Coverage Report

Created: 2026-02-16 07:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/boringssl/crypto/fipsmodule/sha/sha512.cc.inc
Line
Count
Source
1
// Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include <string.h>
16
17
#include <openssl/mem.h>
18
19
#include "../../internal.h"
20
#include "../bcm_interface.h"
21
#include "../service_indicator/internal.h"
22
#include "internal.h"
23
24
25
using namespace bssl;
26
27
// The 32-bit hash algorithms share a common byte-order neutral collector and
28
// padding function implementations that operate on unaligned data,
29
// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
30
// this writing, so there is no need for a common collector/padding
31
// implementation yet.
32
33
static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha);
34
35
293k
bcm_infallible bssl::BCM_sha384_init(SHA512_CTX *sha) {
36
293k
  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
37
293k
  sha->h[1] = UINT64_C(0x629a292a367cd507);
38
293k
  sha->h[2] = UINT64_C(0x9159015a3070dd17);
39
293k
  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
40
293k
  sha->h[4] = UINT64_C(0x67332667ffc00b31);
41
293k
  sha->h[5] = UINT64_C(0x8eb44a8768581511);
42
293k
  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
43
293k
  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
44
45
293k
  sha->bytes_so_far_low = 0;
46
293k
  sha->bytes_so_far_high = 0;
47
293k
  sha->num = 0;
48
293k
  sha->md_len = SHA384_DIGEST_LENGTH;
49
293k
  return bcm_infallible::approved;
50
293k
}
51
52
53
11.6k
bcm_infallible bssl::BCM_sha512_init(SHA512_CTX *sha) {
54
11.6k
  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
55
11.6k
  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
56
11.6k
  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
57
11.6k
  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
58
11.6k
  sha->h[4] = UINT64_C(0x510e527fade682d1);
59
11.6k
  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
60
11.6k
  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
61
11.6k
  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
62
63
11.6k
  sha->bytes_so_far_low = 0;
64
11.6k
  sha->bytes_so_far_high = 0;
65
11.6k
  sha->num = 0;
66
11.6k
  sha->md_len = SHA512_DIGEST_LENGTH;
67
11.6k
  return bcm_infallible::approved;
68
11.6k
}
69
70
0
bcm_infallible bssl::BCM_sha512_256_init(SHA512_CTX *sha) {
71
0
  sha->h[0] = UINT64_C(0x22312194fc2bf72c);
72
0
  sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
73
0
  sha->h[2] = UINT64_C(0x2393b86b6f53b151);
74
0
  sha->h[3] = UINT64_C(0x963877195940eabd);
75
0
  sha->h[4] = UINT64_C(0x96283ee2a88effe3);
76
0
  sha->h[5] = UINT64_C(0xbe5e1e2553863992);
77
0
  sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
78
0
  sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
79
80
0
  sha->bytes_so_far_low = 0;
81
0
  sha->bytes_so_far_high = 0;
82
0
  sha->num = 0;
83
0
  sha->md_len = SHA512_256_DIGEST_LENGTH;
84
0
  return bcm_infallible::approved;
85
0
}
86
87
#if !defined(SHA512_ASM)
88
static void sha512_block_data_order(uint64_t state[8], const uint8_t *in,
89
                                    size_t num_blocks);
90
#endif
91
92
93
bcm_infallible bssl::BCM_sha384_final(uint8_t out[SHA384_DIGEST_LENGTH],
94
369k
                                      SHA512_CTX *sha) {
95
  // This function must be paired with |BCM_sha384_init|, which sets
96
  // |sha->md_len| to |SHA384_DIGEST_LENGTH|.
