/src/boringssl/crypto/poly1305/poly1305_vec.cc
Line | Count | Source |
1 | | // Copyright 2014 The BoringSSL Authors |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | // This implementation of poly1305 is by Andrew Moon |
16 | | // (https://github.com/floodyberry/poly1305-donna) and released as public |
17 | | // domain. It implements SIMD vectorization based on the algorithm described in |
18 | | // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte |
19 | | // block size |
20 | | |
21 | | #include <openssl/poly1305.h> |
22 | | |
23 | | #include <assert.h> |
24 | | |
25 | | #include "../internal.h" |
26 | | |
27 | | |
28 | | #if defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_X86_64) |
29 | | |
30 | | #include <emmintrin.h> |
31 | | |
32 | | |
33 | | using namespace bssl; |
34 | | |
35 | | namespace { |
36 | | |
37 | | typedef __m128i xmmi; |
38 | | |
39 | | alignas(16) const uint32_t poly1305_x64_sse2_message_mask[4] = { |
40 | | (1 << 26) - 1, 0, (1 << 26) - 1, 0}; |
41 | | alignas(16) const uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0}; |
42 | | alignas(16) const uint32_t poly1305_x64_sse2_1shl128[4] = {(1 << 24), 0, |
43 | | (1 << 24), 0}; |
44 | | |
45 | 0 | uint128_t add128(uint128_t a, uint128_t b) { return a + b; } |
46 | | |
47 | 0 | uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; } |
48 | | |
49 | 0 | uint128_t mul64x64_128(uint64_t a, uint64_t b) { return (uint128_t)a * b; } |
50 | | |
51 | 0 | uint64_t lo128(uint128_t a) { return (uint64_t)a; } |
52 | | |
53 | 0 | uint64_t shr128(uint128_t v, const int shift) { return (uint64_t)(v >> shift); } |
54 | | |
55 | 0 | uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) { |
56 | 0 | return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift); |
57 | 0 | } |
58 | | |
59 | | typedef struct poly1305_power_t { |
60 | | union { |
61 | | xmmi v; |
62 | | uint64_t u[2]; |
63 | | uint32_t d[4]; |
64 | | } R20, R21, R22, R23, R24, S21, S22, S23, S24; |
65 | | } poly1305_power; |
66 | | |
67 | | typedef struct poly1305_state_internal_t { |
68 | | poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144 |
69 | | bytes of free storage */ |
70 | | union { |
71 | | xmmi H[5]; // 80 bytes |
72 | | uint64_t HH[10]; |
73 | | }; |
74 | | // uint64_t r0,r1,r2; [24 bytes] |
75 | | // uint64_t pad0,pad1; [16 bytes] |
76 | | uint64_t started; // 8 bytes |
77 | | uint64_t leftover; // 8 bytes |
78 | | uint8_t buffer[64]; // 64 bytes |
79 | | } poly1305_state_internal; /* 448 bytes total + 63 bytes for |
80 | | alignment = 511 bytes raw */ |
81 | | |
82 | | static_assert(sizeof(struct poly1305_state_internal_t) + 63 <= |
83 | | sizeof(poly1305_state), |
84 | | "poly1305_state isn't large enough to hold aligned " |
85 | | "poly1305_state_internal_t"); |
86 | | |
87 | 0 | poly1305_state_internal *poly1305_aligned_state(poly1305_state *state) { |
88 | 0 | return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63); |
89 | 0 | } |
90 | | |
91 | 0 | size_t poly1305_min(size_t a, size_t b) { return (a < b) ? a : b; } |
92 | | |
93 | | } // namespace |
94 | | |
95 | 0 | void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) { |
96 | 0 | poly1305_state_internal *st = poly1305_aligned_state(state); |
97 | 0 | poly1305_power *p; |
98 | 0 | uint64_t r0, r1, r2; |
99 | 0 | uint64_t t0, t1; |
100 | | |
101 | | // clamp key |
102 | 0 | t0 = CRYPTO_load_u64_le(key + 0); |
103 | 0 | t1 = CRYPTO_load_u64_le(key + 8); |
104 | 0 | r0 = t0 & 0xffc0fffffff; |
105 | 0 | t0 >>= 44; |
106 | 0 | t0 |= t1 << 20; |
107 | 0 | r1 = t0 & 0xfffffc0ffff; |
108 | 0 | t1 >>= 24; |
109 | 0 | r2 = t1 & 0x00ffffffc0f; |
110 | | |
111 | | // store r in un-used space of st->P[1] |
112 | 0 | p = &st->P[1]; |
113 | 0 | p->R20.d[1] = (uint32_t)(r0); |
114 | 0 | p->R20.d[3] = (uint32_t)(r0 >> 32); |
115 | 0 | p->R21.d[1] = (uint32_t)(r1); |
116 | 0 | p->R21.d[3] = (uint32_t)(r1 >> 32); |
117 | 0 | p->R22.d[1] = (uint32_t)(r2); |
118 | 0 | p->R22.d[3] = (uint32_t)(r2 >> 32); |
119 | | |
120 | | // store pad |
