/src/boringssl/crypto/pkcs8/pkcs8.cc
Line | Count | Source |
1 | | // Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <openssl/pkcs8.h> |
16 | | |
17 | | #include <assert.h> |
18 | | #include <limits.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/bytestring.h> |
22 | | #include <openssl/cipher.h> |
23 | | #include <openssl/digest.h> |
24 | | #include <openssl/err.h> |
25 | | #include <openssl/mem.h> |
26 | | #include <openssl/nid.h> |
27 | | #include <openssl/rand.h> |
28 | | |
29 | | #include "../bytestring/internal.h" |
30 | | #include "../internal.h" |
31 | | #include "internal.h" |
32 | | |
33 | | |
34 | | using namespace bssl; |
35 | | |
36 | | static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out, |
37 | 418 | size_t *out_len) { |
38 | 418 | ScopedCBB cbb; |
39 | 418 | if (!CBB_init(cbb.get(), in_len * 2)) { |
40 | 0 | return 0; |
41 | 0 | } |
42 | | |
43 | | // Convert the password to BMPString, or UCS-2. See |
44 | | // https://tools.ietf.org/html/rfc7292#appendix-B.1. |
45 | 418 | CBS cbs; |
46 | 418 | CBS_init(&cbs, (const uint8_t *)in, in_len); |
47 | 1.67k | while (CBS_len(&cbs) != 0) { |
48 | 1.25k | uint32_t c; |
49 | 1.25k | if (!CBS_get_utf8(&cbs, &c) || !CBB_add_ucs2_be(cbb.get(), c)) { |
50 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
51 | 0 | return 0; |
52 | 0 | } |
53 | 1.25k | } |
54 | | |
55 | | // Terminate the result with a UCS-2 NUL. |
56 | 418 | if (!CBB_add_ucs2_be(cbb.get(), 0) || !CBB_finish(cbb.get(), out, out_len)) { |
57 | 0 | return 0; |
58 | 0 | } |
59 | | |
60 | 418 | return 1; |
61 | 418 | } |
62 | | |
63 | | int bssl::pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt, |
64 | | size_t salt_len, uint8_t id, uint32_t iterations, |
65 | 418 | size_t out_len, uint8_t *out, const EVP_MD *md) { |
66 | | // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the |
67 | | // specification have errata applied and other typos fixed. |
68 | | |
69 | 418 | if (iterations < 1) { |
70 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
71 | 0 | return 0; |
72 | 0 | } |
73 | | |
74 | 418 | int ret = 0; |
75 | 418 | EVP_MD_CTX ctx; |
76 | 418 | EVP_MD_CTX_init(&ctx); |
77 | 418 | uint8_t *pass_raw = nullptr, *I = nullptr; |
78 | 418 | size_t pass_raw_len = 0, I_len = 0; |
79 | | |
80 | 418 | { |
81 | | // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw |
82 | | // password. |
83 | 418 | if (pass != nullptr && |
84 | 418 | !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) { |
85 | 0 | goto err; |
86 | 0 | } |
87 | | |
88 | | // In the spec, |block_size| is called "v", but measured in bits. |
89 | 418 | size_t block_size = EVP_MD_block_size(md); |
90 | | |
91 | | // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies |
92 | | // of ID. |
93 | 418 | uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; |
94 | 418 | OPENSSL_memset(D, id, block_size); |
95 | | |
96 | | // 2. Concatenate copies of the salt together to create a string S of length |
97 | | // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to |
98 | | // create S). Note that if the salt is the empty string, then so is S. |
99 | | // |
100 | | // 3. Concatenate copies of the password together to create a string P of |
101 | | // length v(ceiling(p/v)) bits (the final copy of the password may be |
102 | | // truncated to create P). Note that if the password is the empty string, |
103 | | // then so is P. |
104 | | // |
