/src/boringssl/crypto/fipsmodule/bn/random.cc.inc
Line | Count | Source |
1 | | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/bn.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <limits.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/err.h> |
22 | | |
23 | | #include "../../internal.h" |
24 | | #include "../bcm_interface.h" |
25 | | #include "../service_indicator/internal.h" |
26 | | #include "internal.h" |
27 | | |
28 | | |
29 | | using namespace bssl; |
30 | | |
31 | 0 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom) { |
32 | 0 | if (rnd == nullptr) { |
33 | 0 | return 0; |
34 | 0 | } |
35 | | |
36 | 0 | if (top != BN_RAND_TOP_ANY && top != BN_RAND_TOP_ONE && |
37 | 0 | top != BN_RAND_TOP_TWO) { |
38 | 0 | OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
39 | 0 | return 0; |
40 | 0 | } |
41 | | |
42 | 0 | if (bottom != BN_RAND_BOTTOM_ANY && bottom != BN_RAND_BOTTOM_ODD) { |
43 | 0 | OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
44 | 0 | return 0; |
45 | 0 | } |
46 | | |
47 | 0 | if (bits == 0) { |
48 | 0 | BN_zero(rnd); |
49 | 0 | return 1; |
50 | 0 | } |
51 | | |
52 | 0 | if (bits > INT_MAX - (BN_BITS2 - 1)) { |
53 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
54 | 0 | return 0; |
55 | 0 | } |
56 | | |
57 | 0 | int words = (bits + BN_BITS2 - 1) / BN_BITS2; |
58 | 0 | int bit = (bits - 1) % BN_BITS2; |
59 | 0 | const BN_ULONG kOne = 1; |
60 | 0 | const BN_ULONG kThree = 3; |
61 | 0 | BN_ULONG mask = bit < BN_BITS2 - 1 ? (kOne << (bit + 1)) - 1 : BN_MASK2; |
62 | 0 | if (!bn_wexpand(rnd, words)) { |
63 | 0 | return 0; |
64 | 0 | } |
65 | | |
66 | 0 | FIPS_service_indicator_lock_state(); |
67 | 0 | BCM_rand_bytes((uint8_t *)rnd->d, words * sizeof(BN_ULONG)); |
68 | 0 | FIPS_service_indicator_unlock_state(); |
69 | |
|
70 | 0 | rnd->d[words - 1] &= mask; |
71 | 0 | if (top != BN_RAND_TOP_ANY) { |
72 | 0 | if (top == BN_RAND_TOP_TWO && bits > 1) { |
73 | 0 | if (bit == 0) { |
74 | 0 | rnd->d[words - 1] |= 1; |
75 | 0 | rnd->d[words - 2] |= kOne << (BN_BITS2 - 1); |
76 | 0 | } else { |
77 | 0 | rnd->d[words - 1] |= kThree << (bit - 1); |
78 | 0 | } |
79 | 0 | } else { |
80 | 0 | rnd->d[words - 1] |= kOne << bit; |
81 | 0 | } |
82 | 0 | } |
83 | 0 | if (bottom == BN_RAND_BOTTOM_ODD) { |
84 | 0 | rnd->d[0] |= 1; |
85 | 0 | } |
86 | |
|
87 | 0 | rnd->neg = 0; |
88 | 0 | rnd->width = words; |
89 | 0 | return 1; |
90 | 0 | } |
91 | | |
92 | 0 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) { |
93 | 0 | return BN_rand(rnd, bits, top, bottom); |
94 | 0 | } |
95 | | |
96 | | // bn_less_than_word_mask returns a mask of all ones if the number represented |
97 | | // by |len| words at |a| is less than |b| and zero otherwise. It performs this |
98 | | // computation in time independent of the value of |a|. |b| is assumed public. |
99 | | static crypto_word_t bn_less_than_word_mask(const BN_ULONG *a, size_t len, |
100 | 17.4k | BN_ULONG b) { |
101 | 17.4k | if (b == 0) { |
102 | 0 | return CONSTTIME_FALSE_W; |
103 | 0 | } |
104 | 17.4k | if (len == 0) { |
105 | 0 | return CONSTTIME_TRUE_W; |
106 | 0 | } |
107 | | |
108 | | // |a| < |b| iff a[1..len-1] are all zero and a[0] < b. |
109 | 17.4k | static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
110 | 17.4k | "crypto_word_t is too small"); |
