251 | | // step 1 |
252 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, m++)) { |
253 | 0 | return 0; |
254 | 0 | } |
255 | | |
256 | 0 | int use_random_seed = (seed_in == nullptr); |
257 | 0 | if (use_random_seed) { |
258 | 0 | if (!RAND_bytes(seed, qsize)) { |
259 | 0 | return 0; |
260 | 0 | } |
261 | | // DSA parameters are public. |
262 | 0 | CONSTTIME_DECLASSIFY(seed, qsize); |
263 | 0 | } else { |
264 | | // If we come back through, use random seed next time. |
265 | 0 | seed_in = nullptr; |
266 | 0 | } |
267 | 0 | OPENSSL_memcpy(buf, seed, qsize); |
268 | 0 | OPENSSL_memcpy(buf2, seed, qsize); |
269 | | // precompute "SEED + 1" for step 7: |
270 | 0 | for (size_t i = qsize - 1; i < qsize; i--) { |
271 | 0 | buf[i]++; |
272 | 0 | if (buf[i] != 0) { |
273 | 0 | break; |
274 | 0 | } |
275 | 0 | } |
276 | | |
277 | | // step 2 |
278 | 0 | if (!EVP_Digest(seed, qsize, md, nullptr, evpmd, nullptr) || |
279 | 0 | !EVP_Digest(buf, qsize, buf2, nullptr, evpmd, nullptr)) { |
280 | 0 | return 0; |
281 | 0 | } |
282 | 0 | for (size_t i = 0; i < qsize; i++) { |
283 | 0 | md[i] ^= buf2[i]; |
284 | 0 | } |
285 | | |
286 | | // step 3 |
287 | 0 | md[0] |= 0x80; |
288 | 0 | md[qsize - 1] |= 0x01; |
289 | 0 | if (!BN_bin2bn(md, qsize, q)) { |
290 | 0 | return 0; |
291 | 0 | } |
292 | | |
293 | | // step 4 |
294 | 0 | r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx.get(), |
295 | 0 | use_random_seed, cb); |
296 | 0 | if (r > 0) { |
297 | 0 | break; |
298 | 0 | } |
299 | 0 | if (r != 0) { |
300 | 0 | return 0; |
301 | 0 | } |
302 | | |
303 | | // do a callback call |
304 | | // step 5 |
305 | 0 | } |
306 | | |
307 | 0 | if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) { |
308 | 0 | return 0; |
309 | 0 | } |
310 | | |
311 | | // step 6 |
312 | 0 | counter = 0; |
313 | | // "offset = 2" |
314 | |
|
315 | 0 | n = (bits - 1) / 160; |
316 | |
|
317 | 0 | for (;;) { |
318 | 0 | if ((counter != 0) && !BN_GENCB_call(cb, BN_GENCB_GENERATED, counter)) { |
319 | 0 | return 0; |
320 | 0 | } |
321 | | |
322 | | // step 7 |
323 | 0 | BN_zero(W); |
324 | | // now 'buf' contains "SEED + offset - 1" |
325 | 0 | for (k = 0; k <= n; k++) { |
326 | | // obtain "SEED + offset + k" by incrementing: |
327 | 0 | for (size_t i = qsize - 1; i < qsize; i--) { |
328 | 0 | buf[i]++; |
329 | 0 | if (buf[i] != 0) { |
330 | 0 | break; |
331 | 0 | } |
332 | 0 | } |
333 | |
|
334 | 0 | if (!EVP_Digest(buf, qsize, md, nullptr, evpmd, nullptr)) { |
335 | 0 | return 0; |
336 | 0 | } |
337 | | |
338 | | // step 8 |
339 | 0 | if (!BN_bin2bn(md, qsize, r0) || !BN_lshift(r0, r0, (qsize << 3) * k) || |
340 | 0 | !BN_add(W, W, r0)) { |
341 | 0 | return 0; |
342 | 0 | } |
343 | 0 | } |
344 | | |
345 | | // more of step 8 |
346 | 0 | if (!BN_mask_bits(W, bits - 1) || !BN_copy(X, W) || !BN_add(X, X, test)) { |
347 | 0 | return 0; |
348 | 0 | } |
349 | | |
350 | | // step 9 |
351 | 0 | if (!BN_lshift1(r0, q) || !BN_mod(c, X, r0, ctx.get()) || |