97
369k
  assert(sha->md_len == SHA384_DIGEST_LENGTH);
98
369k
  sha512_final_impl(out, SHA384_DIGEST_LENGTH, sha);
99
369k
  return bcm_infallible::approved;
100
369k
}
101
102
bcm_infallible bssl::BCM_sha384_update(SHA512_CTX *sha, const void *data,
103
865k
                                       size_t len) {
104
865k
  return BCM_sha512_update(sha, data, len);
105
865k
}
106
107
bcm_infallible bssl::BCM_sha512_256_update(SHA512_CTX *sha, const void *data,
108
0
                                           size_t len) {
109
0
  return BCM_sha512_update(sha, data, len);
110
0
}
111
112
bcm_infallible bssl::BCM_sha512_256_final(uint8_t out[SHA512_256_DIGEST_LENGTH],
113
0
                                          SHA512_CTX *sha) {
114
  // This function must be paired with |BCM_sha512_256_init|, which sets
115
  // |sha->md_len| to |SHA512_256_DIGEST_LENGTH|.
116
0
  assert(sha->md_len == SHA512_256_DIGEST_LENGTH);
117
0
  sha512_final_impl(out, SHA512_256_DIGEST_LENGTH, sha);
118
0
  return bcm_infallible::approved;
119
0
}
120
121
bcm_infallible bssl::BCM_sha512_transform(SHA512_CTX *c,
122
0
                                          const uint8_t block[SHA512_CBLOCK]) {
123
0
  sha512_block_data_order(c->h, block, 1);
124
0
  return bcm_infallible::approved;
125
0
}
126
127
bcm_infallible bssl::BCM_sha512_update(SHA512_CTX *c, const void *in_data,
128
879k
                                       size_t len) {
129
879k
  uint8_t *p = c->p;
130
879k
  const uint8_t *data = reinterpret_cast<const uint8_t *>(in_data);
131
132
879k
  if (len == 0) {
133
39.5k
    return bcm_infallible::approved;
134
39.5k
  }
135
136
840k
  c->bytes_so_far_low += len;
137
840k
  if (c->bytes_so_far_low < len) {
138
0
    c->bytes_so_far_high++;
139
0
  }
140
141
840k
  if (c->num != 0) {
142
307k
    size_t n = sizeof(c->p) - c->num;
143
144
307k
    if (len < n) {
145
280k
      OPENSSL_memcpy(p + c->num, data, len);
146
280k
      c->num += (unsigned int)len;
147
280k
      return bcm_infallible::approved;
148
280k
    } else {
149
27.5k
      OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
150
27.5k
      len -= n;
151
27.5k
      data += n;
152
27.5k
      sha512_block_data_order(c->h, p, 1);
153
27.5k
    }
154
307k
  }
155
156
559k
  if (len >= sizeof(c->p)) {
157
219k
    sha512_block_data_order(c->h, data, len / sizeof(c->p));
158
219k
    data += len;
159
219k
    len %= sizeof(c->p);
160
219k
    data -= len;
161
219k
  }
162
163
559k
  if (len != 0) {
164
378k
    OPENSSL_memcpy(p, data, len);
165
378k
    c->num = (int)len;
166
378k
  }
167
168
559k
  return bcm_infallible::approved;
169
840k
}
170
171
bcm_infallible bssl::BCM_sha512_final(uint8_t out[SHA512_DIGEST_LENGTH],
172
11.6k
                                      SHA512_CTX *sha) {
173
  // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match
174
  // the size hint, but calling code often pairs |BCM_sha384_init| with
175
  // |BCM_sha512_final| and expects |sha->md_len| to carry the size over.
176
  //
177
  // TODO(davidben): Add an assert and fix code to match them up.