111 | 17.4k | crypto_word_t mask = 0; |
112 | 98.6k | for (size_t i = 1; i < len; i++) { |
113 | 81.1k | mask |= a[i]; |
114 | 81.1k | } |
115 | | // |mask| is now zero iff a[1..len-1] are all zero. |
116 | 17.4k | mask = constant_time_is_zero_w(mask); |
117 | 17.4k | mask &= constant_time_lt_w(a[0], b); |
118 | 17.4k | return mask; |
119 | 17.4k | } |
120 | | |
121 | | int bssl::bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive, |
122 | 17.4k | const BN_ULONG *max_exclusive, size_t len) { |
123 | 17.4k | crypto_word_t mask = ~bn_less_than_word_mask(a, len, min_inclusive); |
124 | 17.4k | return mask & bn_less_than_words(a, max_exclusive, len); |
125 | 17.4k | } |
126 | | |
127 | | static int bn_range_to_mask(size_t *out_words, BN_ULONG *out_mask, |
128 | | size_t min_inclusive, const BN_ULONG *max_exclusive, |
129 | 17.4k | size_t len) { |
130 | | // The magnitude of |max_exclusive| is assumed public. |
131 | 17.4k | size_t words = len; |
132 | 17.4k | while (words > 0 && max_exclusive[words - 1] == 0) { |
133 | 0 | words--; |
134 | 0 | } |
135 | 17.4k | if (words == 0 || (words == 1 && max_exclusive[0] <= min_inclusive)) { |
136 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_INVALID_RANGE); |
137 | 0 | return 0; |
138 | 0 | } |
139 | 17.4k | BN_ULONG mask = max_exclusive[words - 1]; |
140 | | // This sets all bits in |mask| below the most significant bit. |
141 | 17.4k | mask |= mask >> 1; |
142 | 17.4k | mask |= mask >> 2; |
143 | 17.4k | mask |= mask >> 4; |
144 | 17.4k | mask |= mask >> 8; |
145 | 17.4k | mask |= mask >> 16; |
146 | 17.4k | #if defined(OPENSSL_64_BIT) |
147 | 17.4k | mask |= mask >> 32; |
148 | 17.4k | #endif |
149 | | |
150 | 17.4k | *out_words = words; |
151 | 17.4k | *out_mask = mask; |
152 | 17.4k | return 1; |
153 | 17.4k | } |
154 | | |
155 | | int bssl::bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive, |
156 | | const BN_ULONG *max_exclusive, size_t len, |
157 | 17.4k | const uint8_t additional_data[32]) { |
158 | | // This function implements the equivalent of steps 1 through 4 of FIPS 186-5 |
159 | | // appendices A.2.2 and A.3.2, repeating the process on failure. When called |
160 | | // in those contexts, |max_exclusive| is n and |min_inclusive| is one. |
161 | | |
162 | | // Compute the bit length of |max_exclusive| (step 1), in terms of a number of |
163 | | // |words| worth of entropy to fill and a mask of bits to clear in the top |
164 | | // word. |
165 | 17.4k | size_t words; |
166 | 17.4k | BN_ULONG mask; |
167 | 17.4k | if (!bn_range_to_mask(&words, &mask, min_inclusive, max_exclusive, len)) { |
168 | 0 | return 0; |
169 | 0 | } |
170 | | |
171 | | // Fill any unused words with zero. |
172 | 17.4k | OPENSSL_memset(out + words, 0, (len - words) * sizeof(BN_ULONG)); |
173 | | |
174 | 17.4k | unsigned count = 100; |
175 | 17.4k | do { |
176 | 17.4k | if (!--count) { |
177 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS); |
178 | 0 | return 0; |
179 | 0 | } |
180 | | |
181 | | // Use |words| and |mask| together to obtain a string of N bits, where N is |
182 | | // the bit length of |max_exclusive|. |
183 | 17.4k | FIPS_service_indicator_lock_state(); |
184 | 17.4k | BCM_rand_bytes_with_additional_data( |
185 | 17.4k | (uint8_t *)out, words * sizeof(BN_ULONG), additional_data); |