352 | 0 | !BN_sub(r0, c, BN_value_one()) || !BN_sub(p, X, r0)) { |
353 | 0 | return 0; |
354 | 0 | } |
355 | | |
356 | | // step 10 |
357 | 0 | if (BN_cmp(p, test) >= 0) { |
358 | | // step 11 |
359 | 0 | r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx.get(), 1, cb); |
360 | 0 | if (r > 0) { |
361 | 0 | goto end; // found it |
362 | 0 | } |
363 | 0 | if (r != 0) { |
364 | 0 | return 0; |
365 | 0 | } |
366 | 0 | } |
367 | | |
368 | | // step 13 |
369 | 0 | counter++; |
370 | | // "offset = offset + n + 1" |
371 | | |
372 | | // step 14 |
373 | 0 | if (counter >= 4096) { |
374 | 0 | break; |
375 | 0 | } |
376 | 0 | } |
377 | 0 | } |
378 | 0 | end: |
379 | 0 | if (!BN_GENCB_call(cb, 2, 1)) { |
380 | 0 | return 0; |
381 | 0 | } |
382 | | |
383 | | // We now need to generate g |
384 | | // Set r0=(p-1)/q |
385 | 0 | if (!BN_sub(test, p, BN_value_one()) || |
386 | 0 | !BN_div(r0, nullptr, test, q, ctx.get())) { |
387 | 0 | return 0; |
388 | 0 | } |
389 | | |
390 | 0 | UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_for_modulus(p, ctx.get())); |
391 | 0 | if (mont == nullptr || !BN_set_word(test, h)) { |
392 | 0 | return 0; |
393 | 0 | } |
394 | | |
395 | 0 | for (;;) { |
396 | | // g=test^r0%p |
397 | 0 | if (!BN_mod_exp_mont(g, test, r0, p, ctx.get(), mont.get())) { |
398 | 0 | return 0; |
399 | 0 | } |
400 | 0 | if (!BN_is_one(g)) { |
401 | 0 | break; |
402 | 0 | } |
403 | 0 | if (!BN_add(test, test, BN_value_one())) { |
404 | 0 | return 0; |
405 | 0 | } |
406 | 0 | h++; |
407 | 0 | } |
408 | | |
409 | 0 | if (!BN_GENCB_call(cb, 3, 1)) { |
410 | 0 | return 0; |
411 | 0 | } |
412 | | |
413 | 0 | BN_free(impl->p); |
414 | 0 | BN_free(impl->q); |
415 | 0 | BN_free(impl->g); |
416 | 0 | impl->p = BN_dup(p); |
417 | 0 | impl->q = BN_dup(q); |
418 | 0 | impl->g = BN_dup(g); |
419 | 0 | if (impl->p == nullptr || impl->q == nullptr || impl->g == nullptr) { |
420 | 0 | return 0; |
421 | 0 | } |
422 | 0 | if (out_counter != nullptr) { |
423 | 0 | *out_counter = counter; |
424 | 0 | } |
425 | 0 | if (out_h != nullptr) { |
426 | 0 | *out_h = h; |
427 | 0 | } |
428 | |
|
429 | 0 | return 1; |
430 | 0 | } |
431 | | |
432 | 0 | DSA *DSAparams_dup(const DSA *dsa) { |
433 | 0 | auto *impl = FromOpaque(dsa); |
434 | 0 | DSAImpl *ret = FromOpaque(DSA_new()); |
435 | 0 | if (ret == nullptr) { |
436 | 0 | return nullptr; |
437 | 0 | } |
438 | 0 | ret->p = BN_dup(impl->p); |
439 | 0 | ret->q = BN_dup(impl->q); |
440 | 0 | ret->g = BN_dup(impl->g); |
441 | 0 | if (ret->p == nullptr || ret->q == nullptr || ret->g == nullptr) { |
442 | 0 | DSA_free(ret); |
443 | 0 | return nullptr; |
444 | 0 | } |
445 | 0 | return ret; |
446 | 0 | } |
447 | | |
448 | 0 | int DSA_generate_key(DSA *dsa) { |
449 | 0 | auto *impl = FromOpaque(dsa); |
450 | |
|
451 | 0 | if (!dsa_check_key(impl)) { |
452 | 0 | return 0; |
453 | 0 | } |
454 | | |
455 | 0 | UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
456 | 0 | if (ctx == nullptr) { |
457 | 0 | return 0; |
458 | 0 | } |
459 | | |