121 | 0 | p->R23.d[1] = CRYPTO_load_u32_le(key + 16); |
122 | 0 | p->R23.d[3] = CRYPTO_load_u32_le(key + 20); |
123 | 0 | p->R24.d[1] = CRYPTO_load_u32_le(key + 24); |
124 | 0 | p->R24.d[3] = CRYPTO_load_u32_le(key + 28); |
125 | | |
126 | | // H = 0 |
127 | 0 | st->H[0] = _mm_setzero_si128(); |
128 | 0 | st->H[1] = _mm_setzero_si128(); |
129 | 0 | st->H[2] = _mm_setzero_si128(); |
130 | 0 | st->H[3] = _mm_setzero_si128(); |
131 | 0 | st->H[4] = _mm_setzero_si128(); |
132 | |
|
133 | 0 | st->started = 0; |
134 | 0 | st->leftover = 0; |
135 | 0 | } |
136 | | |
137 | | namespace { |
138 | | |
139 | 0 | void poly1305_first_block(poly1305_state_internal *st, const uint8_t *m) { |
140 | 0 | const xmmi MMASK = |
141 | 0 | _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
142 | 0 | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
143 | 0 | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
144 | 0 | xmmi T5, T6; |
145 | 0 | poly1305_power *p; |
146 | 0 | uint128_t d[3]; |
147 | 0 | uint64_t r0, r1, r2; |
148 | 0 | uint64_t r20, r21, r22, s22; |
149 | 0 | uint64_t pad0, pad1; |
150 | 0 | uint64_t c; |
151 | 0 | uint64_t i; |
152 | | |
153 | | // pull out stored info |
154 | 0 | p = &st->P[1]; |
155 | |
|
156 | 0 | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
157 | 0 | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
158 | 0 | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
159 | 0 | pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; |
160 | 0 | pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; |
161 | | |
162 | | // compute powers r^2,r^4 |
163 | 0 | r20 = r0; |
164 | 0 | r21 = r1; |
165 | 0 | r22 = r2; |
166 | 0 | for (i = 0; i < 2; i++) { |
167 | 0 | s22 = r22 * (5 << 2); |
168 | |
|
169 | 0 | d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22)); |
170 | 0 | d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21)); |
171 | 0 | d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20)); |
172 | |
|
173 | 0 | r20 = lo128(d[0]) & 0xfffffffffff; |
174 | 0 | c = shr128(d[0], 44); |
175 | 0 | d[1] = add128_64(d[1], c); |
176 | 0 | r21 = lo128(d[1]) & 0xfffffffffff; |
177 | 0 | c = shr128(d[1], 44); |
178 | 0 | d[2] = add128_64(d[2], c); |
179 | 0 | r22 = lo128(d[2]) & 0x3ffffffffff; |
180 | 0 | c = shr128(d[2], 42); |
181 | 0 | r20 += c * 5; |
182 | 0 | c = (r20 >> 44); |
183 | 0 | r20 = r20 & 0xfffffffffff; |
184 | 0 | r21 += c; |
185 | |
|
186 | 0 | p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20) & 0x3ffffff), |
187 | 0 | _MM_SHUFFLE(1, 0, 1, 0)); |
188 | 0 | p->R21.v = _mm_shuffle_epi32( |
189 | 0 | _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), |
190 | 0 | _MM_SHUFFLE(1, 0, 1, 0)); |
191 | 0 | p->R22.v = |
192 | 0 | _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff), |
193 | 0 | _MM_SHUFFLE(1, 0, 1, 0)); |
194 | 0 | p->R23.v = _mm_shuffle_epi32( |
195 | 0 | _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), |
196 | 0 | _MM_SHUFFLE(1, 0, 1, 0)); |
197 | 0 | p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))), |
198 | 0 | _MM_SHUFFLE(1, 0, 1, 0)); |
199 | 0 | p->S21.v = _mm_mul_epu32(p->R21.v, FIVE); |
200 | 0 | p->S22.v = _mm_mul_epu32(p->R22.v, FIVE); |
201 | 0 | p->S23.v = _mm_mul_epu32(p->R23.v, FIVE); |
202 | 0 | p->S24.v = _mm_mul_epu32(p->R24.v, FIVE); |
203 | 0 | p--; |
204 | 0 | } |
205 | | |
206 | | // put saved info back |
207 | 0 | p = &st->P[1]; |
208 | 0 | p->R20.d[1] = (uint32_t)(r0); |
209 | 0 | p->R20.d[3] = (uint32_t)(r0 >> 32); |
210 | 0 | p->R21.d[1] = (uint32_t)(r1); |
211 | 0 | p->R21.d[3] = (uint32_t)(r1 >> 32); |
212 | 0 | p->R22.d[1] = (uint32_t)(r2); |
213 | 0 | p->R22.d[3] = (uint32_t)(r2 >> 32); |
214 | 0 | p->R23.d[1] = (uint32_t)(pad0); |
215 | 0 | p->R23.d[3] = (uint32_t)(pad0 >> 32); |
216 | 0 | p->R24.d[1] = (uint32_t)(pad1); |
217 | 0 | p->R24.d[3] = (uint32_t)(pad1 >> 32); |
218 | | |
219 | | // H = [Mx,My] |
220 | 0 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
221 | 0 | _mm_loadl_epi64((const xmmi *)(m + 16))); |
