/src/boringssl/crypto/fipsmodule/bn/prime.cc.inc
Line | Count | Source |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/bn.h> |
16 | | |
17 | | #include <iterator> |
18 | | |
19 | | #include <openssl/err.h> |
20 | | #include <openssl/mem.h> |
21 | | |
22 | | #include "../../internal.h" |
23 | | #include "../../mem_internal.h" |
24 | | #include "internal.h" |
25 | | |
26 | | |
27 | | using namespace bssl; |
28 | | |
29 | | // kPrimes contains the first 1024 primes. |
30 | | static const uint16_t kPrimes[] = { |
31 | | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, |
32 | | 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, |
33 | | 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, |
34 | | 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, |
35 | | 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, |
36 | | 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, |
37 | | 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, |
38 | | 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, |
39 | | 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, |
40 | | 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, |
41 | | 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, |
42 | | 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, |
43 | | 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, |
44 | | 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, |
45 | | 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, |
46 | | 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, |
47 | | 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, |
48 | | 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, |
49 | | 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, |
50 | | 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, |
51 | | 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, |
52 | | 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, |
53 | | 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, |
54 | | 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, |
55 | | 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, |
56 | | 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, |
57 | | 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, |
58 | | 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, |
59 | | 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, |
60 | | 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, |
61 | | 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, |
62 | | 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, |
63 | | 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, |
64 | | 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, |
65 | | 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, |
66 | | 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, |
67 | | 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, |
68 | | 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, |
69 | | 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, |
70 | | 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, |
71 | | 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, |
72 | | 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, |
73 | | 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, |
74 | | 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, |
75 | | 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, |
76 | | 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, |
77 | | 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, |
78 | | 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, |
79 | | 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, |
80 | | 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, |
81 | | 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, |
82 | | 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, |
83 | | 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, |
84 | | 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, |
85 | | 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, |
86 | | 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, |
87 | | 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, |
88 | | 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, |
89 | | 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, |
90 | | 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, |
91 | | 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, |
92 | | 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, |
93 | | 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, |
94 | | 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, |
