/src/botan/src/lib/math/numbertheory/make_prm.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Prime Generation |
3 | | * (C) 1999-2007,2018 Jack Lloyd |
4 | | * |
5 | | * Botan is released under the Simplified BSD License (see license.txt) |
6 | | */ |
7 | | |
8 | | #include <botan/numthry.h> |
9 | | #include <botan/rng.h> |
10 | | #include <botan/internal/bit_ops.h> |
11 | | #include <botan/loadstor.h> |
12 | | #include <algorithm> |
13 | | |
14 | | namespace Botan { |
15 | | |
16 | | namespace { |
17 | | |
18 | | class Prime_Sieve final |
19 | | { |
20 | | public: |
21 | | Prime_Sieve(const BigInt& init_value, size_t sieve_size) : |
22 | | m_sieve(std::min(sieve_size, PRIME_TABLE_SIZE)) |
23 | 1 | { |
24 | 257 | for(size_t i = 0; i != m_sieve.size(); ++i) |
25 | 256 | m_sieve[i] = static_cast<uint16_t>(init_value % PRIMES[i]); |
26 | 1 | } |
27 | | |
28 | | void step(word increment) |
29 | 999 | { |
30 | 256k | for(size_t i = 0; i != m_sieve.size(); ++i) |
31 | 255k | { |
32 | 255k | m_sieve[i] = (m_sieve[i] + increment) % PRIMES[i]; |
33 | 255k | } |
34 | 999 | } |
35 | | |
36 | | bool passes(bool check_2p1 = false) const |
37 | 999 | { |
38 | 7.25k | for(size_t i = 0; i != m_sieve.size(); ++i) |
39 | 7.23k | { |
40 | 7.23k | /* |
41 | 7.23k | In this case, p is a multiple of PRIMES[i] |
42 | 7.23k | */ |
43 | 7.23k | if(m_sieve[i] == 0) |
44 | 495 | return false; |
45 | 6.74k | |
46 | 6.74k | if(check_2p1) |
47 | 6.74k | { |
48 | 6.74k | /* |
49 | 6.74k | In this case, 2*p+1 will be a multiple of PRIMES[i] |
50 | 6.74k | |
51 | 6.74k | So if potentially generating a safe prime, we want to |
52 | 6.74k | avoid this value because 2*p+1 will certainly not be prime. |
53 | 6.74k | |
54 | 6.74k | See "Safe Prime Generation with a Combined Sieve" M. Wiener |
55 | 6.74k | https://eprint.iacr.org/2003/186.pdf |
56 | 6.74k | */ |
57 | 6.74k | if(m_sieve[i] == (PRIMES[i] - 1) / 2) |
58 | 489 | return false; |
59 | 6.74k | } |
60 | 6.74k | } |
61 | 999 | |
62 | 999 | return true; |
63 | 999 | } |
64 | | |
65 | | private: |
66 | | std::vector<uint16_t> m_sieve; |
67 | | }; |
68 | | |
69 | | } |
70 | | |
71 | | |
72 | | /* |
73 | | * Generate a random prime |
74 | | */ |
75 | | BigInt random_prime(RandomNumberGenerator& rng, |
76 | | size_t bits, const BigInt& coprime, |
77 | | size_t equiv, size_t modulo, |
78 | | size_t prob) |
79 | 1 | { |
80 | 1 | if(coprime.is_negative()) |
81 | 0 | { |
82 | 0 | throw Invalid_Argument("random_prime: coprime must be >= 0"); |
83 | 0 | } |
84 | 1 | if(modulo == 0) |
85 | 0 | { |
86 | 0 | throw Invalid_Argument("random_prime: Invalid modulo value"); |
87 | 0 | } |
88 | 1 | |
89 | 1 | equiv %= modulo; |
90 | 1 | |
91 | 1 | if(equiv == 0) |
92 | 0 | throw Invalid_Argument("random_prime Invalid value for equiv/modulo"); |
93 | 1 | |
94 | 1 | // Handle small values: |
95 | 1 | if(bits <= 1) |
96 | 0 | { |
97 | 0 | throw Invalid_Argument("random_prime: Can't make a prime of " + |
98 | 0 | std::to_string(bits) + " bits"); |
99 | 0 | } |
100 | 1 | else if(bits == 2) |
101 | 0 | { |
102 | 0 | return ((rng.next_byte() % 2) ? 2 : 3); |
103 | 0 | } |
104 | 1 | else if(bits == 3) |
105 | 0 | { |
106 | 0 | return ((rng.next_byte() % 2) ? 5 : 7); |
107 | 0 | } |
108 | 1 | else if(bits == 4) |
109 | 0 | { |
110 | 0 | return ((rng.next_byte() % 2) ? 11 : 13); |
111 | 0 | } |
112 | 1 | else if(bits <= 16) |
113 | 0 | { |
114 | 0 | for(;;) |
115 | 0 | { |
