Coverage Report

Created: 2026-02-16 07:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/boringssl/ssl/ssl_privkey.cc
Line
Count
Source
1
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include <openssl/ssl.h>
16
17
#include <assert.h>
18
#include <limits.h>
19
20
#include <algorithm>
21
22
#include <openssl/ec.h>
23
#include <openssl/ec_key.h>
24
#include <openssl/err.h>
25
#include <openssl/evp.h>
26
#include <openssl/mem.h>
27
#include <openssl/span.h>
28
29
#include "../crypto/bytestring/internal.h"
30
#include "../crypto/internal.h"
31
#include "internal.h"
32
33
34
BSSL_NAMESPACE_BEGIN
35
36
7.27k
bool ssl_is_key_type_supported(int key_type) {
37
7.27k
  return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
38
0
         key_type == EVP_PKEY_ED25519;
39
7.27k
}
40
41
typedef struct {
42
  uint16_t sigalg;
43
  int pkey_type;
44
  int curve;
45
  const EVP_MD *(*digest_func)();
46
  bool is_rsa_pss;
47
  bool tls12_ok;
48
  bool tls13_ok;
49
  bool client_only;
50
} SSL_SIGNATURE_ALGORITHM;
51
52
static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
53
    // PKCS#1 v1.5 code points are only allowed in TLS 1.2.
54
    {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
55
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
56
     /*client_only=*/false},
57
    {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1,
58
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
59
     /*client_only=*/false},
60
    {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256,
61
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
62
     /*client_only=*/false},
63
    {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384,
64
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
65
     /*client_only=*/false},
66
    {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512,
67
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
68
     /*client_only=*/false},
69
70
    // Legacy PKCS#1 v1.5 code points are only allowed in TLS 1.3 and
71
    // client-only. See draft-ietf-tls-tls13-pkcs1-00.
72
    {SSL_SIGN_RSA_PKCS1_SHA256_LEGACY, EVP_PKEY_RSA, NID_undef, &EVP_sha256,
73
     /*is_rsa_pss=*/false, /*tls12_ok=*/false, /*tls13_ok=*/true,
74
     /*client_only=*/true},
75
76
    {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256,
77
     /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true,
78
     /*client_only=*/false},
79
    {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384,
80
     /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true,
81
     /*client_only=*/false},
82
    {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512,
83
     /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true,
84
     /*client_only=*/false},
85
86
    {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1,
87
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
88
     /*client_only=*/false},
89
    {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
90
     &EVP_sha256, /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
91
     /*client_only=*/false},
92
    {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
93
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
94
     /*client_only=*/false},
95
    {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
96
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
97
     /*client_only=*/false},
98
99
    {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr,
100
     /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
101
     /*client_only=*/false},
102
};
103
104
331k
static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
105
2.56M
  for (const auto &alg : kSignatureAlgorithms) {
106
2.56M
    if (alg.sigalg == sigalg) {
107
330k
      return &alg;
108
330k
    }
109
2.56M
  }
110
914
  return nullptr;
111
331k
}
112
113
bssl::UniquePtr<EVP_PKEY> ssl_parse_peer_subject_public_key_info(
114
50.2k
    Span<const uint8_t> spki) {
115
  // Ideally the set of reachable algorithms would flow from |SSL_CTX| for dead
116
  // code elimination, but for now we just specify every algorithm that might be
117
  // reachable from libssl.
118
50.2k
  const EVP_PKEY_ALG *const algs[] = {
119
50.2k
      EVP_pkey_rsa(),     EVP_pkey_ec_p256(), EVP_pkey_ec_p384(),
120
50.2k
      EVP_pkey_ec_p521(), EVP_pkey_ed25519(),
121
50.2k
  };
122
50.2k
  return bssl::UniquePtr<EVP_PKEY>(EVP_PKEY_from_subject_public_key_info(
123
50.2k
      spki.data(), spki.size(), algs, std::size(algs)));
124
50.2k
}
125
126
bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
127
269k
                                 uint16_t sigalg, bool is_verify) {
128
269k
  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
129
269k
  if (alg == nullptr || EVP_PKEY_id(pkey) != alg->pkey_type) {
130
84.6k
    return false;
131
84.6k
  }
132
133
  // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
134
  // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
135
  // hash in TLS. Reasonable RSA key sizes are large enough for the largest
136
  // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
137
  // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
138
  // size so that we can fall back to another algorithm in that case.
