Coverage Report

Created: 2023-06-07 07:00

/src/botan/build/include/botan/internal/stl_util.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
* STL Utility Functions
3
* (C) 1999-2007 Jack Lloyd
4
* (C) 2015 Simon Warta (Kullo GmbH)
5
*
6
* Botan is released under the Simplified BSD License (see license.txt)
7
*/
8
9
#ifndef BOTAN_STL_UTIL_H_
10
#define BOTAN_STL_UTIL_H_
11
12
#include <map>
13
#include <set>
14
#include <span>
15
#include <string>
16
#include <tuple>
17
#include <variant>
18
#include <vector>
19
20
#include <botan/concepts.h>
21
#include <botan/secmem.h>
22
#include <botan/strong_type.h>
23
24
namespace Botan {
25
26
0
inline std::vector<uint8_t> to_byte_vector(std::string_view s) { return std::vector<uint8_t>(s.cbegin(), s.cend()); }
27
28
0
inline std::string to_string(const secure_vector<uint8_t>& bytes) { return std::string(bytes.cbegin(), bytes.cend()); }
29
30
/**
31
* Return the keys of a map as a std::set
32
*/
33
template <typename K, typename V>
34
std::set<K> map_keys_as_set(const std::map<K, V>& kv) {
35
   std::set<K> s;
36
   for(auto&& i : kv) {
37
      s.insert(i.first);
38
   }
39
   return s;
40
}
41
42
/**
43
* Return the keys of a multimap as a std::set
44
*/
45
template <typename K, typename V>
46
std::set<K> map_keys_as_set(const std::multimap<K, V>& kv) {
47
   std::set<K> s;
48
   for(auto&& i : kv) {
49
      s.insert(i.first);
50
   }
51
   return s;
52
}
53
54
/*
55
* Searching through a std::map
56
* @param mapping the map to search
57
* @param key is what to look for
58
* @param null_result is the value to return if key is not in mapping
59
* @return mapping[key] or null_result
60
*/
61
template <typename K, typename V>
62
inline V search_map(const std::map<K, V>& mapping, const K& key, const V& null_result = V()) {
63
   auto i = mapping.find(key);
64
   if(i == mapping.end())
65
      return null_result;
66
   return i->second;
67
}
68
69
template <typename K, typename V, typename R>
70
inline R search_map(const std::map<K, V>& mapping, const K& key, const R& null_result, const R& found_result) {
71
   auto i = mapping.find(key);
72
   if(i == mapping.end())
73
      return null_result;
74
   return found_result;
75
}
76
77
/*
78
* Insert a key/value pair into a multimap
79
*/
80
template <typename K, typename V>
81
void multimap_insert(std::multimap<K, V>& multimap, const K& key, const V& value) {
82
   multimap.insert(std::make_pair(key, value));
83
}
84
85
/**
86
* Existence check for values
87
*/
88
template <typename T, typename OT>
89
bool value_exists(const std::vector<T>& vec, const OT& val) {
90
   for(size_t i = 0; i != vec.size(); ++i)
91
      if(vec[i] == val)
92
         return true;
93
   return false;
94
}
95
96
template <typename T, typename Pred>
97
void map_remove_if(Pred pred, T& assoc) {
98
   auto i = assoc.begin();
99
   while(i != assoc.end()) {
100
      if(pred(i->first))
101
         assoc.erase(i++);
102
      else
103
         i++;
104
   }
105
}
106
107
/**
108
 * Helper class to ease unmarshalling of concatenated fixed-length values
109
 */
110
class BufferSlicer final {
111
   public:
112
0
      BufferSlicer(std::span<const uint8_t> buffer) : m_remaining(buffer) {}
113
114
      template <concepts::contiguous_container ContainerT>
115
0
      auto copy(const size_t count) {
116
0
         const auto result = take(count);
117
0
         return ContainerT(result.begin(), result.end());
118
0
      }
Unexecuted instantiation: auto Botan::BufferSlicer::copy<std::__1::vector<unsigned char, std::__1::allocator<unsigned char> > >(unsigned long)
Unexecuted instantiation: auto Botan::BufferSlicer::copy<std::__1::vector<unsigned char, Botan::secure_allocator<unsigned char> > >(unsigned long)
119
120
0
      auto copy_as_vector(const size_t count) { return copy<std::vector<uint8_t>>(count); }
121
122
0
      auto copy_as_secure_vector(const size_t count) { return copy<secure_vector<uint8_t>>(count); }
123
124
0
      std::span<const uint8_t> take(const size_t count) {
125
0
         BOTAN_STATE_CHECK(remaining() >= count);
126
0
         auto result = m_remaining.first(count);
127
0
         m_remaining = m_remaining.subspan(count);
128
0
         return result;
129
0
      }
130
131
      template <concepts::contiguous_strong_type T>
132
      StrongSpan<const T> take(const size_t count) {
133
         return StrongSpan<const T>(take(count));
134
      }
135
136
0
      void copy_into(std::span<uint8_t> sink) {
137
0
         const auto data = take(sink.size());
138
0
         std::copy(data.begin(), data.end(), sink.begin());
139
0
      }
140
141
0
      void skip(const size_t count) { take(count); }
142
143
0
      size_t remaining() const { return m_remaining.size(); }
144
145
0
      bool empty() const { return m_remaining.empty(); }
146
147
   private:
148
      std::span<const uint8_t> m_remaining;
149
};
150
151
/**
152
 * @brief Helper class to ease in-place marshalling of concatenated fixed-length
153
 *        values.