95 | | 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, |
96 | | 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, |
97 | | 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, |
98 | | 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, |
99 | | 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, |
100 | | 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, |
101 | | 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, |
102 | | 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, |
103 | | 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, |
104 | | 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, |
105 | | 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, |
106 | | 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, |
107 | | 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, |
108 | | 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, |
109 | | 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, |
110 | | 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, |
111 | | 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, |
112 | | 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, |
113 | | 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, |
114 | | 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, |
115 | | 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, |
116 | | 8117, 8123, 8147, 8161, |
117 | | }; |
118 | | |
119 | | // BN_prime_checks_for_size returns the number of Miller-Rabin iterations |
120 | | // necessary for generating a 'bits'-bit candidate prime. |
121 | | // |
122 | | // |
123 | | // This table is generated using the algorithm of FIPS PUB 186-5 |
124 | | // Digital Signature Standard (DSS), section C.1, page 72. |
125 | | // (https://doi.org/10.6028/NIST.FIPS.186-5). |
126 | | // The following magma script was used to generate the output: |
127 | | // securitybits:=125; |
128 | | // k:=1024; |
129 | | // for t:=1 to 65 do |
130 | | // for M:=3 to Floor(2*Sqrt(k-1)-1) do |
131 | | // S:=0; |
132 | | // // Sum over m |
133 | | // for m:=3 to M do |
134 | | // s:=0; |
135 | | // // Sum over j |
136 | | // for j:=2 to m do |
137 | | // s+:=(RealField(32)!2)^-(j+(k-1)/j); |
138 | | // end for; |
139 | | // S+:=2^(m-(m-1)*t)*s; |
140 | | // end for; |
141 | | // A:=2^(k-2-M*t); |
142 | | // B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; |
143 | | // pkt:=2.00743*Log(2)*k*2^-k*(A+B); |
144 | | // seclevel:=Floor(-Log(2,pkt)); |
145 | | // if seclevel ge securitybits then |
146 | | // printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; |
147 | | // break; |
148 | | // end if; |
149 | | // end for; |
150 | | // if seclevel ge securitybits then break; end if; |
151 | | // end for; |
152 | | // |
153 | | // It can be run online at: http://magma.maths.usyd.edu.au/calc |
154 | | // And will output: |
155 | | // k: 1024, security: 129 bits (t: 6, M: 23) |
156 | | // k is the number of bits of the prime, securitybits is the level we want to |
157 | | // reach. |
158 | | // prime length | RSA key size | # MR tests | security level |
159 | | // -------------+--------------|------------+--------------- |
160 | | // (b) >= 6394 | >= 12788 | 3 | 256 bit |
161 | | // (b) >= 3747 | >= 7494 | 3 | 192 bit |
162 | | // (b) >= 1345 | >= 2690 | 4 | 128 bit |
163 | | // (b) >= 1080 | >= 2160 | 5 | 128 bit |
164 | | // (b) >= 852 | >= 1704 | 5 | 112 bit |
165 | | // (b) >= 476 | >= 952 | 5 | 80 bit |
166 | | // (b) >= 400 | >= 800 | 6 | 80 bit |
167 | | // (b) >= 347 | >= 694 | 7 | 80 bit |
168 | | // (b) >= 308 | >= 616 | 8 | 80 bit |
169 | | // (b) >= 55 | >= 110 | 27 | 64 bit |
170 | | // (b) >= 6 | >= 12 | 34 | 64 bit |
171 | 0 | static int BN_prime_checks_for_size(int bits) { |
172 | 0 | if (bits >= 3747) { |
173 | 0 | return 3; |
174 | 0 | } |
175 | 0 | if (bits >= 1345) { |
176 | 0 | return 4; |
177 | 0 | } |
178 | 0 | if (bits >= 476) { |
179 | 0 | return 5; |
180 | 0 | } |
181 | 0 | if (bits >= 400) { |
182 | 0 | return 6; |
183 | 0 | } |
184 | 0 | if (bits >= 347) { |
185 | 0 | return 7; |
186 | 0 | } |
187 | 0 | if (bits >= 308) { |
188 | 0 | return 8; |
189 | 0 | } |
190 | 0 | if (bits >= 55) { |
191 | 0 | return 27; |
192 | 0 | } |
193 | 0 | return 34; |
194 | 0 | } |
195 | | |
196 | | // num_trial_division_primes returns the number of primes to try with trial |
197 | | // division before using more expensive checks. For larger numbers, the value |
198 | | // of excluding a candidate with trial division is larger. |
199 | 0 | static size_t num_trial_division_primes(const BIGNUM *n) { |
200 | 0 | if (n->width * BN_BITS2 > 1024) { |
201 | 0 | return std::size(kPrimes); |