139
185k
  if (alg->is_rsa_pss &&
140
72.5k
      (size_t)EVP_PKEY_size(pkey) < 2 * EVP_MD_size(alg->digest_func()) + 2) {
141
1
    return false;
142
1
  }
143
144
185k
  if (ssl_protocol_version(ssl) < TLS1_2_VERSION) {
145
    // TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two
146
    // hardcoded algorithms.
147
3.97k
    return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 ||
148
79
           sigalg == SSL_SIGN_ECDSA_SHA1;
149
3.97k
  }
150
151
  // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and
152
  // higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1
153
  // concatenation.
154
181k
  if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
155
0
    return false;
156
0
  }
157
158
181k
  if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
159
11.8k
    if (!alg->tls13_ok) {
160
1.11k
      return false;
161
1.11k
    }
162
163
10.7k
    bool is_client_sign = ssl->server == is_verify;
164
10.7k
    if (alg->client_only && !is_client_sign) {
165
0
      return false;
166
0
    }
167
168
    // EC keys have a curve requirement.
169
10.7k
    if (alg->pkey_type == EVP_PKEY_EC &&
170
724
        (alg->curve == NID_undef ||
171
724
         EVP_PKEY_get_ec_curve_nid(pkey) != alg->curve)) {
172
2
      return false;
173
2
    }
174
169k
  } else if (!alg->tls12_ok) {
175
0
    return false;
176
0
  }
177
178
180k
  return true;
179
181k
}
180
181
static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
182
57.0k
                      uint16_t sigalg, bool is_verify) {
183
57.0k
  if (!ssl_pkey_supports_algorithm(ssl, pkey, sigalg, is_verify)) {
184
0
    OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
185
0
    return false;
186
0
  }
187
188
57.0k
  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
189
57.0k
  const EVP_MD *digest =
190
57.0k
      alg->digest_func != nullptr ? alg->digest_func() : nullptr;
191
57.0k
  EVP_PKEY_CTX *pctx;
192
57.0k
  if (is_verify) {
193
35.6k
    if (!EVP_DigestVerifyInit(ctx, &pctx, digest, nullptr, pkey)) {
194
0
      return false;
195
0
    }
196
35.6k
  } else if (!EVP_DigestSignInit(ctx, &pctx, digest, nullptr, pkey)) {
197
0
    return false;
198
0
  }
199
200
57.0k
  if (alg->is_rsa_pss) {
201
17.8k
    if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
202
17.8k
        !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, RSA_PSS_SALTLEN_DIGEST)) {
203
0
      return false;
204
0
    }
205
17.8k
  }
206
207
57.0k
  return true;
208
57.0k
}
209
210
enum ssl_private_key_result_t ssl_private_key_sign(
211
    SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
212
21.3k
    uint16_t sigalg, Span<const uint8_t> in) {
213
21.3k
  SSL *const ssl = hs->ssl;
214
21.3k
  const SSL_CREDENTIAL *const cred = hs->credential.get();
215
21.3k
  SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
216
21.3k
  Array<uint8_t> spki;
217
21.3k
  if (hints) {
218
955
    ScopedCBB spki_cbb;
219
955
    if (!CBB_init(spki_cbb.get(), 64) ||
220
955
        !EVP_marshal_public_key(spki_cbb.get(), cred->pubkey.get()) ||
221
955
        !CBBFinishArray(spki_cbb.get(), &spki)) {
222
0
      ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
223
0
      return ssl_private_key_failure;
224
0
    }
225
955
  }
226
227
  // Replay the signature from handshake hints if available.