460 | 0 | int ok = 0; |
461 | 0 | BIGNUM *pub_key = nullptr; |
462 | 0 | BIGNUM *priv_key = impl->priv_key; |
463 | 0 | if (priv_key == nullptr) { |
464 | 0 | priv_key = BN_new(); |
465 | 0 | if (priv_key == nullptr) { |
466 | 0 | goto err; |
467 | 0 | } |
468 | 0 | } |
469 | | |
470 | 0 | if (!BN_rand_range_ex(priv_key, 1, impl->q)) { |
471 | 0 | goto err; |
472 | 0 | } |
473 | | |
474 | 0 | pub_key = impl->pub_key; |
475 | 0 | if (pub_key == nullptr) { |
476 | 0 | pub_key = BN_new(); |
477 | 0 | if (pub_key == nullptr) { |
478 | 0 | goto err; |
479 | 0 | } |
480 | 0 | } |
481 | | |
482 | 0 | if (!BN_MONT_CTX_set_locked(&impl->method_mont_p, &impl->method_mont_lock, |
483 | 0 | impl->p, ctx.get()) || |
484 | 0 | !BN_mod_exp_mont_consttime(pub_key, impl->g, priv_key, impl->p, ctx.get(), |
485 | 0 | impl->method_mont_p)) { |
486 | 0 | goto err; |
487 | 0 | } |
488 | | |
489 | | // The public key is computed from the private key, but is public. |
490 | 0 | bn_declassify(pub_key); |
491 | |
|
492 | 0 | impl->priv_key = priv_key; |
493 | 0 | impl->pub_key = pub_key; |
494 | 0 | ok = 1; |
495 | |
|
496 | 0 | err: |
497 | 0 | if (impl->pub_key == nullptr) { |
498 | 0 | BN_free(pub_key); |
499 | 0 | } |
500 | 0 | if (impl->priv_key == nullptr) { |
501 | 0 | BN_free(priv_key); |
502 | 0 | } |
503 | |
|
504 | 0 | return ok; |
505 | 0 | } |
506 | | |
507 | 0 | DSA_SIG *DSA_SIG_new() { return NewZeroed<DSA_SIG>(); } |
508 | | |
509 | 0 | void DSA_SIG_free(DSA_SIG *sig) { |
510 | 0 | if (!sig) { |
511 | 0 | return; |
512 | 0 | } |
513 | | |
514 | 0 | BN_free(sig->r); |
515 | 0 | BN_free(sig->s); |
516 | 0 | Delete(sig); |
517 | 0 | } |
518 | | |
519 | | void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **out_r, |
520 | 0 | const BIGNUM **out_s) { |
521 | 0 | if (out_r != nullptr) { |
522 | 0 | *out_r = sig->r; |
523 | 0 | } |
524 | 0 | if (out_s != nullptr) { |
525 | 0 | *out_s = sig->s; |
526 | 0 | } |
527 | 0 | } |
528 | | |
529 | 0 | int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) { |
530 | 0 | if (r == nullptr || s == nullptr) { |
531 | 0 | return 0; |
532 | 0 | } |
533 | 0 | BN_free(sig->r); |
534 | 0 | BN_free(sig->s); |
535 | 0 | sig->r = r; |
536 | 0 | sig->s = s; |
537 | 0 | return 1; |
538 | 0 | } |
539 | | |
540 | | // mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and |
541 | | // |b| as secret. This function internally uses Montgomery reduction, but |
542 | | // neither inputs nor outputs are in Montgomery form. |
543 | | static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
544 | 0 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
545 | 0 | BN_CTXScope scope(ctx); |
546 | 0 | BIGNUM *tmp = BN_CTX_get(ctx); |
547 | | // |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a |
548 | | // single |BN_to_montgomery| which adds one factor of R. |
549 | 0 | return tmp != nullptr && // |
550 | 0 | BN_to_montgomery(tmp, a, mont, ctx) && |
551 | 0 | BN_mod_mul_montgomery(r, tmp, b, mont, ctx); |
552 | 0 | } |
553 | | |