202 | 0 | } |
203 | 0 | return std::size(kPrimes) / 2; |
204 | 0 | } |
205 | | |
206 | | // BN_PRIME_CHECKS_BLINDED is the iteration count for blinding the constant-time |
207 | | // primality test. See |BN_primality_test| for details. This number is selected |
208 | | // so that, for a candidate N-bit RSA prime, picking |BN_PRIME_CHECKS_BLINDED| |
209 | | // random N-bit numbers will have at least |BN_prime_checks_for_size(N)| values |
210 | | // in range with high probability. |
211 | | // |
212 | | // The following Python script computes the blinding factor needed for the |
213 | | // corresponding iteration count. |
214 | | /* |
215 | | import math |
216 | | |
217 | | # We choose candidate RSA primes between sqrt(2)/2 * 2^N and 2^N and select |
218 | | # witnesses by generating random N-bit numbers. Thus the probability of |
219 | | # selecting one in range is at least sqrt(2)/2. |
220 | | p = math.sqrt(2) / 2 |
221 | | |
222 | | # Target around 2^-8 probability of the blinding being insufficient given that |
223 | | # key generation is a one-time, noisy operation. |
224 | | epsilon = 2**-8 |
225 | | |
226 | | def choose(a, b): |
227 | | r = 1 |
228 | | for i in xrange(b): |
229 | | r *= a - i |
230 | | r /= (i + 1) |
231 | | return r |
232 | | |
233 | | def failure_rate(min_uniform, iterations): |
234 | | """ Returns the probability that, for |iterations| candidate witnesses, fewer |
235 | | than |min_uniform| of them will be uniform. """ |
236 | | prob = 0.0 |
237 | | for i in xrange(min_uniform): |
238 | | prob += (choose(iterations, i) * |
239 | | p**i * (1-p)**(iterations - i)) |
240 | | return prob |
241 | | |
242 | | for min_uniform in (3, 4, 5, 6, 8, 13, 19, 28): |
243 | | # Find the smallest number of iterations under the target failure rate. |
244 | | iterations = min_uniform |
245 | | while True: |
246 | | prob = failure_rate(min_uniform, iterations) |
247 | | if prob < epsilon: |
248 | | print min_uniform, iterations, prob |
249 | | break |
250 | | iterations += 1 |
251 | | |
252 | | Output: |
253 | | 3 9 0.00368894873911 |
254 | | 4 11 0.00363319494662 |
255 | | 5 13 0.00336215573898 |
256 | | 6 15 0.00300145783158 |
257 | | 8 19 0.00225214119331 |
258 | | 13 27 0.00385610026955 |
259 | | 19 38 0.0021410539126 |
260 | | 28 52 0.00325405801769 |
261 | | |
262 | | 16 iterations suffices for 400-bit primes and larger (6 uniform samples needed), |
263 | | which is already well below the minimum acceptable key size for RSA. |
264 | | */ |
265 | 0 | #define BN_PRIME_CHECKS_BLINDED 16 |
266 | | |
267 | | static int probable_prime(BIGNUM *rnd, int bits); |
268 | | static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, |
269 | | const BIGNUM *rem, BN_CTX *ctx); |
270 | | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, |
271 | | const BIGNUM *rem, BN_CTX *ctx); |
272 | | |
273 | 0 | BN_GENCB *BN_GENCB_new() { return NewZeroed<BN_GENCB>(); } |
274 | | |
275 | 0 | void BN_GENCB_free(BN_GENCB *callback) { Delete(callback); } |
276 | | |
277 | | void BN_GENCB_set(BN_GENCB *callback, |
278 | 0 | int (*f)(int event, int n, struct bn_gencb_st *), void *arg) { |
279 | 0 | callback->callback = f; |
280 | 0 | callback->arg = arg; |
281 | 0 | } |
282 | | |
283 | 0 | int BN_GENCB_call(BN_GENCB *callback, int event, int n) { |
284 | 0 | if (!callback) { |
285 | 0 | return 1; |
286 | 0 | } |
287 | | |
288 | 0 | return callback->callback(event, n, callback); |
289 | 0 | } |
290 | | |
291 | 0 | void *BN_GENCB_get_arg(const BN_GENCB *callback) { return callback->arg; } |
292 | | |
293 | | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, |
294 | 0 | const BIGNUM *rem, BN_GENCB *cb) { |
295 | 0 | BIGNUM *t; |
296 | 0 | int i, j, c1 = 0; |
297 | 0 | int checks = BN_prime_checks_for_size(bits); |
298 | |
|
299 | 0 | if (bits < 2) { |
300 | | // There are no prime numbers this small. |
301 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL); |
302 | 0 | return 0; |
303 | 0 | } else if (bits == 2 && safe) { |
304 | | // The smallest safe prime (7) is three bits. |
305 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL); |
306 | 0 | return 0; |
307 | 0 | } |
308 | | |
309 | 0 | UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
310 | 0 | if (ctx == nullptr) { |
311 | 0 | return 0; |
312 | 0 | } |
313 | 0 | BN_CTXScope scope(ctx.get()); |
314 | 0 | t = BN_CTX_get(ctx.get()); |
315 | 0 | if (!t) { |
316 | 0 | return 0; |
317 | 0 | } |
318 | | |
319 | 0 | loop: |
320 | | // make a random number and set the top and bottom bits |
321 | 0 | if (add == nullptr) { |
322 | 0 | if (!probable_prime(ret, bits)) { |
323 | 0 | return 0; |