228
21.3k
  if (hints && !hs->hints_requested &&         //
229
955
      sigalg == hints->signature_algorithm &&  //
230
113
      in == hints->signature_input &&          //
231
17
      Span(spki) == hints->signature_spki &&   //
232
0
      !hints->signature.empty() &&             //
233
0
      hints->signature.size() <= max_out) {
234
    // Signature algorithm and input both match. Reuse the signature from hints.
235
0
    *out_len = hints->signature.size();
236
0
    OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size());
237
0
    return ssl_private_key_success;
238
0
  }
239
240
21.3k
  const SSL_PRIVATE_KEY_METHOD *key_method = cred->key_method;
241
21.3k
  EVP_PKEY *privkey = cred->privkey.get();
242
21.3k
  assert(!hs->can_release_private_key);
243
244
21.3k
  if (key_method != nullptr) {
245
0
    enum ssl_private_key_result_t ret;
246
0
    if (hs->pending_private_key_op) {
247
0
      ret = key_method->complete(ssl, out, out_len, max_out);
248
0
    } else {
249
0
      ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(),
250
0
                             in.size());
251
0
    }
252
0
    if (ret == ssl_private_key_failure) {
253
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
254
0
    }
255
0
    hs->pending_private_key_op = ret == ssl_private_key_retry;
256
0
    if (ret != ssl_private_key_success) {
257
0
      return ret;
258
0
    }
259
21.3k
  } else {
260
21.3k
    *out_len = max_out;
261
21.3k
    ScopedEVP_MD_CTX ctx;
262
21.3k
    if (!setup_ctx(ssl, ctx.get(), privkey, sigalg, false /* sign */) ||
263
21.3k
        !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
264
0
      return ssl_private_key_failure;
265
0
    }
266
21.3k
  }
267
268
  // Save the hint if applicable.
269
21.3k
  if (hints && hs->hints_requested) {
270
0
    hints->signature_algorithm = sigalg;
271
0
    hints->signature_spki = std::move(spki);
272
0
    if (!hints->signature_input.CopyFrom(in) ||
273
0
        !hints->signature.CopyFrom(Span(out, *out_len))) {
274
0
      return ssl_private_key_failure;
275
0
    }
276
0
  }
277
21.3k
  return ssl_private_key_success;
278
21.3k
}
279
280
bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
281
                           uint16_t sigalg, EVP_PKEY *pkey,
282
35.6k
                           Span<const uint8_t> in) {
283
35.6k
  ScopedEVP_MD_CTX ctx;
284
35.6k
  if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
285
0
    return false;
286
0
  }
287
35.6k
  bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
288
35.6k
                             in.data(), in.size());
289
35.6k
  if (CRYPTO_fuzzer_mode_enabled()) {
290
34.2k
    ok = true;
291
34.2k
    ERR_clear_error();
292
34.2k
  }
293
35.6k
  return ok;
294
35.6k
}
295
296
enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
297
                                                      uint8_t *out,
298
                                                      size_t *out_len,
299
                                                      size_t max_out,
300
96
                                                      Span<const uint8_t> in) {
301
96
  SSL *const ssl = hs->ssl;
302
96
  const SSL_CREDENTIAL *const cred = hs->credential.get();
303
96
  assert(!hs->can_release_private_key);
304
96
  if (cred->key_method != nullptr) {
305
0
    enum ssl_private_key_result_t ret;
306
0
    if (hs->pending_private_key_op) {
307
0
      ret = cred->key_method->complete(ssl, out, out_len, max_out);
308
0
    } else {
309
0
      ret = cred->key_method->decrypt(ssl, out, out_len, max_out, in.data(),
310
0
                                      in.size());
311
0
    }
312
0
    if (ret == ssl_private_key_failure) {
313
0
      OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
314
0
    }
315
0
    hs->pending_private_key_op = ret == ssl_private_key_retry;
316
0
    return ret;
317
0
  }
318
319
96
  RSA *rsa = EVP_PKEY_get0_RSA(cred->privkey.get());
320
96
  if (rsa == nullptr) {
321
    // Decrypt operations are only supported for RSA keys.