222 | 0 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
223 | 0 | _mm_loadl_epi64((const xmmi *)(m + 24))); |
224 | 0 | st->H[0] = _mm_and_si128(MMASK, T5); |
225 | 0 | st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
226 | 0 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
227 | 0 | st->H[2] = _mm_and_si128(MMASK, T5); |
228 | 0 | st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
229 | 0 | st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
230 | 0 | } |
231 | | |
232 | | void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, |
233 | 0 | size_t bytes) { |
234 | 0 | const xmmi MMASK = |
235 | 0 | _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
236 | 0 | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
237 | 0 | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
238 | |
|
239 | 0 | poly1305_power *p; |
240 | 0 | xmmi H0, H1, H2, H3, H4; |
241 | 0 | xmmi T0, T1, T2, T3, T4, T5, T6; |
242 | 0 | xmmi M0, M1, M2, M3, M4; |
243 | 0 | xmmi C1, C2; |
244 | |
|
245 | 0 | H0 = st->H[0]; |
246 | 0 | H1 = st->H[1]; |
247 | 0 | H2 = st->H[2]; |
248 | 0 | H3 = st->H[3]; |
249 | 0 | H4 = st->H[4]; |
250 | |
|
251 | 0 | while (bytes >= 64) { |
252 | | // H *= [r^4,r^4] |
253 | 0 | p = &st->P[0]; |
254 | 0 | T0 = _mm_mul_epu32(H0, p->R20.v); |
255 | 0 | T1 = _mm_mul_epu32(H0, p->R21.v); |
256 | 0 | T2 = _mm_mul_epu32(H0, p->R22.v); |
257 | 0 | T3 = _mm_mul_epu32(H0, p->R23.v); |
258 | 0 | T4 = _mm_mul_epu32(H0, p->R24.v); |
259 | 0 | T5 = _mm_mul_epu32(H1, p->S24.v); |
260 | 0 | T6 = _mm_mul_epu32(H1, p->R20.v); |
261 | 0 | T0 = _mm_add_epi64(T0, T5); |
262 | 0 | T1 = _mm_add_epi64(T1, T6); |
263 | 0 | T5 = _mm_mul_epu32(H2, p->S23.v); |
264 | 0 | T6 = _mm_mul_epu32(H2, p->S24.v); |
265 | 0 | T0 = _mm_add_epi64(T0, T5); |
266 | 0 | T1 = _mm_add_epi64(T1, T6); |
267 | 0 | T5 = _mm_mul_epu32(H3, p->S22.v); |
268 | 0 | T6 = _mm_mul_epu32(H3, p->S23.v); |
269 | 0 | T0 = _mm_add_epi64(T0, T5); |
270 | 0 | T1 = _mm_add_epi64(T1, T6); |
271 | 0 | T5 = _mm_mul_epu32(H4, p->S21.v); |
272 | 0 | T6 = _mm_mul_epu32(H4, p->S22.v); |
273 | 0 | T0 = _mm_add_epi64(T0, T5); |
274 | 0 | T1 = _mm_add_epi64(T1, T6); |
275 | 0 | T5 = _mm_mul_epu32(H1, p->R21.v); |
276 | 0 | T6 = _mm_mul_epu32(H1, p->R22.v); |
277 | 0 | T2 = _mm_add_epi64(T2, T5); |
278 | 0 | T3 = _mm_add_epi64(T3, T6); |
279 | 0 | T5 = _mm_mul_epu32(H2, p->R20.v); |
280 | 0 | T6 = _mm_mul_epu32(H2, p->R21.v); |
281 | 0 | T2 = _mm_add_epi64(T2, T5); |
282 | 0 | T3 = _mm_add_epi64(T3, T6); |
283 | 0 | T5 = _mm_mul_epu32(H3, p->S24.v); |
284 | 0 | T6 = _mm_mul_epu32(H3, p->R20.v); |
285 | 0 | T2 = _mm_add_epi64(T2, T5); |
286 | 0 | T3 = _mm_add_epi64(T3, T6); |
287 | 0 | T5 = _mm_mul_epu32(H4, p->S23.v); |
288 | 0 | T6 = _mm_mul_epu32(H4, p->S24.v); |
289 | 0 | T2 = _mm_add_epi64(T2, T5); |
290 | 0 | T3 = _mm_add_epi64(T3, T6); |
291 | 0 | T5 = _mm_mul_epu32(H1, p->R23.v); |
292 | 0 | T4 = _mm_add_epi64(T4, T5); |
293 | 0 | T5 = _mm_mul_epu32(H2, p->R22.v); |
294 | 0 | T4 = _mm_add_epi64(T4, T5); |
295 | 0 | T5 = _mm_mul_epu32(H3, p->R21.v); |
296 | 0 | T4 = _mm_add_epi64(T4, T5); |
297 | 0 | T5 = _mm_mul_epu32(H4, p->R20.v); |
298 | 0 | T4 = _mm_add_epi64(T4, T5); |
299 | | |
300 | | // H += [Mx,My]*[r^2,r^2] |
301 | 0 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
302 | 0 | _mm_loadl_epi64((const xmmi *)(m + 16))); |
303 | 0 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
304 | 0 | _mm_loadl_epi64((const xmmi *)(m + 24))); |
305 | 0 | M0 = _mm_and_si128(MMASK, T5); |
306 | 0 | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
307 | 0 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
308 | 0 | M2 = _mm_and_si128(MMASK, T5); |
309 | 0 | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
310 | 0 | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
311 | |
|
312 | 0 | p = &st->P[1]; |
313 | 0 | T5 = _mm_mul_epu32(M0, p->R20.v); |
314 | 0 | T6 = _mm_mul_epu32(M0, p->R21.v); |
315 | 0 | T0 = _mm_add_epi64(T0, T5); |
316 | 0 | T1 = _mm_add_epi64(T1, T6); |