324 | 0 | } |
325 | 0 | } else { |
326 | 0 | if (safe) { |
327 | 0 | if (!probable_prime_dh_safe(ret, bits, add, rem, ctx.get())) { |
328 | 0 | return 0; |
329 | 0 | } |
330 | 0 | } else { |
331 | 0 | if (!probable_prime_dh(ret, bits, add, rem, ctx.get())) { |
332 | 0 | return 0; |
333 | 0 | } |
334 | 0 | } |
335 | 0 | } |
336 | | |
337 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) { |
338 | | // aborted |
339 | 0 | return 0; |
340 | 0 | } |
341 | | |
342 | 0 | if (!safe) { |
343 | 0 | i = BN_is_prime_fasttest_ex(ret, checks, ctx.get(), 0, cb); |
344 | 0 | if (i == -1) { |
345 | 0 | return 0; |
346 | 0 | } else if (i == 0) { |
347 | 0 | goto loop; |
348 | 0 | } |
349 | 0 | } else { |
350 | | // for "safe prime" generation, check that (p-1)/2 is prime. Since a prime |
351 | | // is odd, We just need to divide by 2 |
352 | 0 | if (!BN_rshift1(t, ret)) { |
353 | 0 | return 0; |
354 | 0 | } |
355 | | |
356 | | // Interleave |ret| and |t|'s primality tests to avoid paying the full |
357 | | // iteration count on |ret| only to quickly discover |t| is composite. |
358 | | // |
359 | | // TODO(davidben): This doesn't quite work because an iteration count of 1 |
360 | | // still runs the blinding mechanism. |
361 | 0 | for (i = 0; i < checks; i++) { |
362 | 0 | j = BN_is_prime_fasttest_ex(ret, 1, ctx.get(), 0, nullptr); |
363 | 0 | if (j == -1) { |
364 | 0 | return 0; |
365 | 0 | } else if (j == 0) { |
366 | 0 | goto loop; |
367 | 0 | } |
368 | | |
369 | 0 | j = BN_is_prime_fasttest_ex(t, 1, ctx.get(), 0, nullptr); |
370 | 0 | if (j == -1) { |
371 | 0 | return 0; |
372 | 0 | } else if (j == 0) { |
373 | 0 | goto loop; |
374 | 0 | } |
375 | | |
376 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i)) { |
377 | 0 | return 0; |
378 | 0 | } |
379 | | // We have a safe prime test pass |
380 | 0 | } |
381 | 0 | } |
382 | | |
383 | | // we have a prime :-) |
384 | 0 | return 1; |
385 | 0 | } |
386 | | |
387 | 0 | static int bn_trial_division(uint16_t *out, const BIGNUM *bn) { |
388 | 0 | const size_t num_primes = num_trial_division_primes(bn); |
389 | 0 | for (size_t i = 1; i < num_primes; i++) { |
390 | | // During RSA key generation, |bn| may be secret, but only if |bn| was |
391 | | // prime, so it is safe to leak failed trial divisions. |
392 | 0 | if (constant_time_declassify_int(bn_mod_u16_consttime(bn, kPrimes[i]) == |
393 | 0 | 0)) { |
394 | 0 | *out = kPrimes[i]; |
395 | 0 | return 1; |
396 | 0 | } |
397 | 0 | } |
398 | 0 | return 0; |
399 | 0 | } |
400 | | |
401 | 0 | int bssl::bn_odd_number_is_obviously_composite(const BIGNUM *bn) { |
402 | 0 | uint16_t prime; |
403 | 0 | return bn_trial_division(&prime, bn) && !BN_is_word(bn, prime); |
404 | 0 | } |
405 | | |
406 | | int bssl::bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin, |
407 | 0 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
408 | | // This function corresponds to steps 1 through 3 of FIPS 186-5, B.3.1. |
409 | 0 | const BIGNUM *w = &mont->N; |
410 | | // Note we do not call |BN_CTX_start| in this function. We intentionally |
411 | | // allocate values in the containing scope so they outlive this function. |
412 | 0 | miller_rabin->w1 = BN_CTX_get(ctx); |
413 | 0 | miller_rabin->m = BN_CTX_get(ctx); |
414 | 0 | miller_rabin->one_mont = BN_CTX_get(ctx); |
415 | 0 | miller_rabin->w1_mont = BN_CTX_get(ctx); |
416 | 0 | if (miller_rabin->w1 == nullptr || // |
417 | 0 | miller_rabin->m == nullptr || // |
418 | 0 | miller_rabin->one_mont == nullptr || // |
419 | 0 | miller_rabin->w1_mont == nullptr) { |
420 | 0 | return 0; |
421 | 0 | } |
422 | | |
423 | | // See FIPS 186-5, B.3.1, steps 1 through 3. |
424 | 0 | if (!bn_usub_consttime(miller_rabin->w1, w, BN_value_one())) { |
425 | 0 | return 0; |
426 | 0 | } |
427 | 0 | miller_rabin->a = BN_count_low_zero_bits(miller_rabin->w1); |
428 | 0 | if (!bn_rshift_secret_shift(miller_rabin->m, miller_rabin->w1, |
429 | 0 | miller_rabin->a, ctx)) { |
430 | 0 | return 0; |
431 | 0 | } |
432 | 0 | miller_rabin->w_bits = BN_num_bits(w); |
433 | | |
434 | | // Precompute some values in Montgomery form. |
435 | 0 | if (!bn_one_to_montgomery(miller_rabin->one_mont, mont, ctx) || |
436 | | // w - 1 is -1 mod w, so we can compute it in the Montgomery domain, -R, |
437 | | // with a subtraction. (|one_mont| cannot be zero.) |
438 | 0 | !bn_usub_consttime(miller_rabin->w1_mont, w, miller_rabin->one_mont)) { |
439 | 0 | return 0; |
440 | 0 | } |
441 | | |
442 | 0 | return 1; |
443 | 0 | } |
444 | | |
445 | | int bssl::bn_miller_rabin_iteration(const BN_MILLER_RABIN *miller_rabin, |
446 | | int *out_is_possibly_prime, const BIGNUM *b, |