186 | 17.4k | FIPS_service_indicator_unlock_state(); |
187 | 17.4k | out[words - 1] &= mask; |
188 | | |
189 | | // If out >= max_exclusive or out < min_inclusive, retry. The result of this |
190 | | // comparison may be treated as public. It only reveals how many attempts |
191 | | // were needed before we found a value in range. This is independent of the |
192 | | // final secret output, and has a distribution that depends only on |
193 | | // |min_inclusive| and |max_exclusive|, both of which are public. |
194 | 17.4k | } while (!constant_time_declassify_int( |
195 | 17.4k | bn_in_range_words(out, min_inclusive, max_exclusive, words))); |
196 | 17.4k | return 1; |
197 | 17.4k | } |
198 | | |
199 | | int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, |
200 | 16.9k | const BIGNUM *max_exclusive) { |
201 | 16.9k | static const uint8_t kDefaultAdditionalData[32] = {0}; |
202 | 16.9k | if (!bn_wexpand(r, max_exclusive->width) || |
203 | 16.9k | !bn_rand_range_words(r->d, min_inclusive, max_exclusive->d, |
204 | 16.9k | max_exclusive->width, kDefaultAdditionalData)) { |
205 | 0 | return 0; |
206 | 0 | } |
207 | | |
208 | 16.9k | r->neg = 0; |
209 | 16.9k | r->width = max_exclusive->width; |
210 | 16.9k | return 1; |
211 | 16.9k | } |
212 | | |
213 | | int bssl::bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, |
214 | | BN_ULONG min_inclusive, |
215 | 0 | const BIGNUM *max_exclusive) { |
216 | 0 | size_t words; |
217 | 0 | BN_ULONG mask; |
218 | 0 | if (!bn_range_to_mask(&words, &mask, min_inclusive, max_exclusive->d, |
219 | 0 | max_exclusive->width) || |
220 | 0 | !bn_wexpand(r, words)) { |
221 | 0 | return 0; |
222 | 0 | } |
223 | | |
224 | 0 | assert(words > 0); |
225 | 0 | assert(mask != 0); |
226 | | // The range must be large enough for bit tricks to fix invalid values. |
227 | 0 | if (words == 1 && min_inclusive > mask >> 1) { |
228 | 0 | OPENSSL_PUT_ERROR(BN, BN_R_INVALID_RANGE); |
229 | 0 | return 0; |
230 | 0 | } |
231 | | |
232 | | // Select a uniform random number with num_bits(max_exclusive) bits. |
233 | 0 | FIPS_service_indicator_lock_state(); |
234 | 0 | BCM_rand_bytes((uint8_t *)r->d, words * sizeof(BN_ULONG)); |
235 | 0 | FIPS_service_indicator_unlock_state(); |
236 | 0 | r->d[words - 1] &= mask; |
237 | | |
238 | | // Check, in constant-time, if the value is in range. |
239 | 0 | *out_is_uniform = |
240 | 0 | bn_in_range_words(r->d, min_inclusive, max_exclusive->d, words); |
241 | 0 | crypto_word_t in_range = *out_is_uniform; |
242 | 0 | in_range = 0 - in_range; |
243 | | |
244 | | // If the value is not in range, force it to be in range. |
245 | 0 | r->d[0] |= constant_time_select_w(in_range, 0, min_inclusive); |
246 | 0 | r->d[words - 1] &= constant_time_select_w(in_range, BN_MASK2, mask >> 1); |
247 | 0 | declassify_assert( |
248 | 0 | bn_in_range_words(r->d, min_inclusive, max_exclusive->d, words)); |
249 | | |
250 | 0 | r->neg = 0; |
251 | 0 | r->width = (int)words; |
252 | 0 | return 1; |
253 | 0 | } |
254 | | |
255 | 0 | int BN_rand_range(BIGNUM *r, const BIGNUM *range) { |
256 | 0 | return BN_rand_range_ex(r, 0, range); |
257 | 0 | } |
258 | | |
259 | 0 | int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) { |
260 | 0 | return BN_rand_range(r, range); |
261 | 0 | } |