317 | 0 | T5 = _mm_mul_epu32(M1, p->S24.v); |
318 | 0 | T6 = _mm_mul_epu32(M1, p->R20.v); |
319 | 0 | T0 = _mm_add_epi64(T0, T5); |
320 | 0 | T1 = _mm_add_epi64(T1, T6); |
321 | 0 | T5 = _mm_mul_epu32(M2, p->S23.v); |
322 | 0 | T6 = _mm_mul_epu32(M2, p->S24.v); |
323 | 0 | T0 = _mm_add_epi64(T0, T5); |
324 | 0 | T1 = _mm_add_epi64(T1, T6); |
325 | 0 | T5 = _mm_mul_epu32(M3, p->S22.v); |
326 | 0 | T6 = _mm_mul_epu32(M3, p->S23.v); |
327 | 0 | T0 = _mm_add_epi64(T0, T5); |
328 | 0 | T1 = _mm_add_epi64(T1, T6); |
329 | 0 | T5 = _mm_mul_epu32(M4, p->S21.v); |
330 | 0 | T6 = _mm_mul_epu32(M4, p->S22.v); |
331 | 0 | T0 = _mm_add_epi64(T0, T5); |
332 | 0 | T1 = _mm_add_epi64(T1, T6); |
333 | 0 | T5 = _mm_mul_epu32(M0, p->R22.v); |
334 | 0 | T6 = _mm_mul_epu32(M0, p->R23.v); |
335 | 0 | T2 = _mm_add_epi64(T2, T5); |
336 | 0 | T3 = _mm_add_epi64(T3, T6); |
337 | 0 | T5 = _mm_mul_epu32(M1, p->R21.v); |
338 | 0 | T6 = _mm_mul_epu32(M1, p->R22.v); |
339 | 0 | T2 = _mm_add_epi64(T2, T5); |
340 | 0 | T3 = _mm_add_epi64(T3, T6); |
341 | 0 | T5 = _mm_mul_epu32(M2, p->R20.v); |
342 | 0 | T6 = _mm_mul_epu32(M2, p->R21.v); |
343 | 0 | T2 = _mm_add_epi64(T2, T5); |
344 | 0 | T3 = _mm_add_epi64(T3, T6); |
345 | 0 | T5 = _mm_mul_epu32(M3, p->S24.v); |
346 | 0 | T6 = _mm_mul_epu32(M3, p->R20.v); |
347 | 0 | T2 = _mm_add_epi64(T2, T5); |
348 | 0 | T3 = _mm_add_epi64(T3, T6); |
349 | 0 | T5 = _mm_mul_epu32(M4, p->S23.v); |
350 | 0 | T6 = _mm_mul_epu32(M4, p->S24.v); |
351 | 0 | T2 = _mm_add_epi64(T2, T5); |
352 | 0 | T3 = _mm_add_epi64(T3, T6); |
353 | 0 | T5 = _mm_mul_epu32(M0, p->R24.v); |
354 | 0 | T4 = _mm_add_epi64(T4, T5); |
355 | 0 | T5 = _mm_mul_epu32(M1, p->R23.v); |
356 | 0 | T4 = _mm_add_epi64(T4, T5); |
357 | 0 | T5 = _mm_mul_epu32(M2, p->R22.v); |
358 | 0 | T4 = _mm_add_epi64(T4, T5); |
359 | 0 | T5 = _mm_mul_epu32(M3, p->R21.v); |
360 | 0 | T4 = _mm_add_epi64(T4, T5); |
361 | 0 | T5 = _mm_mul_epu32(M4, p->R20.v); |
362 | 0 | T4 = _mm_add_epi64(T4, T5); |
363 | | |
364 | | // H += [Mx,My] |
365 | 0 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)), |
366 | 0 | _mm_loadl_epi64((const xmmi *)(m + 48))); |
367 | 0 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)), |
368 | 0 | _mm_loadl_epi64((const xmmi *)(m + 56))); |
369 | 0 | M0 = _mm_and_si128(MMASK, T5); |
370 | 0 | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
371 | 0 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
372 | 0 | M2 = _mm_and_si128(MMASK, T5); |
373 | 0 | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
374 | 0 | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
375 | |
|
376 | 0 | T0 = _mm_add_epi64(T0, M0); |
377 | 0 | T1 = _mm_add_epi64(T1, M1); |
378 | 0 | T2 = _mm_add_epi64(T2, M2); |
379 | 0 | T3 = _mm_add_epi64(T3, M3); |
380 | 0 | T4 = _mm_add_epi64(T4, M4); |
381 | | |
382 | | // reduce |
383 | 0 | C1 = _mm_srli_epi64(T0, 26); |
384 | 0 | C2 = _mm_srli_epi64(T3, 26); |
385 | 0 | T0 = _mm_and_si128(T0, MMASK); |
386 | 0 | T3 = _mm_and_si128(T3, MMASK); |
387 | 0 | T1 = _mm_add_epi64(T1, C1); |
388 | 0 | T4 = _mm_add_epi64(T4, C2); |
389 | 0 | C1 = _mm_srli_epi64(T1, 26); |
390 | 0 | C2 = _mm_srli_epi64(T4, 26); |
391 | 0 | T1 = _mm_and_si128(T1, MMASK); |
392 | 0 | T4 = _mm_and_si128(T4, MMASK); |
393 | 0 | T2 = _mm_add_epi64(T2, C1); |
394 | 0 | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
395 | 0 | C1 = _mm_srli_epi64(T2, 26); |
396 | 0 | C2 = _mm_srli_epi64(T0, 26); |
397 | 0 | T2 = _mm_and_si128(T2, MMASK); |
398 | 0 | T0 = _mm_and_si128(T0, MMASK); |
399 | 0 | T3 = _mm_add_epi64(T3, C1); |
400 | 0 | T1 = _mm_add_epi64(T1, C2); |
401 | 0 | C1 = _mm_srli_epi64(T3, 26); |
402 | 0 | T3 = _mm_and_si128(T3, MMASK); |
403 | 0 | T4 = _mm_add_epi64(T4, C1); |
404 | | |
405 | | // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) |
406 | 0 | H0 = T0; |
407 | 0 | H1 = T1; |
408 | 0 | H2 = T2; |
409 | 0 | H3 = T3; |
410 | 0 | H4 = T4; |
411 | |
|
412 | 0 | m += 64; |
413 | 0 | bytes -= 64; |
414 | 0 | } |
415 | |
|
416 | 0 | st->H[0] = H0; |
417 | 0 | st->H[1] = H1; |