447 | 0 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
448 | | // This function corresponds to steps 4.3 through 4.5 of FIPS 186-5, B.3.1. |
449 | 0 | BN_CTXScope scope(ctx); |
450 | | |
451 | | // Step 4.3. We use Montgomery-encoding for better performance and to avoid |
452 | | // timing leaks. |
453 | 0 | const BIGNUM *w = &mont->N; |
454 | 0 | BIGNUM *z = BN_CTX_get(ctx); |
455 | 0 | crypto_word_t is_possibly_prime; |
456 | 0 | if (z == nullptr || |
457 | 0 | !BN_mod_exp_mont_consttime(z, b, miller_rabin->m, w, ctx, mont) || |
458 | 0 | !BN_to_montgomery(z, z, mont, ctx)) { |
459 | 0 | return 0; |
460 | 0 | } |
461 | | |
462 | | // is_possibly_prime is all ones if we have determined |b| is not a composite |
463 | | // witness for |w|. This is equivalent to going to step 4.7 in the original |
464 | | // algorithm. To avoid timing leaks, we run the algorithm to the end for prime |
465 | | // inputs. |
466 | 0 | is_possibly_prime = 0; |
467 | | |
468 | | // Step 4.4. If z = 1 or z = w-1, b is not a composite witness and w is still |
469 | | // possibly prime. |
470 | 0 | is_possibly_prime = BN_equal_consttime(z, miller_rabin->one_mont) | |
471 | 0 | BN_equal_consttime(z, miller_rabin->w1_mont); |
472 | 0 | is_possibly_prime = 0 - is_possibly_prime; // Make it all zeros or all ones. |
473 | | |
474 | | // Step 4.5. |
475 | | // |
476 | | // To avoid leaking |a|, we run the loop to |w_bits| and mask off all |
477 | | // iterations once |j| = |a|. |
478 | 0 | for (int j = 1; j < miller_rabin->w_bits; j++) { |
479 | 0 | if (constant_time_declassify_w(constant_time_eq_int(j, miller_rabin->a) & |
480 | 0 | ~is_possibly_prime)) { |
481 | | // If the loop is done and we haven't seen z = 1 or z = w-1 yet, the |
482 | | // value is composite and we can break in variable time. |
483 | 0 | break; |
484 | 0 | } |
485 | | |
486 | | // Step 4.5.1. |
487 | 0 | if (!BN_mod_mul_montgomery(z, z, z, mont, ctx)) { |
488 | 0 | return 0; |
489 | 0 | } |
490 | | |
491 | | // Step 4.5.2. If z = w-1 and the loop is not done, this is not a composite |
492 | | // witness. |
493 | 0 | crypto_word_t z_is_w1_mont = BN_equal_consttime(z, miller_rabin->w1_mont); |
494 | 0 | z_is_w1_mont = 0 - z_is_w1_mont; // Make it all zeros or all ones. |
495 | 0 | is_possibly_prime |= z_is_w1_mont; // Go to step 4.7 if |z_is_w1_mont|. |
496 | | |
497 | | // Step 4.5.3. If z = 1 and the loop is not done, the previous value of z |
498 | | // was not -1. There are no non-trivial square roots of 1 modulo a prime, so |
499 | | // w is composite and we may exit in variable time. |
500 | 0 | if (constant_time_declassify_w( |
501 | 0 | BN_equal_consttime(z, miller_rabin->one_mont) & |
502 | 0 | ~is_possibly_prime)) { |
503 | 0 | break; |
504 | 0 | } |
505 | 0 | } |
506 | | |
507 | 0 | *out_is_possibly_prime = constant_time_declassify_w(is_possibly_prime) & 1; |
508 | 0 | return 1; |
509 | 0 | } |
510 | | |
511 | | int BN_primality_test(int *out_is_probably_prime, const BIGNUM *w, int checks, |
512 | 0 | BN_CTX *ctx, int do_trial_division, BN_GENCB *cb) { |
513 | | // This function's secrecy and performance requirements come from RSA key |
514 | | // generation. We generate RSA keys by selecting two large, secret primes with |
515 | | // rejection sampling. |
516 | | // |
517 | | // We thus treat |w| as secret if turns out to be a large prime. However, if |
518 | | // |w| is composite, we treat this and |w| itself as public. (Conversely, if |
519 | | // |w| is prime, that it is prime is public. Only the value is secret.) This |
520 | | // is fine for RSA key generation, but note it is important that we use |
521 | | // rejection sampling, with each candidate prime chosen independently. This |
522 | | // would not work for, e.g., an algorithm which looked for primes in |
523 | | // consecutive integers. These assumptions allow us to discard composites |
524 | | // quickly. We additionally treat |w| as public when it is a small prime to |
525 | | // simplify trial decryption and some edge cases. |
526 | | // |
527 | | // One RSA key generation will call this function on exactly two primes and |
528 | | // many more composites. The overall cost is a combination of several factors: |
529 | | // |
530 | | // 1. Checking if |w| is divisible by a small prime is much faster than |
531 | | // learning it is composite by Miller-Rabin (see below for details on that |
532 | | // cost). Trial division by p saves 1/p of Miller-Rabin calls, so this is |
533 | | // worthwhile until p exceeds the ratio of the two costs. |
534 | | // |
535 | | // 2. For a random (i.e. non-adversarial) candidate large prime and candidate |