178
11.6k
  sha512_final_impl(out, sha->md_len, sha);
179
11.6k
  return bcm_infallible::approved;
180
11.6k
}
181
182
381k
static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) {
183
381k
  uint8_t *p = sha->p;
184
381k
  size_t n = sha->num;
185
186
381k
  p[n] = 0x80;  // There always is a room for one
187
381k
  n++;
188
381k
  if (n > (sizeof(sha->p) - 16)) {
189
19.4k
    OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
190
19.4k
    n = 0;
191
19.4k
    sha512_block_data_order(sha->h, p, 1);
192
19.4k
  }
193
194
381k
  OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
195
381k
  const uint64_t Nh = (uint64_t{sha->bytes_so_far_high} << 3) |
196
381k
                      (sha->bytes_so_far_low >> (64 - 3));
197
381k
  const uint64_t Nl = sha->bytes_so_far_low << 3;
198
381k
  CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, Nh);
199
381k
  CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, Nl);
200
201
381k
  sha512_block_data_order(sha->h, p, 1);
202
203
381k
  assert(md_len % 8 == 0);
204
381k
  const size_t out_words = md_len / 8;
205
2.69M
  for (size_t i = 0; i < out_words; i++) {
206
2.31M
    CRYPTO_store_u64_be(out, sha->h[i]);
207
2.31M
    out += 8;
208
2.31M
  }
209
210
381k
  FIPS_service_indicator_update_state();
211
381k
}
212
213
#if !defined(SHA512_ASM)
214
215
#if !defined(SHA512_ASM_NOHW)
216
static const uint64_t K512[80] = {
217
    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
218
    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
219
    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
220
    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
221
    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
222
    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
223
    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
224
    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
225
    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
226
    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
227
    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
228
    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
229
    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
230
    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
231
    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
232
    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
233
    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
234
    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
235
    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
236
    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
237
    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
238
    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
239
    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
240
    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
241
    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
242
    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
243
    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
244
    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
245
    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
246
    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
247
    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
248
    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
249
    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
250
    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
251
    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
252
    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
253
    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
254
    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
255
    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
256
    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
257
};
258
259
#define Sigma0(x)                                        \
260
  (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
261
   CRYPTO_rotr_u64((x), 39))
262
#define Sigma1(x)                                        \
263
  (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
264
   CRYPTO_rotr_u64((x), 41))
265
#define sigma0(x) \
266
  (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
267
#define sigma1(x) \
268
  (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
269
270
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
271
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
272
273
274
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
275
// This code should give better results on 32-bit CPU with less than
276
// ~24 registers, both size and performance wise...
277
static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
278
                                         size_t num) {
279
  uint64_t A, E, T;
280
  uint64_t X[9 + 80], *F;
281
  int i;
282
283
  while (num--) {
284
    F = X + 80;
285
    A = state[0];
286
    F[1] = state[1];
287
    F[2] = state[2];
288
    F[3] = state[3];
289
    E = state[4];
290
    F[5] = state[5];
291
    F[6] = state[6];
292
    F[7] = state[7];
293
294
    for (i = 0; i < 16; i++, F--) {
295
      T = CRYPTO_load_u64_be(in + i * 8);
296
      F[0] = A;
297
      F[4] = E;
298
      F[8] = T;
299
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
300
      E = F[3] + T;
301
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
302
    }
303
304
    for (; i < 80; i++, F--) {
305
      T = sigma0(F[8 + 16 - 1]);
306
      T += sigma1(F[8 + 16 - 14]);
307
      T += F[8 + 16] + F[8 + 16 - 9];
308
309
      F[0] = A;
310
      F[4] = E;
311
      F[8] = T;
312
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
313
      E = F[3] + T;
314