418 | 0 | st->H[2] = H2; |
419 | 0 | st->H[3] = H3; |
420 | 0 | st->H[4] = H4; |
421 | 0 | } |
422 | | |
423 | | size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m, |
424 | 0 | size_t bytes) { |
425 | 0 | const xmmi MMASK = |
426 | 0 | _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
427 | 0 | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
428 | 0 | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
429 | |
|
430 | 0 | poly1305_power *p; |
431 | 0 | xmmi H0, H1, H2, H3, H4; |
432 | 0 | xmmi M0, M1, M2, M3, M4; |
433 | 0 | xmmi T0, T1, T2, T3, T4, T5, T6; |
434 | 0 | xmmi C1, C2; |
435 | |
|
436 | 0 | uint64_t r0, r1, r2; |
437 | 0 | uint64_t t0, t1, t2, t3, t4; |
438 | 0 | uint64_t c; |
439 | 0 | size_t consumed = 0; |
440 | |
|
441 | 0 | H0 = st->H[0]; |
442 | 0 | H1 = st->H[1]; |
443 | 0 | H2 = st->H[2]; |
444 | 0 | H3 = st->H[3]; |
445 | 0 | H4 = st->H[4]; |
446 | | |
447 | | // p = [r^2,r^2] |
448 | 0 | p = &st->P[1]; |
449 | |
|
450 | 0 | if (bytes >= 32) { |
451 | | // H *= [r^2,r^2] |
452 | 0 | T0 = _mm_mul_epu32(H0, p->R20.v); |
453 | 0 | T1 = _mm_mul_epu32(H0, p->R21.v); |
454 | 0 | T2 = _mm_mul_epu32(H0, p->R22.v); |
455 | 0 | T3 = _mm_mul_epu32(H0, p->R23.v); |
456 | 0 | T4 = _mm_mul_epu32(H0, p->R24.v); |
457 | 0 | T5 = _mm_mul_epu32(H1, p->S24.v); |
458 | 0 | T6 = _mm_mul_epu32(H1, p->R20.v); |
459 | 0 | T0 = _mm_add_epi64(T0, T5); |
460 | 0 | T1 = _mm_add_epi64(T1, T6); |
461 | 0 | T5 = _mm_mul_epu32(H2, p->S23.v); |
462 | 0 | T6 = _mm_mul_epu32(H2, p->S24.v); |
463 | 0 | T0 = _mm_add_epi64(T0, T5); |
464 | 0 | T1 = _mm_add_epi64(T1, T6); |
465 | 0 | T5 = _mm_mul_epu32(H3, p->S22.v); |
466 | 0 | T6 = _mm_mul_epu32(H3, p->S23.v); |
467 | 0 | T0 = _mm_add_epi64(T0, T5); |
468 | 0 | T1 = _mm_add_epi64(T1, T6); |
469 | 0 | T5 = _mm_mul_epu32(H4, p->S21.v); |
470 | 0 | T6 = _mm_mul_epu32(H4, p->S22.v); |
471 | 0 | T0 = _mm_add_epi64(T0, T5); |
472 | 0 | T1 = _mm_add_epi64(T1, T6); |
473 | 0 | T5 = _mm_mul_epu32(H1, p->R21.v); |
474 | 0 | T6 = _mm_mul_epu32(H1, p->R22.v); |
475 | 0 | T2 = _mm_add_epi64(T2, T5); |
476 | 0 | T3 = _mm_add_epi64(T3, T6); |
477 | 0 | T5 = _mm_mul_epu32(H2, p->R20.v); |
478 | 0 | T6 = _mm_mul_epu32(H2, p->R21.v); |
479 | 0 | T2 = _mm_add_epi64(T2, T5); |
480 | 0 | T3 = _mm_add_epi64(T3, T6); |
481 | 0 | T5 = _mm_mul_epu32(H3, p->S24.v); |
482 | 0 | T6 = _mm_mul_epu32(H3, p->R20.v); |
483 | 0 | T2 = _mm_add_epi64(T2, T5); |
484 | 0 | T3 = _mm_add_epi64(T3, T6); |
485 | 0 | T5 = _mm_mul_epu32(H4, p->S23.v); |
486 | 0 | T6 = _mm_mul_epu32(H4, p->S24.v); |
487 | 0 | T2 = _mm_add_epi64(T2, T5); |
488 | 0 | T3 = _mm_add_epi64(T3, T6); |
489 | 0 | T5 = _mm_mul_epu32(H1, p->R23.v); |
490 | 0 | T4 = _mm_add_epi64(T4, T5); |
491 | 0 | T5 = _mm_mul_epu32(H2, p->R22.v); |
492 | 0 | T4 = _mm_add_epi64(T4, T5); |
493 | 0 | T5 = _mm_mul_epu32(H3, p->R21.v); |
494 | 0 | T4 = _mm_add_epi64(T4, T5); |
495 | 0 | T5 = _mm_mul_epu32(H4, p->R20.v); |
496 | 0 | T4 = _mm_add_epi64(T4, T5); |
497 | | |
498 | | // H += [Mx,My] |
499 | 0 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
500 | 0 | _mm_loadl_epi64((const xmmi *)(m + 16))); |
501 | 0 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
502 | 0 | _mm_loadl_epi64((const xmmi *)(m + 24))); |
503 | 0 | M0 = _mm_and_si128(MMASK, T5); |
504 | 0 | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
505 | 0 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
506 | 0 | M2 = _mm_and_si128(MMASK, T5); |
507 | 0 | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
508 | 0 | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
509 | |
|
510 | 0 | T0 = _mm_add_epi64(T0, M0); |
511 | 0 | T1 = _mm_add_epi64(T1, M1); |
512 | 0 | T2 = _mm_add_epi64(T2, M2); |
513 | 0 | T3 = _mm_add_epi64(T3, M3); |
514 | 0 | T4 = _mm_add_epi64(T4, M4); |
515 | | |
516 | | // reduce |
517 | 0 | C1 = _mm_srli_epi64(T0, 26); |
518 | 0 | C2 = _mm_srli_epi64(T3, 26); |
519 | 0 | T0 = _mm_and_si128(T0, MMASK); |
520 | 0 | T3 = _mm_and_si128(T3, MMASK); |