536 | | // witness, the probability of false witness is very low. (This is why FIPS |
537 | | // 186-5 only requires a few iterations.) Thus composites not discarded by |
538 | | // trial decryption, in practice, cost one Miller-Rabin iteration. Only the |
539 | | // two actual primes cost the full iteration count. |
540 | | // |
541 | | // 3. A Miller-Rabin iteration is a modular exponentiation plus |a| additional |
542 | | // modular squares, where |a| is the number of factors of two in |w-1|. |a| |
543 | | // is likely small (the distribution falls exponentially), but it is also |
544 | | // potentially secret, so we loop up to its log(w) upper bound when |w| is |
545 | | // prime. When |w| is composite, we break early, so only two calls pay this |
546 | | // cost. (Note that all calls pay the modular exponentiation which is, |
547 | | // itself, log(w) modular multiplications and squares.) |
548 | | // |
549 | | // 4. While there are only two prime calls, they multiplicatively pay the full |
550 | | // costs of (2) and (3). |
551 | | // |
552 | | // 5. After the primes are chosen, RSA keys derive some values from the |
553 | | // primes, but this cost is negligible in comparison. |
554 | |
|
555 | 0 | *out_is_probably_prime = 0; |
556 | |
|
557 | 0 | if (BN_cmp(w, BN_value_one()) <= 0) { |
558 | 0 | return 1; |
559 | 0 | } |
560 | | |
561 | 0 | if (!BN_is_odd(w)) { |
562 | | // The only even prime is two. |
563 | 0 | *out_is_probably_prime = BN_is_word(w, 2); |
564 | 0 | return 1; |
565 | 0 | } |
566 | | |
567 | | // Miller-Rabin does not work for three. |
568 | 0 | if (BN_is_word(w, 3)) { |
569 | 0 | *out_is_probably_prime = 1; |
570 | 0 | return 1; |
571 | 0 | } |
572 | | |
573 | 0 | if (do_trial_division) { |
574 | | // Perform additional trial division checks to discard small primes. |
575 | 0 | uint16_t prime; |
576 | 0 | if (bn_trial_division(&prime, w)) { |
577 | 0 | *out_is_probably_prime = BN_is_word(w, prime); |
578 | 0 | return 1; |
579 | 0 | } |
580 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, -1)) { |
581 | 0 | return 0; |
582 | 0 | } |
583 | 0 | } |
584 | | |
585 | 0 | if (checks == BN_prime_checks_for_generation) { |
586 | 0 | checks = BN_prime_checks_for_size(BN_num_bits(w)); |
587 | 0 | } |
588 | |
|
589 | 0 | UniquePtr<BN_CTX> new_ctx; |
590 | 0 | if (ctx == nullptr) { |
591 | 0 | new_ctx.reset(BN_CTX_new()); |
592 | 0 | if (new_ctx == nullptr) { |
593 | 0 | return 0; |
594 | 0 | } |
595 | 0 | ctx = new_ctx.get(); |
596 | 0 | } |
597 | | |
598 | | // See B.3.1 from FIPS 186-5. |
599 | 0 | BN_CTXScope scope(ctx); |
600 | 0 | BIGNUM *b = BN_CTX_get(ctx); |
601 | 0 | UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_consttime(w, ctx)); |
602 | 0 | BN_MILLER_RABIN miller_rabin; |
603 | 0 | crypto_word_t uniform_iterations = 0; |
604 | 0 | if (b == nullptr || mont == nullptr || |
605 | | // Steps 1-3. |
606 | 0 | !bn_miller_rabin_init(&miller_rabin, mont.get(), ctx)) { |
607 | 0 | return 0; |
608 | 0 | } |
609 | | |
610 | | // The following loop performs in inner iteration of the Miller-Rabin |
611 | | // Primality test (Step 4). |
612 | | // |
613 | | // The algorithm as specified in FIPS 186-5 leaks information on |w|, the RSA |
614 | | // private key. Instead, we run through each iteration unconditionally, |
615 | | // performing modular multiplications, masking off any effects to behave |
616 | | // equivalently to the specified algorithm. |
617 | | // |
618 | | // We also blind the number of values of |b| we try. Steps 4.1–4.2 say to |
619 | | // discard out-of-range values. To avoid leaking information on |w|, we use |
620 | | // |bn_rand_secret_range| which, rather than discarding bad values, adjusts |
621 | | // them to be in range. Though not uniformly selected, these adjusted values |
622 | | // are still usable as Miller-Rabin checks. |
623 | | // |
624 | | // Miller-Rabin is already probabilistic, so we could reach the desired |
625 | | // confidence levels by just suitably increasing the iteration count. However, |
626 | | // to align with FIPS 186-5, we use a more pessimal analysis: we do not count |
627 | | // the non-uniform values towards the iteration count. As a result, this |
628 | | // function is more complex and has more timing risk than necessary. |
629 | | // |
630 | | // We count both total iterations and uniform ones and iterate until we've |
631 | | // reached at least |BN_PRIME_CHECKS_BLINDED| and |iterations|, respectively. |
632 | | // If the latter is large enough, it will be the limiting factor with high |
633 | | // probability and we won't leak information. |