322
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
323
0
    return ssl_private_key_failure;
324
0
  }
325
326
  // Decrypt with no padding. PKCS#1 padding will be removed as part of the
327
  // timing-sensitive code by the caller.
328
96
  if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
329
96
                   RSA_NO_PADDING)) {
330
10
    return ssl_private_key_failure;
331
10
  }
332
86
  return ssl_private_key_success;
333
96
}
334
335
BSSL_NAMESPACE_END
336
337
using namespace bssl;
338
339
0
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
340
0
  if (rsa == nullptr || ssl->config == nullptr) {
341
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
342
0
    return 0;
343
0
  }
344
345
0
  UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
346
0
  if (!pkey ||  //
347
0
      !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
348
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
349
0
    return 0;
350
0
  }
351
352
0
  return SSL_use_PrivateKey(ssl, pkey.get());
353
0
}
354
355
0
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
356
0
  UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
357
0
  if (!rsa) {
358
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
359
0
    return 0;
360
0
  }
361
362
0
  return SSL_use_RSAPrivateKey(ssl, rsa.get());
363
0
}
364
365
0
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
366
0
  if (pkey == nullptr || ssl->config == nullptr) {
367
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
368
0
    return 0;
369
0
  }
370
371
0
  return SSL_CREDENTIAL_set1_private_key(
372
0
      ssl->config->cert->legacy_credential.get(), pkey);
373
0
}
374
375
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
376
0
                            size_t der_len) {
377
0
  if (der_len > LONG_MAX) {
378
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
379
0
    return 0;
380
0
  }
381
382
0
  const uint8_t *p = der;
383
0
  UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, nullptr, &p, (long)der_len));
384
0
  if (!pkey || p != der + der_len) {
385
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
386
0
    return 0;
387
0
  }
388
389
0
  return SSL_use_PrivateKey(ssl, pkey.get());
390
0
}
391
392
0
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
393
0
  if (rsa == nullptr) {
394
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
395
0
    return 0;
396
0
  }
397
398
0
  UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
399
0
  if (!pkey || !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
400
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
401
0
    return 0;
402
0
  }
403
404
0
  return SSL_CTX_use_PrivateKey(ctx, pkey.get());
405
0
}
406
407
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
408
0
                                   size_t der_len) {
409
0
  UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
410
0
  if (!rsa) {
411
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
412
0
    return 0;
413
0
  }
414
415
0
  return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
416
0
}
417
418
6.77k
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
419
6.77k
  if (pkey == nullptr) {
420
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
421
0
    return 0;
422
0
  }
423
424
6.77k
  return SSL_CREDENTIAL_set1_private_key(ctx->cert->legacy_credential.get(),
425
6.77k
                                         pkey);
426
6.77k
}
427
428
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
429
0
                                size_t der_len) {
430
0
  if (der_len > LONG_MAX) {
431
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
432
0
    return 0;
433
0
  }
434
435
0
  const uint8_t *p = der;
436
0
  UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, nullptr, &p, (long)der_len));
437
0
  if (!pkey || p != der + der_len) {
438
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
439
0
    return 0;
440
0
  }
441
442
0
  return SSL_CTX_use_PrivateKey(ctx, pkey.get());
443
0
}
444
445
void SSL_set_private_key_method(SSL *ssl,
446
0
                                const SSL_PRIVATE_KEY_METHOD *key_method) {
447
0
  if (!ssl->config) {
448
0
    return;
449
0
  }
450
0
  BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method(
451
0
      ssl->config->cert->legacy_credential.get(), key_method));
452
0
}
453
454
void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
455
0
                                    const SSL_PRIVATE_KEY_METHOD *key_method) {
456
0
  BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method(
457
0
      ctx->cert->legacy_credential.get(), key_method));
458
0
}
459
460
static constexpr size_t kMaxSignatureAlgorithmNameLen = 24;
461
462
struct SignatureAlgorithmName {
463
  uint16_t signature_algorithm;
464
  const char name[kMaxSignatureAlgorithmNameLen];
465
};
466
467
// This was "constexpr" rather than "const", but that triggered a bug in MSVC
468
// where it didn't pad the strings to the correct length.