521 | 0 | T1 = _mm_add_epi64(T1, C1); |
522 | 0 | T4 = _mm_add_epi64(T4, C2); |
523 | 0 | C1 = _mm_srli_epi64(T1, 26); |
524 | 0 | C2 = _mm_srli_epi64(T4, 26); |
525 | 0 | T1 = _mm_and_si128(T1, MMASK); |
526 | 0 | T4 = _mm_and_si128(T4, MMASK); |
527 | 0 | T2 = _mm_add_epi64(T2, C1); |
528 | 0 | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
529 | 0 | C1 = _mm_srli_epi64(T2, 26); |
530 | 0 | C2 = _mm_srli_epi64(T0, 26); |
531 | 0 | T2 = _mm_and_si128(T2, MMASK); |
532 | 0 | T0 = _mm_and_si128(T0, MMASK); |
533 | 0 | T3 = _mm_add_epi64(T3, C1); |
534 | 0 | T1 = _mm_add_epi64(T1, C2); |
535 | 0 | C1 = _mm_srli_epi64(T3, 26); |
536 | 0 | T3 = _mm_and_si128(T3, MMASK); |
537 | 0 | T4 = _mm_add_epi64(T4, C1); |
538 | | |
539 | | // H = (H*[r^2,r^2] + [Mx,My]) |
540 | 0 | H0 = T0; |
541 | 0 | H1 = T1; |
542 | 0 | H2 = T2; |
543 | 0 | H3 = T3; |
544 | 0 | H4 = T4; |
545 | |
|
546 | 0 | consumed = 32; |
547 | 0 | } |
548 | | |
549 | | // finalize, H *= [r^2,r] |
550 | 0 | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
551 | 0 | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
552 | 0 | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
553 | |
|
554 | 0 | p->R20.d[2] = (uint32_t)(r0) & 0x3ffffff; |
555 | 0 | p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff; |
556 | 0 | p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff; |
557 | 0 | p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff; |
558 | 0 | p->R24.d[2] = (uint32_t)((r2 >> 16)); |
559 | 0 | p->S21.d[2] = p->R21.d[2] * 5; |
560 | 0 | p->S22.d[2] = p->R22.d[2] * 5; |
561 | 0 | p->S23.d[2] = p->R23.d[2] * 5; |
562 | 0 | p->S24.d[2] = p->R24.d[2] * 5; |
563 | | |
564 | | // H *= [r^2,r] |
565 | 0 | T0 = _mm_mul_epu32(H0, p->R20.v); |
566 | 0 | T1 = _mm_mul_epu32(H0, p->R21.v); |
567 | 0 | T2 = _mm_mul_epu32(H0, p->R22.v); |
568 | 0 | T3 = _mm_mul_epu32(H0, p->R23.v); |
569 | 0 | T4 = _mm_mul_epu32(H0, p->R24.v); |
570 | 0 | T5 = _mm_mul_epu32(H1, p->S24.v); |
571 | 0 | T6 = _mm_mul_epu32(H1, p->R20.v); |
572 | 0 | T0 = _mm_add_epi64(T0, T5); |
573 | 0 | T1 = _mm_add_epi64(T1, T6); |
574 | 0 | T5 = _mm_mul_epu32(H2, p->S23.v); |
575 | 0 | T6 = _mm_mul_epu32(H2, p->S24.v); |
576 | 0 | T0 = _mm_add_epi64(T0, T5); |
577 | 0 | T1 = _mm_add_epi64(T1, T6); |
578 | 0 | T5 = _mm_mul_epu32(H3, p->S22.v); |
579 | 0 | T6 = _mm_mul_epu32(H3, p->S23.v); |
580 | 0 | T0 = _mm_add_epi64(T0, T5); |
581 | 0 | T1 = _mm_add_epi64(T1, T6); |
582 | 0 | T5 = _mm_mul_epu32(H4, p->S21.v); |
583 | 0 | T6 = _mm_mul_epu32(H4, p->S22.v); |
584 | 0 | T0 = _mm_add_epi64(T0, T5); |
585 | 0 | T1 = _mm_add_epi64(T1, T6); |
586 | 0 | T5 = _mm_mul_epu32(H1, p->R21.v); |
587 | 0 | T6 = _mm_mul_epu32(H1, p->R22.v); |
588 | 0 | T2 = _mm_add_epi64(T2, T5); |
589 | 0 | T3 = _mm_add_epi64(T3, T6); |
590 | 0 | T5 = _mm_mul_epu32(H2, p->R20.v); |
591 | 0 | T6 = _mm_mul_epu32(H2, p->R21.v); |
592 | 0 | T2 = _mm_add_epi64(T2, T5); |
593 | 0 | T3 = _mm_add_epi64(T3, T6); |
594 | 0 | T5 = _mm_mul_epu32(H3, p->S24.v); |
595 | 0 | T6 = _mm_mul_epu32(H3, p->R20.v); |
596 | 0 | T2 = _mm_add_epi64(T2, T5); |
597 | 0 | T3 = _mm_add_epi64(T3, T6); |
598 | 0 | T5 = _mm_mul_epu32(H4, p->S23.v); |
599 | 0 | T6 = _mm_mul_epu32(H4, p->S24.v); |
600 | 0 | T2 = _mm_add_epi64(T2, T5); |
601 | 0 | T3 = _mm_add_epi64(T3, T6); |
602 | 0 | T5 = _mm_mul_epu32(H1, p->R23.v); |
603 | 0 | T4 = _mm_add_epi64(T4, T5); |
604 | 0 | T5 = _mm_mul_epu32(H2, p->R22.v); |
605 | 0 | T4 = _mm_add_epi64(T4, T5); |
606 | 0 | T5 = _mm_mul_epu32(H3, p->R21.v); |
607 | 0 | T4 = _mm_add_epi64(T4, T5); |
608 | 0 | T5 = _mm_mul_epu32(H4, p->R20.v); |
609 | 0 | T4 = _mm_add_epi64(T4, T5); |
610 | |
|
611 | 0 | C1 = _mm_srli_epi64(T0, 26); |
612 | 0 | C2 = _mm_srli_epi64(T3, 26); |
613 | 0 | T0 = _mm_and_si128(T0, MMASK); |
614 | 0 | T3 = _mm_and_si128(T3, MMASK); |
615 | 0 | T1 = _mm_add_epi64(T1, C1); |
616 | 0 | T4 = _mm_add_epi64(T4, C2); |
617 | 0 | C1 = _mm_srli_epi64(T1, 26); |
618 | 0 | C2 = _mm_srli_epi64(T4, 26); |
619 | 0 | T1 = _mm_and_si128(T1, MMASK); |