554 | 0 | DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) { |
555 | 0 | auto *impl = FromOpaque(dsa); |
556 | |
|
557 | 0 | if (!dsa_check_key(impl)) { |
558 | 0 | return nullptr; |
559 | 0 | } |
560 | | |
561 | 0 | if (impl->priv_key == nullptr) { |
562 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
563 | 0 | return nullptr; |
564 | 0 | } |
565 | | |
566 | 0 | BIGNUM *kinv = nullptr, *r = nullptr, *s = nullptr; |
567 | 0 | BIGNUM m; |
568 | 0 | BIGNUM xr; |
569 | 0 | BN_CTX *ctx = nullptr; |
570 | 0 | DSA_SIG *ret = nullptr; |
571 | |
|
572 | 0 | BN_init(&m); |
573 | 0 | BN_init(&xr); |
574 | 0 | s = BN_new(); |
575 | 0 | { |
576 | 0 | if (s == nullptr) { |
577 | 0 | goto err; |
578 | 0 | } |
579 | 0 | ctx = BN_CTX_new(); |
580 | 0 | if (ctx == nullptr) { |
581 | 0 | goto err; |
582 | 0 | } |
583 | | |
584 | | // Cap iterations so that invalid parameters do not infinite loop. This does |
585 | | // not impact valid parameters because the probability of requiring even one |
586 | | // retry is negligible, let alone 32. Unfortunately, DSA was mis-specified, |
587 | | // so invalid parameters are reachable from most callers handling untrusted |
588 | | // private keys. (The |dsa_check_key| call above is not sufficient. Checking |
589 | | // whether arbitrary parameters form a valid DSA group is expensive.) |
590 | 0 | static const int kMaxIterations = 32; |
591 | 0 | int iters = 0; |
592 | 0 | redo: |
593 | 0 | if (!dsa_sign_setup(impl, ctx, &kinv, &r)) { |
594 | 0 | goto err; |
595 | 0 | } |
596 | | |
597 | 0 | if (digest_len > BN_num_bytes(impl->q)) { |
598 | | // If the digest length is greater than the size of |impl->q| use the |
599 | | // BN_num_bits(impl->q) leftmost bits of the digest, see FIPS 186-3, 4.2. |
600 | | // Note the above check that |impl->q| is a multiple of 8 bits. |
601 | 0 | digest_len = BN_num_bytes(impl->q); |
602 | 0 | } |
603 | |
|
604 | 0 | if (BN_bin2bn(digest, digest_len, &m) == nullptr) { |
605 | 0 | goto err; |
606 | 0 | } |
607 | | |
608 | | // |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This |
609 | | // violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions. |
610 | | // (The underlying algorithms could accept looser bounds, but we reduce for |
611 | | // simplicity.) |
612 | 0 | size_t q_width = bn_minimal_width(impl->q); |
613 | 0 | if (!bn_resize_words(&m, q_width) || !bn_resize_words(&xr, q_width)) { |
614 | 0 | goto err; |
615 | 0 | } |
616 | 0 | bn_reduce_once_in_place(m.d, 0 /* no carry word */, impl->q->d, |
617 | 0 | xr.d /* scratch space */, q_width); |
618 | | |
619 | | // Compute s = inv(k) (m + xr) mod q. Note |impl->method_mont_q| is |
620 | | // initialized by |dsa_sign_setup|. |
621 | 0 | if (!mod_mul_consttime(&xr, impl->priv_key, r, impl->method_mont_q, ctx) || |
622 | 0 | !bn_mod_add_consttime(s, &xr, &m, impl->q, ctx) || |
623 | 0 | !mod_mul_consttime(s, s, kinv, impl->method_mont_q, ctx)) { |
624 | 0 | goto err; |
625 | 0 | } |
626 | | |