634 | | // |
635 | | // Note this blinding does not impact most calls when picking primes because |
636 | | // composites are rejected early. Only the two secret primes see extra work. |
637 | | |
638 | | // Using |constant_time_lt_w| seems to prevent the compiler from optimizing |
639 | | // this into two jumps. |
640 | 0 | for (int i = 1; constant_time_declassify_w( |
641 | 0 | (i <= BN_PRIME_CHECKS_BLINDED) | |
642 | 0 | constant_time_lt_w(uniform_iterations, checks)); |
643 | 0 | i++) { |
644 | | // Step 4.1-4.2 |
645 | 0 | int is_uniform; |
646 | 0 | if (!bn_rand_secret_range(b, &is_uniform, 2, miller_rabin.w1)) { |
647 | 0 | return 0; |
648 | 0 | } |
649 | 0 | uniform_iterations += is_uniform; |
650 | | |
651 | | // Steps 4.3-4.5 |
652 | 0 | int is_possibly_prime = 0; |
653 | 0 | if (!bn_miller_rabin_iteration(&miller_rabin, &is_possibly_prime, b, |
654 | 0 | mont.get(), ctx)) { |
655 | 0 | return 0; |
656 | 0 | } |
657 | | |
658 | 0 | if (!is_possibly_prime) { |
659 | | // Step 4.6. We did not see z = w-1 before z = 1, so w must be composite. |
660 | 0 | *out_is_probably_prime = 0; |
661 | 0 | return 1; |
662 | 0 | } |
663 | | |
664 | | // Step 4.7 |
665 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) { |
666 | 0 | return 0; |
667 | 0 | } |
668 | 0 | } |
669 | | |
670 | 0 | declassify_assert(uniform_iterations >= (crypto_word_t)checks); |
671 | 0 | *out_is_probably_prime = 1; |
672 | 0 | return 1; |
673 | 0 | } |
674 | | |
675 | | int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, |
676 | 0 | BN_GENCB *cb) { |
677 | 0 | return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb); |
678 | 0 | } |
679 | | |
680 | | int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx, |
681 | 0 | int do_trial_division, BN_GENCB *cb) { |
682 | 0 | int is_probably_prime; |
683 | 0 | if (!BN_primality_test(&is_probably_prime, a, checks, ctx, do_trial_division, |
684 | 0 | cb)) { |
685 | 0 | return -1; |
686 | 0 | } |
687 | 0 | return is_probably_prime; |
688 | 0 | } |
689 | | |
690 | | int BN_enhanced_miller_rabin_primality_test( |
691 | | enum bn_primality_result_t *out_result, const BIGNUM *w, int checks, |
692 | 0 | BN_CTX *ctx, BN_GENCB *cb) { |
693 | | // Enhanced Miller-Rabin is only valid on odd integers greater than 3. |
694 | 0 | if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) { |
695 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT); |
696 | 0 | return 0; |
697 | 0 | } |
698 | | |
699 | 0 | if (checks == BN_prime_checks_for_generation) { |
700 | 0 | checks = BN_prime_checks_for_size(BN_num_bits(w)); |
701 | 0 | } |
702 | |
|
703 | 0 | BN_CTXScope scope(ctx); |
704 | 0 | BIGNUM *w1 = BN_CTX_get(ctx); |
705 | 0 | if (w1 == nullptr || !BN_copy(w1, w) || !BN_sub_word(w1, 1)) { |
706 | 0 | return 0; |
707 | 0 | } |
708 | | |
709 | | // Write w1 as m*2^a (Steps 1 and 2). |
710 | 0 | int a = 0; |
711 | 0 | while (!BN_is_bit_set(w1, a)) { |
712 | 0 | a++; |
713 | 0 | } |
714 | 0 | BIGNUM *m = BN_CTX_get(ctx); |
715 | 0 | if (m == nullptr || !BN_rshift(m, w1, a)) { |
716 | 0 | return 0; |
717 | 0 | } |
718 | | |
719 | 0 | BIGNUM *b = BN_CTX_get(ctx); |
720 | 0 | BIGNUM *g = BN_CTX_get(ctx); |
721 | 0 | BIGNUM *z = BN_CTX_get(ctx); |
722 | 0 | BIGNUM *x = BN_CTX_get(ctx); |
723 | 0 | BIGNUM *x1 = BN_CTX_get(ctx); |
724 | 0 | if (b == nullptr || g == nullptr || z == nullptr || x == nullptr || |
725 | 0 | x1 == nullptr) { |
726 | 0 | return 0; |
727 | 0 | } |
728 | | |
729 | | // Montgomery setup for computations mod w |
730 | 0 | UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_for_modulus(w, ctx)); |
731 | 0 | if (mont == nullptr) { |
732 | 0 | return 0; |
733 | 0 | } |
734 | | |
735 | | // The following loop performs in inner iteration of the Enhanced Miller-Rabin |
736 | | // Primality test (Step 4). |
737 | 0 | for (int i = 1; i <= checks; i++) { |
738 | | // Step 4.1-4.2 |
739 | 0 | if (!BN_rand_range_ex(b, 2, w1)) { |
740 | 0 | return 0; |
741 | 0 | } |
742 | | |
743 | | // Step 4.3-4.4 |
744 | 0 | if (!BN_gcd(g, b, w, ctx)) { |
745 | 0 | return 0; |
746 | 0 | } |
747 | 0 | if (BN_cmp_word(g, 1) > 0) { |
748 | 0 | *out_result = bn_composite; |
749 | 0 | return 1; |
750 | 0 | } |
751 | | |
752 | | // Step 4.5 |
753 | 0 | if (!BN_mod_exp_mont(z, b, m, w, ctx, mont.get())) { |
754 | 0 | return 0; |
755 | 0 | } |
756 | | |
757 | | // Step 4.6 |
758 | 0 | if (BN_is_one(z) || BN_cmp(z, w1) == 0) { |
759 | 0 | goto loop; |
760 | 0 | } |
761 | | |
762 | | // Step 4.7 |
763 | 0 | for (int j = 1; j < a; j++) { |
764 | 0 | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) { |
765 | 0 | return 0; |
766 | 0 | } |