620 | 0 | T4 = _mm_and_si128(T4, MMASK); |
621 | 0 | T2 = _mm_add_epi64(T2, C1); |
622 | 0 | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
623 | 0 | C1 = _mm_srli_epi64(T2, 26); |
624 | 0 | C2 = _mm_srli_epi64(T0, 26); |
625 | 0 | T2 = _mm_and_si128(T2, MMASK); |
626 | 0 | T0 = _mm_and_si128(T0, MMASK); |
627 | 0 | T3 = _mm_add_epi64(T3, C1); |
628 | 0 | T1 = _mm_add_epi64(T1, C2); |
629 | 0 | C1 = _mm_srli_epi64(T3, 26); |
630 | 0 | T3 = _mm_and_si128(T3, MMASK); |
631 | 0 | T4 = _mm_add_epi64(T4, C1); |
632 | | |
633 | | // H = H[0]+H[1] |
634 | 0 | H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8)); |
635 | 0 | H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8)); |
636 | 0 | H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8)); |
637 | 0 | H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8)); |
638 | 0 | H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8)); |
639 | |
|
640 | 0 | t0 = _mm_cvtsi128_si32(H0); |
641 | 0 | c = (t0 >> 26); |
642 | 0 | t0 &= 0x3ffffff; |
643 | 0 | t1 = _mm_cvtsi128_si32(H1) + c; |
644 | 0 | c = (t1 >> 26); |
645 | 0 | t1 &= 0x3ffffff; |
646 | 0 | t2 = _mm_cvtsi128_si32(H2) + c; |
647 | 0 | c = (t2 >> 26); |
648 | 0 | t2 &= 0x3ffffff; |
649 | 0 | t3 = _mm_cvtsi128_si32(H3) + c; |
650 | 0 | c = (t3 >> 26); |
651 | 0 | t3 &= 0x3ffffff; |
652 | 0 | t4 = _mm_cvtsi128_si32(H4) + c; |
653 | 0 | c = (t4 >> 26); |
654 | 0 | t4 &= 0x3ffffff; |
655 | 0 | t0 = t0 + (c * 5); |
656 | 0 | c = (t0 >> 26); |
657 | 0 | t0 &= 0x3ffffff; |
658 | 0 | t1 = t1 + c; |
659 | |
|
660 | 0 | st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff); |
661 | 0 | st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff); |
662 | 0 | st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff); |
663 | |
|
664 | 0 | return consumed; |
665 | 0 | } |
666 | | |
667 | | } // namespace |
668 | | |
669 | | void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m, |
670 | 0 | size_t bytes) { |
671 | 0 | poly1305_state_internal *st = poly1305_aligned_state(state); |
672 | 0 | size_t want; |
673 | | |
674 | | // Work around a C language bug. See https://crbug.com/1019588. |
675 | 0 | if (bytes == 0) { |
676 | 0 | return; |
677 | 0 | } |
678 | | |
679 | | // need at least 32 initial bytes to start the accelerated branch |
680 | 0 | if (!st->started) { |
681 | 0 | if ((st->leftover == 0) && (bytes > 32)) { |
682 | 0 | poly1305_first_block(st, m); |
683 | 0 | m += 32; |
684 | 0 | bytes -= 32; |
685 | 0 | } else { |
686 | 0 | want = poly1305_min(32 - st->leftover, bytes); |
687 | 0 | OPENSSL_memcpy(st->buffer + st->leftover, m, want); |
688 | 0 | bytes -= want; |
689 | 0 | m += want; |
690 | 0 | st->leftover += want; |
691 | 0 | if ((st->leftover < 32) || (bytes == 0)) { |
692 | 0 | return; |
693 | 0 | } |
694 | 0 | poly1305_first_block(st, st->buffer); |
695 | 0 | st->leftover = 0; |
696 | 0 | } |
697 | 0 | st->started = 1; |
698 | 0 | } |
699 | | |
700 | | // handle leftover |
701 | 0 | if (st->leftover) { |
702 | 0 | want = poly1305_min(64 - st->leftover, bytes); |
703 | 0 | OPENSSL_memcpy(st->buffer + st->leftover, m, want); |
704 | 0 | bytes -= want; |
705 | 0 | m += want; |
706 | 0 | st->leftover += want; |
707 | 0 | if (st->leftover < 64) { |
708 | 0 | return; |
709 | 0 | } |
710 | 0 | poly1305_blocks(st, st->buffer, 64); |
711 | 0 | st->leftover = 0; |
712 | 0 | } |
713 | | |
714 | | // process 64 byte blocks |
715 | 0 | if (bytes >= 64) { |
716 | 0 | want = (bytes & ~63); |
717 | 0 | poly1305_blocks(st, m, want); |
718 | 0 | m += want; |
719 | 0 | bytes -= want; |
720 | 0 | } |
721 | |
|
722 | 0 | if (bytes) { |
723 | 0 | OPENSSL_memcpy(st->buffer + st->leftover, m, bytes); |
724 | 0 | st->leftover += bytes; |
725 | 0 | } |
726 | 0 | } |
727 | | |
728 | 0 | void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) { |
729 | 0 | poly1305_state_internal *st = poly1305_aligned_state(state); |
730 | 0 | size_t leftover = st->leftover; |
731 | 0 | uint8_t *m = st->buffer; |
732 | 0 | uint128_t d[3]; |
733 | 0 | uint64_t h0, h1, h2; |