627 | | // The signature is computed from the private key, but is public. |
628 | 0 | bn_declassify(r); |
629 | 0 | bn_declassify(s); |
630 | | |
631 | | // Redo if r or s is zero as required by FIPS 186-3: this is |
632 | | // very unlikely. |
633 | 0 | if (BN_is_zero(r) || BN_is_zero(s)) { |
634 | 0 | iters++; |
635 | 0 | if (iters > kMaxIterations) { |
636 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_TOO_MANY_ITERATIONS); |
637 | 0 | goto err; |
638 | 0 | } |
639 | 0 | goto redo; |
640 | 0 | } |
641 | | |
642 | 0 | ret = DSA_SIG_new(); |
643 | 0 | if (ret == nullptr) { |
644 | 0 | goto err; |
645 | 0 | } |
646 | 0 | ret->r = r; |
647 | 0 | ret->s = s; |
648 | 0 | } |
649 | | |
650 | 0 | err: |
651 | 0 | if (ret == nullptr) { |
652 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
653 | 0 | BN_free(r); |
654 | 0 | BN_free(s); |
655 | 0 | } |
656 | 0 | BN_CTX_free(ctx); |
657 | 0 | BN_clear_free(&m); |
658 | 0 | BN_clear_free(&xr); |
659 | 0 | BN_clear_free(kinv); |
660 | |
|
661 | 0 | return ret; |
662 | 0 | } |
663 | | |
664 | | int DSA_do_verify(const uint8_t *digest, size_t digest_len, const DSA_SIG *sig, |
665 | 0 | const DSA *dsa) { |
666 | 0 | int valid; |
667 | 0 | if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) { |
668 | 0 | return -1; |
669 | 0 | } |
670 | 0 | return valid; |
671 | 0 | } |
672 | | |
673 | | int DSA_do_check_signature(int *out_valid, const uint8_t *digest, |
674 | | size_t digest_len, const DSA_SIG *sig, |
675 | 0 | const DSA *dsa) { |
676 | 0 | auto *impl = FromOpaque(dsa); |
677 | |
|
678 | 0 | *out_valid = 0; |
679 | 0 | if (!dsa_check_key(impl)) { |
680 | 0 | return 0; |
681 | 0 | } |
682 | | |
683 | 0 | if (impl->pub_key == nullptr) { |
684 | 0 | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); |
685 | 0 | return 0; |
686 | 0 | } |
687 | | |
688 | 0 | int ret = 0; |
689 | 0 | BIGNUM u1, u2, t1; |
690 | 0 | BN_init(&u1); |
691 | 0 | BN_init(&u2); |
692 | 0 | BN_init(&t1); |
693 | 0 | BN_CTX *ctx = BN_CTX_new(); |
694 | 0 | { |
695 | 0 | if (ctx == nullptr) { |
696 | 0 | goto err; |
697 | 0 | } |
698 | | |
699 | 0 | if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || |
700 | 0 | BN_ucmp(sig->r, impl->q) >= 0) { |
701 | 0 | ret = 1; |
702 | 0 | goto err; |
703 | 0 | } |
704 | 0 | if (BN_is_zero(sig->s) || BN_is_negative(sig->s) || |
705 | 0 | BN_ucmp(sig->s, impl->q) >= 0) { |
706 | 0 | ret = 1; |
707 | 0 | goto err; |
708 | 0 | } |
709 | | |
710 | 0 | if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&impl->method_mont_p, |
711 | 0 | (CRYPTO_MUTEX *)&impl->method_mont_lock, |
712 | 0 | impl->p, ctx) || |
713 | 0 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&impl->method_mont_q, |
714 | 0 | (CRYPTO_MUTEX *)&impl->method_mont_lock, |
715 | 0 | impl->q, ctx)) { |
716 | 0 | goto err; |
717 | 0 | } |
718 | | |
719 | | // Calculate W = inv(S) mod Q, in the Montgomery domain. This is slightly |
720 | | // more efficiently computed as FromMont(s)^-1 = (s * R^-1)^-1 = s^-1 * R, |