105 | | // 4. Set I=S||P to be the concatenation of S and P. |
106 | 418 | if (salt_len + block_size - 1 < salt_len || |
107 | 418 | pass_raw_len + block_size - 1 < pass_raw_len) { |
108 | 0 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
109 | 0 | goto err; |
110 | 0 | } |
111 | 418 | size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); |
112 | 418 | size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); |
113 | 418 | I_len = S_len + P_len; |
114 | 418 | if (I_len < S_len) { |
115 | 0 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
116 | 0 | goto err; |
117 | 0 | } |
118 | | |
119 | 418 | I = reinterpret_cast<uint8_t *>(OPENSSL_malloc(I_len)); |
120 | 418 | if (I_len != 0 && I == nullptr) { |
121 | 0 | goto err; |
122 | 0 | } |
123 | | |
124 | 4.97M | for (size_t i = 0; i < S_len; i++) { |
125 | 4.97M | I[i] = salt[i % salt_len]; |
126 | 4.97M | } |
127 | 32.9k | for (size_t i = 0; i < P_len; i++) { |
128 | 32.5k | I[i + S_len] = pass_raw[i % pass_raw_len]; |
129 | 32.5k | } |
130 | | |
131 | 423 | while (out_len != 0) { |
132 | | // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, |
133 | | // H(H(H(... H(D||I)))) |
134 | 423 | uint8_t A[EVP_MAX_MD_SIZE]; |
135 | 423 | unsigned A_len; |
136 | 423 | if (!EVP_DigestInit_ex(&ctx, md, nullptr) || |
137 | 423 | !EVP_DigestUpdate(&ctx, D, block_size) || |
138 | 423 | !EVP_DigestUpdate(&ctx, I, I_len) || |
139 | 423 | !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
140 | 0 | goto err; |
141 | 0 | } |
142 | 162k | for (uint32_t iter = 1; iter < iterations; iter++) { |
143 | 162k | if (!EVP_DigestInit_ex(&ctx, md, nullptr) || |
144 | 162k | !EVP_DigestUpdate(&ctx, A, A_len) || |
145 | 162k | !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
146 | 0 | goto err; |
147 | 0 | } |
148 | 162k | } |
149 | | |
150 | 423 | size_t todo = out_len < A_len ? out_len : A_len; |
151 | 423 | OPENSSL_memcpy(out, A, todo); |
152 | 423 | out += todo; |
153 | 423 | out_len -= todo; |
154 | 423 | if (out_len == 0) { |
155 | 418 | break; |
156 | 418 | } |
157 | | |
158 | | // B. Concatenate copies of A_i to create a string B of length v bits (the |
159 | | // final copy of A_i may be truncated to create B). |
160 | 5 | uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; |
161 | 325 | for (size_t i = 0; i < block_size; i++) { |
162 | 320 | B[i] = A[i % A_len]; |
163 | 320 | } |
164 | | |
165 | | // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit |
166 | | // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by setting |
167 | | // I_j=(I_j+B+1) mod 2^v for each j. |
168 | 5 | assert(I_len % block_size == 0); |
169 | 15 | for (size_t i = 0; i < I_len; i += block_size) { |
170 | 10 | unsigned carry = 1; |
171 | 650 | for (size_t j = block_size - 1; j < block_size; j--) { |
172 | 640 | carry += I[i + j] + B[j]; |
173 | 640 | I[i + j] = (uint8_t)carry; |
174 | 640 | carry >>= 8; |
175 | 640 | } |
176 | 10 | } |
177 | 5 | } |
178 | | |
179 | 418 | ret = 1; |
180 | 418 | } |
181 | | |
182 | 418 | err: |
183 | 418 | OPENSSL_free(I); |
184 | 418 | OPENSSL_free(pass_raw); |
185 | 418 | EVP_MD_CTX_cleanup(&ctx); |
186 | 418 | return ret; |
187 | 418 | } |
188 | | |
189 | | static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, |
190 | | EVP_CIPHER_CTX *ctx, uint32_t iterations, |
191 | | const char *pass, size_t pass_len, |
192 | | const uint8_t *salt, size_t salt_len, |
193 | 10 | int is_encrypt) { |