767 | 0 | if (BN_cmp(z, w1) == 0) { |
768 | 0 | goto loop; |
769 | 0 | } |
770 | 0 | if (BN_is_one(z)) { |
771 | 0 | goto composite; |
772 | 0 | } |
773 | 0 | } |
774 | | |
775 | | // Step 4.8-4.9 |
776 | 0 | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) { |
777 | 0 | return 0; |
778 | 0 | } |
779 | | |
780 | | // Step 4.10-4.11 |
781 | 0 | if (!BN_is_one(z) && !BN_copy(x, z)) { |
782 | 0 | return 0; |
783 | 0 | } |
784 | | |
785 | 0 | composite: |
786 | | // Step 4.12-4.14 |
787 | 0 | if (!BN_copy(x1, x) || !BN_sub_word(x1, 1) || !BN_gcd(g, x1, w, ctx)) { |
788 | 0 | return 0; |
789 | 0 | } |
790 | 0 | if (BN_cmp_word(g, 1) > 0) { |
791 | 0 | *out_result = bn_composite; |
792 | 0 | } else { |
793 | 0 | *out_result = bn_non_prime_power_composite; |
794 | 0 | } |
795 | |
|
796 | 0 | return 1; |
797 | | |
798 | 0 | loop: |
799 | | // Step 4.15 |
800 | 0 | if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) { |
801 | 0 | return 0; |
802 | 0 | } |
803 | 0 | } |
804 | | |
805 | 0 | *out_result = bn_probably_prime; |
806 | 0 | return 1; |
807 | 0 | } |
808 | | |
809 | 0 | static int probable_prime(BIGNUM *rnd, int bits) { |
810 | 0 | do { |
811 | 0 | if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) { |
812 | 0 | return 0; |
813 | 0 | } |
814 | 0 | } while (bn_odd_number_is_obviously_composite(rnd)); |
815 | 0 | return 1; |
816 | 0 | } |
817 | | |
818 | | static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, |
819 | 0 | const BIGNUM *rem, BN_CTX *ctx) { |
820 | 0 | BN_CTXScope scope(ctx); |
821 | 0 | BIGNUM *t1; |
822 | 0 | if ((t1 = BN_CTX_get(ctx)) == nullptr) { |
823 | 0 | return 0; |
824 | 0 | } |
825 | | |
826 | 0 | if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) { |
827 | 0 | return 0; |
828 | 0 | } |
829 | | |
830 | | // we need ((rnd-rem) % add) == 0 |
831 | 0 | if (!BN_mod(t1, rnd, add, ctx)) { |
832 | 0 | return 0; |
833 | 0 | } |
834 | 0 | if (!BN_sub(rnd, rnd, t1)) { |
835 | 0 | return 0; |
836 | 0 | } |
837 | 0 | if (rem == nullptr) { |
838 | 0 | if (!BN_add_word(rnd, 1)) { |
839 | 0 | return 0; |
840 | 0 | } |
841 | 0 | } else { |
842 | 0 | if (!BN_add(rnd, rnd, rem)) { |
843 | 0 | return 0; |
844 | 0 | } |
845 | 0 | } |
846 | | // we now have a random number 'rand' to test. |
847 | | |
848 | 0 | size_t num_primes = num_trial_division_primes(rnd); |
849 | 0 | loop: |
850 | 0 | for (size_t i = 1; i < num_primes; i++) { |
851 | | // check that rnd is a prime |
852 | 0 | if (bn_mod_u16_consttime(rnd, kPrimes[i]) <= 1) { |
853 | 0 | if (!BN_add(rnd, rnd, add)) { |
854 | 0 | return 0; |
855 | 0 | } |
856 | 0 | goto loop; |
857 | 0 | } |
858 | 0 | } |
859 | | |
860 | 0 | return 1; |
861 | 0 | } |
862 | | |
863 | | static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, |
864 | 0 | const BIGNUM *rem, BN_CTX *ctx) { |
865 | 0 | bits--; |
866 | 0 | BN_CTXScope scope(ctx); |
867 | 0 | BIGNUM *t1 = BN_CTX_get(ctx); |
868 | 0 | BIGNUM *q = BN_CTX_get(ctx); |
869 | 0 | BIGNUM *qadd = BN_CTX_get(ctx); |
870 | 0 | if (qadd == nullptr) { |
871 | 0 | return 0; |
872 | 0 | } |
873 | | |
874 | 0 | if (!BN_rshift1(qadd, padd)) { |
875 | 0 | return 0; |
876 | 0 | } |
877 | | |
878 | 0 | if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) { |
879 | 0 | return 0; |
880 | 0 | } |
881 | | |
882 | | // we need ((rnd-rem) % add) == 0 |
883 | 0 | if (!BN_mod(t1, q, qadd, ctx)) { |
884 | 0 | return 0; |
885 | 0 | } |
886 | | |
887 | 0 | if (!BN_sub(q, q, t1)) { |
888 | 0 | return 0; |
889 | 0 | } |
890 | | |
891 | 0 | if (rem == nullptr) { |
892 | 0 | if (!BN_add_word(q, 1)) { |
893 | 0 | return 0; |
894 | 0 | } |
895 | 0 | } else { |
896 | 0 | if (!BN_rshift1(t1, rem)) { |
897 | 0 | return 0; |
898 | 0 | } |
899 | 0 | if (!BN_add(q, q, t1)) { |
900 | 0 | return 0; |
901 | 0 | } |
902 | 0 | } |
903 | | |
904 | | // we now have a random number 'rand' to test. |
905 | 0 | if (!BN_lshift1(p, q)) { |
906 | 0 | return 0; |
907 | 0 | } |
908 | 0 | if (!BN_add_word(p, 1)) { |
909 | 0 | return 0; |
910 | 0 | } |
911 | | |
912 | 0 | size_t num_primes = num_trial_division_primes(p); |
913 | 0 | loop: |
914 | 0 | for (size_t i = 1; i < num_primes; i++) { |
915 | | // check that p and q are prime |
916 | | // check that for p and q |
917 | | // gcd(p-1,primes) == 1 (except for 2) |
918 | 0 | if (bn_mod_u16_consttime(p, kPrimes[i]) == 0 || |
919 | 0 | bn_mod_u16_consttime(q, kPrimes[i]) == 0) { |
920 | 0 | if (!BN_add(p, p, padd)) { |
921 | 0 | return 0; |
922 | 0 | } |
923 | 0 | if (!BN_add(q, q, qadd)) { |
924 | 0 | return 0; |
925 | 0 | } |
926 | 0 | goto loop; |
927 | 0 | } |
928 | 0 | } |
929 | | |
930 | 0 | return 1; |
931 | 0 | } |