721 | | // instead of ToMont(s^-1) = s^-1 * R. |
722 | 0 | if (!BN_from_montgomery(&u2, sig->s, impl->method_mont_q, ctx) || |
723 | 0 | !BN_mod_inverse(&u2, &u2, impl->q, ctx)) { |
724 | 0 | goto err; |
725 | 0 | } |
726 | | |
727 | | // save M in u1 |
728 | 0 | unsigned q_bits = BN_num_bits(impl->q); |
729 | 0 | if (digest_len > (q_bits >> 3)) { |
730 | | // if the digest length is greater than the size of q use the |
731 | | // BN_num_bits(impl->q) leftmost bits of the digest, see |
732 | | // fips 186-3, 4.2 |
733 | 0 | digest_len = (q_bits >> 3); |
734 | 0 | } |
735 | |
|
736 | 0 | if (BN_bin2bn(digest, digest_len, &u1) == nullptr) { |
737 | 0 | goto err; |
738 | 0 | } |
739 | | |
740 | | // u1 = M * w mod q. w was stored in the Montgomery domain while M was not, |
741 | | // so the result will already be out of the Montgomery domain. |
742 | 0 | if (!BN_mod_mul_montgomery(&u1, &u1, &u2, impl->method_mont_q, ctx)) { |
743 | 0 | goto err; |
744 | 0 | } |
745 | | |
746 | | // u2 = r * w mod q. w was stored in the Montgomery domain while r was not, |
747 | | // so the result will already be out of the Montgomery domain. |
748 | 0 | if (!BN_mod_mul_montgomery(&u2, sig->r, &u2, impl->method_mont_q, ctx)) { |
749 | 0 | goto err; |
750 | 0 | } |
751 | | |
752 | 0 | if (!BN_mod_exp2_mont(&t1, impl->g, &u1, impl->pub_key, &u2, impl->p, ctx, |
753 | 0 | impl->method_mont_p)) { |
754 | 0 | goto err; |
755 | 0 | } |
756 | | |
757 | | // let u1 = u1 mod q |
758 | 0 | if (!BN_mod(&u1, &t1, impl->q, ctx)) { |
759 | 0 | goto err; |
760 | 0 | } |
761 | | |
762 | | // V is now in u1. If the signature is correct, it will be |
763 | | // equal to R. |
764 | 0 | *out_valid = BN_ucmp(&u1, sig->r) == 0; |
765 | 0 | ret = 1; |
766 | 0 | } |
767 | | |
768 | 0 | err: |
769 | 0 | if (ret != 1) { |
770 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
771 | 0 | } |
772 | 0 | BN_CTX_free(ctx); |
773 | 0 | BN_free(&u1); |
774 | 0 | BN_free(&u2); |
775 | 0 | BN_free(&t1); |
776 | |
|
777 | 0 | return ret; |
778 | 0 | } |
779 | | |
780 | | int DSA_sign(int type, const uint8_t *digest, size_t digest_len, |
781 | 0 | uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) { |
782 | 0 | DSA_SIG *s = DSA_do_sign(digest, digest_len, dsa); |
783 | 0 | if (s == nullptr) { |
784 | 0 | *out_siglen = 0; |
785 | 0 | return 0; |
786 | 0 | } |
787 | | |
788 | 0 | *out_siglen = i2d_DSA_SIG(s, &out_sig); |
789 | 0 | DSA_SIG_free(s); |
790 | 0 | return 1; |
791 | 0 | } |
792 | | |
793 | | int DSA_verify(int type, const uint8_t *digest, size_t digest_len, |
794 | 0 | const uint8_t *sig, size_t sig_len, const DSA *dsa) { |
795 | 0 | int valid; |
796 | 0 | if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) { |
797 | 0 | return -1; |
798 | 0 | } |
799 | 0 | return valid; |
800 | 0 | } |
801 | | |
802 | | int DSA_check_signature(int *out_valid, const uint8_t *digest, |
803 | | size_t digest_len, const uint8_t *sig, size_t sig_len, |
804 | 0 | const DSA *dsa) { |