469
static const SignatureAlgorithmName kSignatureAlgorithmNames[] = {
470
    {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
471
    {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
472
    {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
473
    {SSL_SIGN_RSA_PKCS1_SHA256_LEGACY, "rsa_pkcs1_sha256_legacy"},
474
    {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
475
    {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
476
    {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
477
    {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
478
    {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
479
    {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
480
    {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
481
    {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
482
    {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
483
    {SSL_SIGN_ED25519, "ed25519"},
484
};
485
486
const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
487
0
                                             int include_curve) {
488
0
  if (!include_curve) {
489
0
    switch (sigalg) {
490
0
      case SSL_SIGN_ECDSA_SECP256R1_SHA256:
491
0
        return "ecdsa_sha256";
492
0
      case SSL_SIGN_ECDSA_SECP384R1_SHA384:
493
0
        return "ecdsa_sha384";
494
0
      case SSL_SIGN_ECDSA_SECP521R1_SHA512:
495
0
        return "ecdsa_sha512";
496
        // If adding more here, also update
497
        // |SSL_get_all_signature_algorithm_names|.
498
0
    }
499
0
  }
500
501
0
  for (const auto &candidate : kSignatureAlgorithmNames) {
502
0
    if (candidate.signature_algorithm == sigalg) {
503
0
      return candidate.name;
504
0
    }
505
0
  }
506
507
0
  return nullptr;
508
0
}
509
510
0
size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out) {
511
0
  const char *const kPredefinedNames[] = {"ecdsa_sha256", "ecdsa_sha384",
512
0
                                          "ecdsa_sha512"};
513
0
  return GetAllNames(out, max_out, Span(kPredefinedNames),
514
0
                     &SignatureAlgorithmName::name,
515
0
                     Span(kSignatureAlgorithmNames));
516
0
}
517
518
0
int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
519
0
  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
520
0
  return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
521
0
}
522
523
0
const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
524
0
  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
525
0
  if (alg == nullptr || alg->digest_func == nullptr) {
526
0
    return nullptr;
527
0
  }
528
0
  return alg->digest_func();
529
0
}
530
531
0
int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
532
0
  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
533
0
  return alg != nullptr && alg->is_rsa_pss;
534
0
}
535
536
7.66k
static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
537
7.66k
  if (in_sigalgs.size() < 2) {
538
3.26k
    return true;
539
3.26k
  }
540
541
4.40k
  Array<uint16_t> sigalgs;
542
4.40k
  if (!sigalgs.CopyFrom(in_sigalgs)) {
543
0
    return false;
544
0
  }
545
546
4.40k
  std::sort(sigalgs.begin(), sigalgs.end());
547
28.5k
  for (size_t i = 1; i < sigalgs.size(); i++) {
548
27.4k
    if (sigalgs[i - 1] == sigalgs[i]) {
549
3.26k
      OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
550
3.26k
      return false;
551
3.26k
    }
552
27.4k
  }
553
554
1.14k
  return true;
555
4.40k
}
556
557
7.66k
static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) {
558
7.66k
  if (!sigalgs_unique(prefs)) {
559
3.26k
    return false;
560
3.26k
  }
561
562
  // Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
563
4.40k
  Array<uint16_t> filtered;
564
4.40k
  if (!filtered.InitForOverwrite(prefs.size())) {
565
0
    return false;
566
0
  }
567
4.40k
  size_t added = 0;
568
4.55k
  for (uint16_t pref : prefs) {
569
4.55k
    if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
570
      // Though not intended to be used with this API, we treat
571
      // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in
572
      // |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing
573
      // abstraction.