154
 *
155
 * The size of the final buffer must be known from the start, reallocations are
156
 * not performed.
157
 */
158
class BufferStuffer {
159
   public:
160
0
      BufferStuffer(std::span<uint8_t> buffer) : m_buffer(buffer) {}
161
162
      /**
163
       * @returns a span for the next @p bytes bytes in the concatenated buffer.
164
       *          Checks that the buffer is not exceded.
165
       */
166
0
      std::span<uint8_t> next(size_t bytes) {
167
0
         BOTAN_STATE_CHECK(m_buffer.size() >= bytes);
168
0
169
0
         auto result = m_buffer.first(bytes);
170
0
         m_buffer = m_buffer.subspan(bytes);
171
0
         return result;
172
0
      }
173
174
      template <concepts::contiguous_strong_type StrongT>
175
      StrongSpan<StrongT> next(size_t bytes) {
176
         return StrongSpan<StrongT>(next(bytes));
177
      }
178
179
0
      void append(std::span<const uint8_t> buffer) {
180
0
         auto sink = next(buffer.size());
181
0
         std::copy(buffer.begin(), buffer.end(), sink.begin());
182
0
      }
183
184
0
      bool full() const { return m_buffer.empty(); }
185
186
0
      size_t remaining_capacity() const { return m_buffer.size(); }
187
188
   private:
189
      std::span<uint8_t> m_buffer;
190
};
191
192
/**
193
 * Concatenate an arbitrary number of buffers.
194
 * @return the concatenation of \p buffers as the container type of the first buffer
195
 */
196
template <typename... Ts>
197
decltype(auto) concat(Ts&&... buffers) {
198
   static_assert(sizeof...(buffers) > 0, "concat requires at least one buffer");
199
200
   using result_t = std::remove_cvref_t<std::tuple_element_t<0, std::tuple<Ts...>>>;
201
   result_t result;
202
   result.reserve((buffers.size() + ...));
203
   (result.insert(result.end(), buffers.begin(), buffers.end()), ...);
204
   return result;
205
}
206
207
/**
208
 * Concatenate an arbitrary number of buffers and define the output buffer
209
 * type as a mandatory template parameter.
210
 * @return the concatenation of \p buffers as the user-defined container type
211
 */
212
template <typename ResultT, typename... Ts>
213
ResultT concat_as(Ts&&... buffers) {
214
   return concat(ResultT(), std::forward<Ts>(buffers)...);
215
}
216
217
template <typename... Alts, typename... Ts>
218
constexpr bool holds_any_of(const std::variant<Ts...>& v) noexcept {
219
   return (std::holds_alternative<Alts>(v) || ...);
220
}
221
222
template <typename GeneralVariantT, typename SpecialT>
223
constexpr bool is_generalizable_to(const SpecialT&) noexcept {
224
   return std::is_constructible_v<GeneralVariantT, SpecialT>;
225
}
226
227
template <typename GeneralVariantT, typename... SpecialTs>
228
constexpr bool is_generalizable_to(const std::variant<SpecialTs...>&) noexcept {
229
   return (std::is_constructible_v<GeneralVariantT, SpecialTs> && ...);
230
}
231
232
/**
233
 * @brief Converts a given variant into another variant-ish whose type states
234
 *        are a super set of the given variant.
235
 *
236
 * This is useful to convert restricted variant types into more general
237
 * variants types.
238
 */
239
template <typename GeneralVariantT, typename SpecialT>
240
constexpr GeneralVariantT generalize_to(SpecialT&& specific) noexcept
241
   requires(std::is_constructible_v<GeneralVariantT, std::decay_t<SpecialT>>)
242
{
243
   return std::forward<SpecialT>(specific);
244
}
245
246
/**
247
 * @brief Converts a given variant into another variant-ish whose type states
248
 *        are a super set of the given variant.
249
 *
250
 * This is useful to convert restricted variant types into more general
251
 * variants types.
252
 */
253
template <typename GeneralVariantT, typename... SpecialTs>
254
constexpr GeneralVariantT generalize_to(std::variant<SpecialTs...> specific) noexcept {
255
   static_assert(
256
      is_generalizable_to<GeneralVariantT>(specific),
257
      "Desired general type must be implicitly constructible by all types of the specialized std::variant<>");
258
   return std::visit([](auto s) -> GeneralVariantT { return s; }, std::move(specific));
259
}
260
261
// This is a helper utility to emulate pattern matching with std::visit.
262
// See https://en.cppreference.com/w/cpp/utility/variant/visit for more info.
263
template <class... Ts>
264
struct overloaded : Ts... {
265
      using Ts::operator()...;
266
};
267
// explicit deduction guide (not needed as of C++20)
268
template <class... Ts>
269
overloaded(Ts...) -> overloaded<Ts...>;
270
271
}  // namespace Botan
272
273
#endif