805 | 0 | DSA_SIG *s = nullptr; |
806 | 0 | int ret = 0; |
807 | 0 | uint8_t *der = nullptr; |
808 | |
|
809 | 0 | s = DSA_SIG_new(); |
810 | 0 | { |
811 | 0 | if (s == nullptr) { |
812 | 0 | goto err; |
813 | 0 | } |
814 | | |
815 | 0 | const uint8_t *sigp = sig; |
816 | 0 | if (d2i_DSA_SIG(&s, &sigp, sig_len) == nullptr || sigp != sig + sig_len) { |
817 | 0 | goto err; |
818 | 0 | } |
819 | | |
820 | | // Ensure that the signature uses DER and doesn't have trailing garbage. |
821 | 0 | int der_len = i2d_DSA_SIG(s, &der); |
822 | 0 | if (der_len < 0 || (size_t)der_len != sig_len || |
823 | 0 | OPENSSL_memcmp(sig, der, sig_len)) { |
824 | 0 | goto err; |
825 | 0 | } |
826 | | |
827 | 0 | ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa); |
828 | 0 | } |
829 | | |
830 | 0 | err: |
831 | 0 | OPENSSL_free(der); |
832 | 0 | DSA_SIG_free(s); |
833 | 0 | return ret; |
834 | 0 | } |
835 | | |
836 | | // der_len_len returns the number of bytes needed to represent a length of |len| |
837 | | // in DER. |
838 | 0 | static size_t der_len_len(size_t len) { |
839 | 0 | if (len < 0x80) { |
840 | 0 | return 1; |
841 | 0 | } |
842 | 0 | size_t ret = 1; |
843 | 0 | while (len > 0) { |
844 | 0 | ret++; |
845 | 0 | len >>= 8; |
846 | 0 | } |
847 | 0 | return ret; |
848 | 0 | } |
849 | | |
850 | 0 | int DSA_size(const DSA *dsa) { |
851 | 0 | auto *impl = FromOpaque(dsa); |
852 | |
|
853 | 0 | if (impl->q == nullptr) { |
854 | 0 | return 0; |
855 | 0 | } |
856 | | |
857 | 0 | size_t order_len = BN_num_bytes(impl->q); |
858 | | // Compute the maximum length of an |order_len| byte integer. Defensively |
859 | | // assume that the leading 0x00 is included. |
860 | 0 | size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len; |
861 | 0 | if (integer_len < order_len) { |
862 | 0 | return 0; |
863 | 0 | } |
864 | | // A DSA signature is two INTEGERs. |
865 | 0 | size_t value_len = 2 * integer_len; |
866 | 0 | if (value_len < integer_len) { |
867 | 0 | return 0; |
868 | 0 | } |
869 | | // Add the header. |
870 | 0 | size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len; |
871 | 0 | if (ret < value_len) { |
872 | 0 | return 0; |
873 | 0 | } |
874 | 0 | return ret; |
875 | 0 | } |
876 | | |
877 | | static int dsa_sign_setup(const DSAImpl *dsa, BN_CTX *ctx, BIGNUM **out_kinv, |
878 | 0 | BIGNUM **out_r) { |
879 | 0 | int ret = 0; |
880 | 0 | BIGNUM k; |
881 | 0 | BN_init(&k); |
882 | 0 | BIGNUM *r = BN_new(); |
883 | 0 | BIGNUM *kinv = BN_new(); |
884 | 0 | if (r == nullptr || kinv == nullptr || |
885 | | // Get random k |
886 | 0 | !BN_rand_range_ex(&k, 1, dsa->q) || |
887 | 0 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, |
888 | 0 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, |
889 | 0 | ctx) || |
890 | 0 | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q, |
891 | 0 | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q, |
892 | 0 | ctx) || |
893 | | // Compute r = (g^k mod p) mod q |
894 | 0 | !BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx, |