574
277
      continue;
575
277
    }
576
4.27k
    if (get_signature_algorithm(pref) == nullptr) {
577
914
      OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
578
914
      return false;
579
914
    }
580
3.36k
    filtered[added] = pref;
581
3.36k
    added++;
582
3.36k
  }
583
3.48k
  filtered.Shrink(added);
584
585
  // This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
586
  // Leaving it empty would revert to the default, so treat this as an error
587
  // condition.
588
3.48k
  if (!prefs.empty() && filtered.empty()) {
589
260
    OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
590
260
    return false;
591
260
  }
592
593
3.22k
  *out = std::move(filtered);
594
3.22k
  return true;
595
3.48k
}
596
597
int SSL_CREDENTIAL_set1_signing_algorithm_prefs(SSL_CREDENTIAL *cred,
598
                                                const uint16_t *prefs,
599
5.17k
                                                size_t num_prefs) {
600
5.17k
  if (!cred->UsesPrivateKey()) {
601
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
602
0
    return 0;
603
0
  }
604
605
  // Delegated credentials are constrained to a single algorithm, so there is no
606
  // need to configure this.
607
5.17k
  if (cred->type == SSLCredentialType::kDelegated) {
608
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
609
0
    return 0;
610
0
  }
611
612
5.17k
  return set_sigalg_prefs(&cred->sigalgs, Span(prefs, num_prefs));
613
5.17k
}
614
615
int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
616
5.17k
                                        size_t num_prefs) {
617
5.17k
  return SSL_CREDENTIAL_set1_signing_algorithm_prefs(
618
5.17k
      ctx->cert->legacy_credential.get(), prefs, num_prefs);
619
5.17k
}
620
621
int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
622
0
                                    size_t num_prefs) {
623
0
  if (!ssl->config) {
624
0
    return 0;
625
0
  }
626
0
  return SSL_CREDENTIAL_set1_signing_algorithm_prefs(
627
0
      ssl->config->cert->legacy_credential.get(), prefs, num_prefs);
628
0
}
629
630
static constexpr struct {
631
  int pkey_type;
632
  int hash_nid;
633
  uint16_t signature_algorithm;
634
} kSignatureAlgorithmsMapping[] = {
635
    {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
636
    {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
637
    {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
638
    {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
639
    {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
640
    {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
641
    {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
642
    {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
643
    {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
644
    {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
645
    {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
646
    {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
647
};
648
649
static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
650
3.46k
                               size_t num_values) {
651
3.46k
  if ((num_values & 1) == 1) {
652
1.01k
    return false;
653
1.01k
  }
654
655
2.45k
  const size_t num_pairs = num_values / 2;
656
2.45k
  if (!out->InitForOverwrite(num_pairs)) {
657
0
    return false;
658
0
  }
659
660
3.54k
  for (size_t i = 0; i < num_values; i += 2) {
661
2.62k
    const int hash_nid = values[i];
662
2.62k
    const int pkey_type = values[i + 1];
663
664
2.62k
    bool found = false;
665
29.5k
    for (const auto &candidate : kSignatureAlgorithmsMapping) {
666
29.5k
      if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
667
1.08k
        (*out)[i / 2] = candidate.signature_algorithm;
668
1.08k
        found = true;
669
1.08k
        break;
670
1.08k
      }
671
29.5k
    }
672
673
2.62k
    if (!found) {
674
1.53k
      OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
675
1.53k
      ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
676
1.53k
      return false;
677
1.53k
    }
678
2.62k
  }
679
680
918
  return true;
681
2.45k
}
682
683
3.46k
int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
684
3.46k
  Array<uint16_t> sigalgs;
685
3.46k
  if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
686
2.55k
    return 0;
687
2.55k
  }
688
689
918
  if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
690
918
                                           sigalgs.size()) ||
691
600
      !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
692
600
                                          sigalgs.size())) {
693
318
    return 0;
694
318
  }
695
696
600
  return 1;
697
918
}
698
699
0
int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
700
0
  if (!ssl->config) {
701
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
702
0
    return 0;
703
0
  }
704
705
0
  Array<uint16_t> sigalgs;
706
0
  if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
707
0
    return 0;
708
0
  }
709
710
0
  if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
711
0
      !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
712
0
    return 0;
713
0
  }
714
715
0
  return 1;
716
0
}
717
718
13.6k
static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
719
  // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
720
721
  // Count colons to give the number of output elements from any successful
722
  // parse.