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
315
    }
316
317
    state[0] += A;
318
    state[1] += F[1];
319
    state[2] += F[2];
320
    state[3] += F[3];
321
    state[4] += E;
322
    state[5] += F[5];
323
    state[6] += F[6];
324
    state[7] += F[7];
325
326
    in += 16 * 8;
327
  }
328
}
329
330
#else
331
332
#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
333
  do {                                           \
334
    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
335
    h = Sigma0(a) + Maj(a, b, c);                \
336
    d += T1;                                     \
337
    h += T1;                                     \
338
  } while (0)
339
340
#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
341
  do {                                                 \
342
    s0 = X[(j + 1) & 0x0f];                            \
343
    s0 = sigma0(s0);                                   \
344
    s1 = X[(j + 14) & 0x0f];                           \
345
    s1 = sigma1(s1);                                   \
346
    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
347
    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
348
  } while (0)
349
350
static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
351
                                         size_t num) {
352
  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
353
  uint64_t X[16];
354
  int i;
355
356
  while (num--) {
357
    a = state[0];
358
    b = state[1];
359
    c = state[2];
360
    d = state[3];
361
    e = state[4];
362
    f = state[5];
363
    g = state[6];
364
    h = state[7];
365
366
    T1 = X[0] = CRYPTO_load_u64_be(in);
367
    ROUND_00_15(0, a, b, c, d, e, f, g, h);
368
    T1 = X[1] = CRYPTO_load_u64_be(in + 8);
369
    ROUND_00_15(1, h, a, b, c, d, e, f, g);
370
    T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
371
    ROUND_00_15(2, g, h, a, b, c, d, e, f);
372
    T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
373
    ROUND_00_15(3, f, g, h, a, b, c, d, e);
374
    T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
375
    ROUND_00_15(4, e, f, g, h, a, b, c, d);
376
    T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
377
    ROUND_00_15(5, d, e, f, g, h, a, b, c);
378
    T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
379
    ROUND_00_15(6, c, d, e, f, g, h, a, b);
380
    T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
381
    ROUND_00_15(7, b, c, d, e, f, g, h, a);
382
    T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
383
    ROUND_00_15(8, a, b, c, d, e, f, g, h);
384
    T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
385
    ROUND_00_15(9, h, a, b, c, d, e, f, g);
386
    T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
387
    ROUND_00_15(10, g, h, a, b, c, d, e, f);
388
    T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
389
    ROUND_00_15(11, f, g, h, a, b, c, d, e);
390
    T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
391
    ROUND_00_15(12, e, f, g, h, a, b, c, d);
392
    T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
393
    ROUND_00_15(13, d, e, f, g, h, a, b, c);
394
    T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
395
    ROUND_00_15(14, c, d, e, f, g, h, a, b);
396
    T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
397
    ROUND_00_15(15, b, c, d, e, f, g, h, a);
398
399
    for (i = 16; i < 80; i += 16) {
400
      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
401
      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
402
      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
403
      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
404
      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
405
      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
406
      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
407
      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
408
      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
409
      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
410
      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
411
      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
412
      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
413
      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
414
      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
415
      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
416
    }
417
418
    state[0] += a;
419
    state[1] += b;
420
    state[2] += c;
421
    state[3] += d;
422
    state[4] += e;
423
    state[5] += f;
424
    state[6] += g;
425
    state[7] += h;
426
427
    in += 16 * 8;
428
  }
429
}
430
431
#endif
432
433
#endif  // !SHA512_ASM_NOHW
434
435
static void sha512_block_data_order(uint64_t state[8], const uint8_t *data,
436
648k
                                    size_t num) {
437
#if defined(SHA512_ASM_HW)
438
  if (sha512_hw_capable()) {
439
    sha512_block_data_order_hw(state, data, num);
440
    return;
441
  }
442
#endif
443
648k
#if defined(SHA512_ASM_AVX)
444
648k
  if (sha512_avx_capable()) {
445
0
    sha512_block_data_order_avx(state, data, num);
446
0
    return;
447
0
  }
448
648k
#endif
449
#if defined(SHA512_ASM_SSSE3)
450
  if (sha512_ssse3_capable()) {
451
    sha512_block_data_order_ssse3(state, data, num);
452
    return;
453
  }
454
#endif
455
#if defined(SHA512_ASM_NEON)
456
  if (CRYPTO_is_NEON_capable()) {
457
    sha512_block_data_order_neon(state, data, num);
458
    return;
459
  }
460
#endif
461
648k
  sha512_block_data_order_nohw(state, data, num);
462
648k
}
463
464
#endif  // !SHA512_ASM
465
466
#undef Sigma0
467
#undef Sigma1
468
#undef sigma0
469
#undef sigma1
470
#undef Ch
471
#undef Maj
472
#undef ROUND_00_15
473
#undef ROUND_16_80