734 | 0 | uint64_t t0, t1; |
735 | 0 | uint64_t g0, g1, g2, c, nc; |
736 | 0 | uint64_t r0, r1, r2, s1, s2; |
737 | 0 | poly1305_power *p; |
738 | |
|
739 | 0 | if (st->started) { |
740 | 0 | size_t consumed = poly1305_combine(st, m, leftover); |
741 | 0 | leftover -= consumed; |
742 | 0 | m += consumed; |
743 | 0 | } |
744 | | |
745 | | // st->HH will either be 0 or have the combined result |
746 | 0 | h0 = st->HH[0]; |
747 | 0 | h1 = st->HH[1]; |
748 | 0 | h2 = st->HH[2]; |
749 | |
|
750 | 0 | p = &st->P[1]; |
751 | 0 | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
752 | 0 | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
753 | 0 | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
754 | 0 | s1 = r1 * (5 << 2); |
755 | 0 | s2 = r2 * (5 << 2); |
756 | |
|
757 | 0 | if (leftover < 16) { |
758 | 0 | goto poly1305_donna_atmost15bytes; |
759 | 0 | } |
760 | | |
761 | 0 | poly1305_donna_atleast16bytes: |
762 | 0 | t0 = CRYPTO_load_u64_le(m + 0); |
763 | 0 | t1 = CRYPTO_load_u64_le(m + 8); |
764 | 0 | h0 += t0 & 0xfffffffffff; |
765 | 0 | t0 = shr128_pair(t1, t0, 44); |
766 | 0 | h1 += t0 & 0xfffffffffff; |
767 | 0 | h2 += (t1 >> 24) | ((uint64_t)1 << 40); |
768 | |
|
769 | 0 | poly1305_donna_mul: |
770 | 0 | d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), |
771 | 0 | mul64x64_128(h2, s1)); |
772 | 0 | d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), |
773 | 0 | mul64x64_128(h2, s2)); |
774 | 0 | d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), |
775 | 0 | mul64x64_128(h2, r0)); |
776 | 0 | h0 = lo128(d[0]) & 0xfffffffffff; |
777 | 0 | c = shr128(d[0], 44); |
778 | 0 | d[1] = add128_64(d[1], c); |
779 | 0 | h1 = lo128(d[1]) & 0xfffffffffff; |
780 | 0 | c = shr128(d[1], 44); |
781 | 0 | d[2] = add128_64(d[2], c); |
782 | 0 | h2 = lo128(d[2]) & 0x3ffffffffff; |
783 | 0 | c = shr128(d[2], 42); |
784 | 0 | h0 += c * 5; |
785 | |
|
786 | 0 | m += 16; |
787 | 0 | leftover -= 16; |
788 | 0 | if (leftover >= 16) { |
789 | 0 | goto poly1305_donna_atleast16bytes; |
790 | 0 | } |
791 | | |
792 | | // final bytes |
793 | 0 | poly1305_donna_atmost15bytes: |
794 | 0 | if (!leftover) { |
795 | 0 | goto poly1305_donna_finish; |
796 | 0 | } |
797 | | |
798 | 0 | m[leftover++] = 1; |
799 | 0 | OPENSSL_memset(m + leftover, 0, 16 - leftover); |
800 | 0 | leftover = 16; |
801 | |
|
802 | 0 | t0 = CRYPTO_load_u64_le(m + 0); |
803 | 0 | t1 = CRYPTO_load_u64_le(m + 8); |
804 | 0 | h0 += t0 & 0xfffffffffff; |
805 | 0 | t0 = shr128_pair(t1, t0, 44); |
806 | 0 | h1 += t0 & 0xfffffffffff; |
807 | 0 | h2 += (t1 >> 24); |
808 | |
|
809 | 0 | goto poly1305_donna_mul; |
810 | | |
811 | 0 | poly1305_donna_finish: |
812 | 0 | c = (h0 >> 44); |
813 | 0 | h0 &= 0xfffffffffff; |
814 | 0 | h1 += c; |
815 | 0 | c = (h1 >> 44); |
816 | 0 | h1 &= 0xfffffffffff; |
817 | 0 | h2 += c; |
818 | 0 | c = (h2 >> 42); |
819 | 0 | h2 &= 0x3ffffffffff; |
820 | 0 | h0 += c * 5; |
821 | |
|
822 | 0 | g0 = h0 + 5; |
823 | 0 | c = (g0 >> 44); |
824 | 0 | g0 &= 0xfffffffffff; |
825 | 0 | g1 = h1 + c; |
826 | 0 | c = (g1 >> 44); |
827 | 0 | g1 &= 0xfffffffffff; |
828 | 0 | g2 = h2 + c - ((uint64_t)1 << 42); |
829 | |
|
830 | 0 | c = (g2 >> 63) - 1; |
831 | 0 | nc = ~c; |
832 | 0 | h0 = (h0 & nc) | (g0 & c); |
833 | 0 | h1 = (h1 & nc) | (g1 & c); |
834 | 0 | h2 = (h2 & nc) | (g2 & c); |
835 | | |
836 | | // pad |
837 | 0 | t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; |
838 | 0 | t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; |
839 | 0 | h0 += (t0 & 0xfffffffffff); |
840 | 0 | c = (h0 >> 44); |
841 | 0 | h0 &= 0xfffffffffff; |
842 | 0 | t0 = shr128_pair(t1, t0, 44); |
843 | 0 | h1 += (t0 & 0xfffffffffff) + c; |
844 | 0 | c = (h1 >> 44); |
845 | 0 | h1 &= 0xfffffffffff; |
846 | 0 | t1 = (t1 >> 24); |
847 | 0 | h2 += (t1) + c; |
848 | |
|
849 | 0 | CRYPTO_store_u64_le(mac + 0, ((h0) | (h1 << 44))); |
850 | 0 | CRYPTO_store_u64_le(mac + 8, ((h1 >> 20) | (h2 << 24))); |
851 | 0 | } |
852 | | |
853 | | #endif // BORINGSSL_HAS_UINT128 && OPENSSL_X86_64 |