723
13.6k
  size_t num_elements = 1;
724
13.6k
  size_t len = 0;
725
1.02M
  for (const char *p = str; *p; p++) {
726
1.01M
    len++;
727
1.01M
    if (*p == ':') {
728
4.82k
      num_elements++;
729
4.82k
    }
730
1.01M
  }
731
732
13.6k
  if (!out->InitForOverwrite(num_elements)) {
733
0
    return false;
734
0
  }
735
13.6k
  size_t out_i = 0;
736
737
13.6k
  enum {
738
13.6k
    pkey_or_name,
739
13.6k
    hash_name,
740
13.6k
  } state = pkey_or_name;
741
742
13.6k
  char buf[kMaxSignatureAlgorithmNameLen];
743
  // buf_used is always < sizeof(buf). I.e. it's always safe to write
744
  // buf[buf_used] = 0.
745
13.6k
  size_t buf_used = 0;
746
747
13.6k
  int pkey_type = 0, hash_nid = 0;
748
749
  // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
750
88.3k
  for (size_t offset = 0; offset < len + 1; offset++) {
751
86.2k
    const unsigned char c = str[offset];
752
753
86.2k
    switch (c) {
754
7.79k
      case '+':
755
7.79k
        if (state == hash_name) {
756
536
          OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
757
536
          ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
758
536
          return false;
759
536
        }
760
7.26k
        if (buf_used == 0) {
761
266
          OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
762
266
          ERR_add_error_dataf("empty public key type at offset %zu", offset);
763
266
          return false;
764
266
        }
765
6.99k
        buf[buf_used] = 0;
766
767
6.99k
        if (strcmp(buf, "RSA") == 0) {
768
5.58k
          pkey_type = EVP_PKEY_RSA;
769
5.58k
        } else if (strcmp(buf, "RSA-PSS") == 0 ||  //
770
1.10k
                   strcmp(buf, "PSS") == 0) {
771
903
          pkey_type = EVP_PKEY_RSA_PSS;
772
903
        } else if (strcmp(buf, "ECDSA") == 0) {
773
199
          pkey_type = EVP_PKEY_EC;
774
312
        } else {
775
312
          OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
776
312
          ERR_add_error_dataf("unknown public key type '%s'", buf);
777
312
          return false;
778
312
        }
779
780
6.68k
        state = hash_name;
781
6.68k
        buf_used = 0;
782
6.68k
        break;
783
784
2.70k
      case ':':
785
2.70k
        [[fallthrough]];
786
7.95k
      case 0:
787
7.95k
        if (buf_used == 0) {
788
2.10k
          OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
789
2.10k
          ERR_add_error_dataf("empty element at offset %zu", offset);
790
2.10k
          return false;
791
2.10k
        }
792
793
5.85k
        buf[buf_used] = 0;
794
795
5.85k
        if (state == pkey_or_name) {
796
          // No '+' was seen thus this is a TLS 1.3-style name.