194 | 10 | const EVP_CIPHER *cipher = suite->cipher_func(); |
195 | 10 | const EVP_MD *md = suite->md_func(); |
196 | | |
197 | 10 | uint8_t key[EVP_MAX_KEY_LENGTH]; |
198 | 10 | uint8_t iv[EVP_MAX_IV_LENGTH]; |
199 | 10 | if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations, |
200 | 10 | EVP_CIPHER_key_length(cipher), key, md) || |
201 | 10 | !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations, |
202 | 10 | EVP_CIPHER_iv_length(cipher), iv, md)) { |
203 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); |
204 | 0 | return 0; |
205 | 0 | } |
206 | | |
207 | 10 | int ret = EVP_CipherInit_ex(ctx, cipher, nullptr, key, iv, is_encrypt); |
208 | 10 | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
209 | 10 | OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
210 | 10 | return ret; |
211 | 10 | } |
212 | | |
213 | | static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, |
214 | | EVP_CIPHER_CTX *ctx, const char *pass, |
215 | 10 | size_t pass_len, CBS *param) { |
216 | 10 | CBS pbe_param, salt; |
217 | 10 | uint64_t iterations; |
218 | 10 | if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
219 | 10 | !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || |
220 | 10 | !CBS_get_asn1_uint64(&pbe_param, &iterations) || |
221 | 10 | CBS_len(&pbe_param) != 0 || CBS_len(param) != 0) { |
222 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
223 | 0 | return 0; |
224 | 0 | } |
225 | | |
226 | 10 | if (!pkcs12_iterations_acceptable(iterations)) { |
227 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
228 | 0 | return 0; |
229 | 0 | } |
230 | | |
231 | 10 | return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass, |
232 | 10 | pass_len, CBS_data(&salt), CBS_len(&salt), |
233 | 10 | 0 /* decrypt */); |
234 | 10 | } |
235 | | |
236 | | static const struct bssl::pbe_suite kBuiltinPBE[] = { |
237 | | { |
238 | | NID_pbe_WithSHA1And40BitRC2_CBC, |
239 | | // 1.2.840.113549.1.12.1.6 |
240 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06}, |
241 | | 10, |
242 | | EVP_rc2_40_cbc, |
243 | | EVP_sha1, |
244 | | pkcs12_pbe_decrypt_init, |
245 | | }, |
246 | | { |
247 | | NID_pbe_WithSHA1And128BitRC4, |
248 | | // 1.2.840.113549.1.12.1.1 |
249 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01}, |
250 | | 10, |
251 | | EVP_rc4, |
252 | | EVP_sha1, |
253 | | pkcs12_pbe_decrypt_init, |
254 | | }, |
255 | | { |
256 | | NID_pbe_WithSHA1And3_Key_TripleDES_CBC, |
257 | | // 1.2.840.113549.1.12.1.3 |
258 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03}, |
259 | | 10, |
260 | | EVP_des_ede3_cbc, |
261 | | EVP_sha1, |
262 | | pkcs12_pbe_decrypt_init, |
263 | | }, |
264 | | { |
265 | | NID_pbes2, |
266 | | // 1.2.840.113549.1.5.13 |
267 | | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}, |
268 | | 9, |
269 | | nullptr, |
270 | | nullptr, |
271 | | PKCS5_pbe2_decrypt_init, |
272 | | }, |
273 | | }; |
274 | | |
275 | 0 | static const struct bssl::pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) { |
276 | 0 | for (const auto &pbe : kBuiltinPBE) { |
277 | 0 | if (pbe.pbe_nid == pbe_nid && |
278 | | // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme. |
279 | 0 | pbe.cipher_func != nullptr && pbe.md_func != nullptr) { |
280 | 0 | return &pbe; |
281 | 0 | } |
282 | 0 | } |
283 | | |
284 | 0 | return nullptr; |
285 | 0 | } |
286 | | |
287 | | int bssl::pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg_nid, |
288 | | const EVP_CIPHER *alg_cipher, |