895 | 0 | dsa->method_mont_p)) { |
896 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
897 | 0 | goto err; |
898 | 0 | } |
899 | | // Note |BN_mod| below is not constant-time and may leak information about |
900 | | // |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not |
901 | | // easily performed in constant-time with Montgomery reduction. |
902 | | // |
903 | | // However, |r| at this point is g^k (mod p). It is almost the value of |r| |
904 | | // revealed in the signature anyway (g^k (mod p) (mod q)), going from it to |
905 | | // |k| would require computing a discrete log. |
906 | 0 | bn_declassify(r); |
907 | 0 | if (!BN_mod(r, r, dsa->q, ctx) || |
908 | | // Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little |
909 | | // Theorem. |
910 | 0 | !bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) { |
911 | 0 | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); |
912 | 0 | goto err; |
913 | 0 | } |
914 | | |
915 | 0 | BN_clear_free(*out_kinv); |
916 | 0 | *out_kinv = kinv; |
917 | 0 | kinv = nullptr; |
918 | |
|
919 | 0 | BN_clear_free(*out_r); |
920 | 0 | *out_r = r; |
921 | 0 | r = nullptr; |
922 | |
|
923 | 0 | ret = 1; |
924 | |
|
925 | 0 | err: |
926 | 0 | BN_clear_free(&k); |
927 | 0 | BN_clear_free(r); |
928 | 0 | BN_clear_free(kinv); |
929 | 0 | return ret; |
930 | 0 | } |
931 | | |
932 | | int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
933 | 0 | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
934 | 0 | return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func); |
935 | 0 | } |
936 | | |
937 | 0 | int DSA_set_ex_data(DSA *dsa, int idx, void *arg) { |
938 | 0 | auto *impl = FromOpaque(dsa); |
939 | 0 | return CRYPTO_set_ex_data(&impl->ex_data, idx, arg); |
940 | 0 | } |
941 | | |
942 | 0 | void *DSA_get_ex_data(const DSA *dsa, int idx) { |
943 | 0 | auto *impl = FromOpaque(dsa); |
944 | 0 | return CRYPTO_get_ex_data(&impl->ex_data, idx); |
945 | 0 | } |
946 | | |
947 | 0 | DH *DSA_dup_DH(const DSA *dsa) { |
948 | 0 | auto *impl = FromOpaque(dsa); |
949 | |
|
950 | 0 | if (dsa == nullptr) { |
951 | 0 | return nullptr; |
952 | 0 | } |
953 | | |
954 | 0 | UniquePtr<DH> ret(DH_new()); |
955 | 0 | auto *dh = FromOpaque(ret.get()); |
956 | 0 | if (ret == nullptr) { |
957 | 0 | return nullptr; |
958 | 0 | } |
959 | 0 | if (impl->q != nullptr) { |
960 | 0 | dh->priv_length = BN_num_bits(impl->q); |
961 | 0 | if ((dh->q = BN_dup(impl->q)) == nullptr) { |
962 | 0 | return nullptr; |
963 | 0 | } |
964 | 0 | } |
965 | 0 | if ((impl->p != nullptr && (dh->p = BN_dup(impl->p)) == nullptr) || |
966 | 0 | (impl->g != nullptr && (dh->g = BN_dup(impl->g)) == nullptr) || |
967 | 0 | (impl->pub_key != nullptr && |
968 | 0 | (dh->pub_key = BN_dup(impl->pub_key)) == nullptr) || |
969 | 0 | (impl->priv_key != nullptr && |
970 | 0 | (dh->priv_key = BN_dup(impl->priv_key)) == nullptr)) { |
971 | 0 | return nullptr; |
972 | 0 | } |
973 | | |
974 | 0 | return ret.release(); |
975 | 0 | } |