797
962
          bool found = false;
798
12.5k
          for (const auto &candidate : kSignatureAlgorithmNames) {
799
12.5k
            if (strcmp(candidate.name, buf) == 0) {
800
272
              assert(out_i < num_elements);
801
272
              (*out)[out_i++] = candidate.signature_algorithm;
802
272
              found = true;
803
272
              break;
804
272
            }
805
12.5k
          }
806
807
962
          if (!found) {
808
690
            OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
809
690
            ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
810
690
            return false;
811
690
          }
812
4.89k
        } else {
813
4.89k
          if (strcmp(buf, "SHA1") == 0) {
814
559
            hash_nid = NID_sha1;
815
4.33k
          } else if (strcmp(buf, "SHA256") == 0) {
816
3.05k
            hash_nid = NID_sha256;
817
3.05k
          } else if (strcmp(buf, "SHA384") == 0) {
818
198
            hash_nid = NID_sha384;
819
1.07k
          } else if (strcmp(buf, "SHA512") == 0) {
820
202
            hash_nid = NID_sha512;
821
872
          } else {
822
872
            OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
823
872
            ERR_add_error_dataf("unknown hash function '%s'", buf);
824
872
            return false;
825
872
          }
826
827
4.01k
          bool found = false;
828
12.1k
          for (const auto &candidate : kSignatureAlgorithmsMapping) {
829
12.1k
            if (candidate.pkey_type == pkey_type &&
830
8.78k
                candidate.hash_nid == hash_nid) {
831
3.65k
              assert(out_i < num_elements);
832
3.65k
              (*out)[out_i++] = candidate.signature_algorithm;
833
3.65k
              found = true;
834
3.65k
              break;
835
3.65k
            }
836
12.1k
          }
837
838
4.01k
          if (!found) {
839
364
            OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
840
364
            ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
841
364
            return false;
842
364
          }
843
4.01k
        }
844
845
3.92k
        state = pkey_or_name;
846
3.92k
        buf_used = 0;
847
3.92k
        break;
848
849
70.4k
      default:
850
70.4k
        if (buf_used == sizeof(buf) - 1) {
851
194
          OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
852
194
          ERR_add_error_dataf("substring too long at offset %zu", offset);
853
194
          return false;
854
194
        }
855
856
70.2k
        if (OPENSSL_isalnum(c) || c == '-' || c == '_') {
857
64.0k
          buf[buf_used++] = c;
858
64.0k
        } else {
859
6.26k
          OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
860
6.26k
          ERR_add_error_dataf("invalid character 0x%02x at offset %zu", c,
861
6.26k
                              offset);
862
6.26k
          return false;
863
6.26k
        }
864
86.2k
    }
865
86.2k
  }
866
867
13.6k
  assert(out_i == out->size());
868
2.09k
  return true;
869
2.09k
}
870
871
13.6k
int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
872
13.6k
  Array<uint16_t> sigalgs;
873
13.6k
  if (!parse_sigalgs_list(&sigalgs, str)) {
874
11.6k
    return 0;
875
11.6k
  }
876
877
2.09k
  if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
878
2.09k
                                           sigalgs.size()) ||
879
404
      !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
880
1.69k
                                          sigalgs.size())) {
881
1.69k
    return 0;
882
1.69k
  }
883
884
404
  return 1;
885
2.09k
}
886
887
0
int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
888
0
  if (!ssl->config) {
889
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
890
0
    return 0;
891
0
  }
892
893
0
  Array<uint16_t> sigalgs;
894
0
  if (!parse_sigalgs_list(&sigalgs, str)) {
895
0
    return 0;
896
0
  }
897
898
0
  if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
899
0
      !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
900
0
    return 0;
901
0
  }
902
903
0
  return 1;
904
0
}
905
906
int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
907
2.49k
                                       size_t num_prefs) {
908
2.49k
  return set_sigalg_prefs(&ctx->verify_sigalgs, Span(prefs, num_prefs));
909
2.49k
}
910
911
int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
912
0
                                   size_t num_prefs) {
913
0
  if (!ssl->config) {
914
0
    OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
915
0
    return 0;
916
0
  }
917
918
0
  return set_sigalg_prefs(&ssl->config->verify_sigalgs, Span(prefs, num_prefs));
919
0
}