289 | | uint32_t iterations, const char *pass, |
290 | | size_t pass_len, const uint8_t *salt, |
291 | 0 | size_t salt_len) { |
292 | | // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either |
293 | | // the PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will |
294 | | // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses |
295 | | // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL. |
296 | 0 | if (alg_nid == -1) { |
297 | 0 | return PKCS5_pbe2_encrypt_init(out, ctx, alg_cipher, iterations, pass, |
298 | 0 | pass_len, salt, salt_len); |
299 | 0 | } |
300 | | |
301 | 0 | const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg_nid); |
302 | 0 | if (suite == nullptr) { |
303 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
304 | 0 | return 0; |
305 | 0 | } |
306 | | |
307 | | // See RFC 7292, appendix C. All our supported "PBES1" schemes are the PKCS#12 |
308 | | // schemes, which use a different KDF. The true PBES1 schemes in RFC 8018 use |
309 | | // PBKDF1, which use a very similar PBEParameter structure, but require the |
310 | | // salt be exactly 8 bytes. |
311 | 0 | CBB algorithm, param; |
312 | 0 | if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
313 | 0 | !CBB_add_asn1_element(&algorithm, CBS_ASN1_OBJECT, suite->oid, |
314 | 0 | suite->oid_len) || |
315 | 0 | !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
316 | 0 | !CBB_add_asn1_octet_string(¶m, salt, salt_len) || |
317 | 0 | !CBB_add_asn1_uint64(¶m, iterations) || !CBB_flush(out)) { |
318 | 0 | return 0; |
319 | 0 | } |
320 | | |
321 | 0 | return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt, |
322 | 0 | salt_len, 1 /* encrypt */); |
323 | 0 | } |
324 | | |
325 | | int bssl::pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, |
326 | | const char *pass, size_t pass_len, |
327 | 12 | const uint8_t *in, size_t in_len) { |
328 | 12 | int ret = 0; |
329 | 12 | uint8_t *buf = nullptr; |
330 | 12 | ScopedEVP_CIPHER_CTX ctx; |
331 | | |
332 | 12 | CBS obj; |
333 | 12 | const struct pbe_suite *suite = nullptr; |
334 | 12 | if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { |
335 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
336 | 0 | goto err; |
337 | 0 | } |
338 | | |
339 | 28 | for (const auto &pbe : kBuiltinPBE) { |
340 | 28 | if (CBS_mem_equal(&obj, pbe.oid, pbe.oid_len)) { |
341 | 12 | suite = &pbe; |
342 | 12 | break; |
343 | 12 | } |
344 | 28 | } |
345 | 12 | if (suite == nullptr) { |
346 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
347 | 0 | goto err; |
348 | 0 | } |
349 | | |
350 | 12 | if (!suite->decrypt_init(suite, ctx.get(), pass, pass_len, algorithm)) { |
351 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); |
352 | 0 | goto err; |
353 | 0 | } |
354 | | |
355 | 12 | buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(in_len)); |
356 | 12 | if (buf == nullptr) { |
357 | 0 | goto err; |
358 | 0 | } |
359 | | |
360 | 12 | size_t n1, n2; |
361 | 12 | if (!EVP_DecryptUpdate_ex(ctx.get(), buf, &n1, in_len, in, in_len) || |
362 | 12 | !EVP_DecryptFinal_ex2(ctx.get(), buf + n1, &n2, in_len - n1)) { |
363 | 0 | goto err; |
364 | 0 | } |
365 | | |
366 | 12 | *out = buf; |
367 | 12 | *out_len = n1 + n2; |
368 | 12 | ret = 1; |
369 | 12 | buf = nullptr; |
370 | | |
371 | 12 | err: |
372 | 12 | OPENSSL_free(buf); |
373 | 12 | return ret; |
374 | 12 | } |
375 | | |
376 | | EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass, |
377 | 6 | size_t pass_len) { |
378 | | // See RFC 5208, section 6. |
379 | 6 | CBS epki, algorithm, ciphertext; |
380 | 6 | if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) || |
381 | 6 | !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || |
382 | 6 | !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
383 | 6 | CBS_len(&epki) != 0) { |
384 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
385 | 0 | return nullptr; |
386 | 0 | } |
387 | | |
388 | 6 | uint8_t *out; |
389 | 6 | size_t out_len; |
390 | 6 | if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len, |
391 | 6 | CBS_data(&ciphertext), CBS_len(&ciphertext))) { |
392 | 0 | return nullptr; |
393 | 0 | } |
394 | | |
395 | 6 | CBS pki; |
396 | 6 | CBS_init(&pki, out, out_len); |
397 | 6 | EVP_PKEY *ret = EVP_parse_private_key(&pki); |
398 | 6 | OPENSSL_free(out); |
399 | 6 | return ret; |
400 | 6 | } |
401 | | |
402 | | int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid, |
403 | | const EVP_CIPHER *cipher, |
404 | | const char *pass, size_t pass_len, |
405 | | const uint8_t *salt, size_t salt_len, |
406 | 0 | int iterations, const EVP_PKEY *pkey) { |
407 | 0 | int ret = 0; |
408 | 0 | uint8_t *plaintext = nullptr, *salt_buf = nullptr; |
409 | 0 | size_t plaintext_len = 0; |
410 | 0 | ScopedEVP_CIPHER_CTX ctx; |
411 | |
|
412 | 0 | { |
413 | | // Generate a random salt if necessary. |
414 | 0 | if (salt == nullptr) { |
415 | 0 | if (salt_len == 0) { |
416 | 0 | salt_len = PKCS5_SALT_LEN; |
417 | 0 | } |
418 | |
|
419 | 0 | salt_buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(salt_len)); |
420 | 0 | if (salt_buf == nullptr || !RAND_bytes(salt_buf, salt_len)) { |
421 | 0 | goto err; |
422 | 0 | } |
423 | | |
424 | 0 | salt = salt_buf; |
425 | 0 | } |
426 | | |
427 | 0 | if (iterations <= 0) { |
428 | 0 | iterations = PKCS12_DEFAULT_ITER; |
429 | 0 | } |
430 | | |
431 | | // Serialize the input key. |
432 | 0 | CBB plaintext_cbb; |
433 | 0 | if (!CBB_init(&plaintext_cbb, 128) || |
434 | 0 | !EVP_marshal_private_key(&plaintext_cbb, pkey) || |
435 | 0 | !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) { |
436 | 0 | CBB_cleanup(&plaintext_cbb); |
437 | 0 | goto err; |
438 | 0 | } |
439 | | |
440 | 0 | CBB epki; |
441 | 0 | if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE) || |
442 | 0 | !pkcs12_pbe_encrypt_init(&epki, ctx.get(), pbe_nid, cipher, |
443 | 0 | (uint32_t)iterations, pass, pass_len, salt, |
444 | 0 | salt_len)) { |
445 | 0 | goto err; |
446 | 0 | } |
447 | | |
448 | 0 | size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(ctx.get()); |
449 | 0 | if (max_out < plaintext_len) { |
450 | 0 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
451 | 0 | goto err; |
452 | 0 | } |
453 | | |
454 | 0 | CBB ciphertext; |
455 | 0 | uint8_t *ptr; |
456 | 0 | size_t n1, n2; |
457 | 0 | if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
458 | 0 | !CBB_reserve(&ciphertext, &ptr, max_out) || |
459 | 0 | !EVP_CipherUpdate_ex(ctx.get(), ptr, &n1, max_out, plaintext, |
460 | 0 | plaintext_len) || |
461 | 0 | !EVP_CipherFinal_ex2(ctx.get(), ptr + n1, &n2, max_out - n1) || |
462 | 0 | !CBB_did_write(&ciphertext, n1 + n2) || !CBB_flush(out)) { |
463 | 0 | goto err; |
464 | 0 | } |
465 | | |
466 | 0 | ret = 1; |
467 | 0 | } |
468 | | |
469 | 0 | err: |
470 | 0 | OPENSSL_free(plaintext); |
471 | 0 | OPENSSL_free(salt_buf); |
472 | 0 | return ret; |
473 | 0 | } |