116 | 0 | // This is slightly biased, but for small primes it does not seem to matter |
117 | 0 | const uint8_t b0 = rng.next_byte(); |
118 | 0 | const uint8_t b1 = rng.next_byte(); |
119 | 0 | const size_t idx = make_uint16(b0, b1) % PRIME_TABLE_SIZE; |
120 | 0 | const uint16_t small_prime = PRIMES[idx]; |
121 | 0 |
|
122 | 0 | if(high_bit(small_prime) == bits) |
123 | 0 | return small_prime; |
124 | 0 | } |
125 | 0 | } |
126 | 1 | |
127 | 1 | const size_t MAX_ATTEMPTS = 32*1024; |
128 | 1 | |
129 | 1 | while(true) |
130 | 1 | { |
131 | 1 | BigInt p(rng, bits); |
132 | 1 | |
133 | 1 | // Force lowest and two top bits on |
134 | 1 | p.set_bit(bits - 1); |
135 | 1 | p.set_bit(bits - 2); |
136 | 1 | p.set_bit(0); |
137 | 1 | |
138 | 1 | // Force p to be equal to equiv mod modulo |
139 | 1 | p += (modulo - (p % modulo)) + equiv; |
140 | 1 | |
141 | 1 | Prime_Sieve sieve(p, bits); |
142 | 1 | |
143 | 1 | size_t counter = 0; |
144 | 999 | while(true) |
145 | 999 | { |
146 | 999 | ++counter; |
147 | 999 | |
148 | 999 | if(counter > MAX_ATTEMPTS) |
149 | 0 | { |
150 | 0 | break; // don't try forever, choose a new starting point |
151 | 0 | } |
152 | 999 | |
153 | 999 | p += modulo; |
154 | 999 | |
155 | 999 | sieve.step(modulo); |
156 | 999 | |
157 | 999 | if(sieve.passes(true) == false) |
158 | 984 | continue; |
159 | 15 | |
160 | 15 | if(coprime > 1) |
161 | 0 | { |
162 | 0 | /* |
163 | 0 | * Check if gcd(p - 1, coprime) != 1 by computing the inverse. The |
164 | 0 | * gcd algorithm is not constant time, but modular inverse is (for |
165 | 0 | * odd modulus anyway). This avoids a side channel attack against RSA |
166 | 0 | * key generation, though RSA keygen should be using generate_rsa_prime. |
167 | 0 | */ |
168 | 0 | if(inverse_mod(p - 1, coprime).is_zero()) |
169 | 0 | continue; |
170 | 15 | } |
171 | 15 | |
172 | 15 | if(p.bits() > bits) |
173 | 0 | break; |
174 | 15 | |
175 | 15 | if(is_prime(p, rng, prob, true)) |
176 | 1 | return p; |
177 | 15 | } |
178 | 1 | } |
179 | 1 | } |
180 | | |
181 | | BigInt generate_rsa_prime(RandomNumberGenerator& keygen_rng, |
182 | | RandomNumberGenerator& prime_test_rng, |
183 | | size_t bits, |
184 | | const BigInt& coprime, |
185 | | size_t prob) |
186 | 0 | { |
187 | 0 | if(bits < 512) |
188 | 0 | throw Invalid_Argument("generate_rsa_prime bits too small"); |
189 | 0 | |
190 | 0 | /* |
191 | 0 | * The restriction on coprime <= 64 bits is arbitrary but generally speaking |
192 | 0 | * very large RSA public exponents are a bad idea both for performance and due |
193 | 0 | * to attacks on small d. |
194 | 0 | */ |
195 | 0 | if(coprime <= 1 || coprime.is_even() || coprime.bits() > 64) |
196 | 0 | throw Invalid_Argument("generate_rsa_prime coprime must be small odd positive integer"); |
197 | 0 | |
198 | 0 | const size_t MAX_ATTEMPTS = 32*1024; |
199 | 0 |
|
200 | 0 | while(true) |
201 | 0 | { |
202 | 0 | BigInt p(keygen_rng, bits); |
203 | 0 |
|
204 | 0 | // Force lowest and two top bits on |
205 | 0 | p.set_bit(bits - 1); |
206 | 0 | p.set_bit(bits - 2); |
207 | 0 | p.set_bit(0); |
208 | 0 |
|
209 | 0 | Prime_Sieve sieve(p, bits); |
210 | 0 |
|
211 | 0 | const word step = 2; |
212 | 0 |
|
213 | 0 | size_t counter = 0; |
214 | 0 | while(true) |
215 | 0 | { |
216 | 0 | ++counter; |
217 | 0 |
|
218 | 0 | if(counter > MAX_ATTEMPTS) |
219 | 0 | { |
220 | 0 | break; // don't try forever, choose a new starting point |
221 | 0 | } |
222 | 0 | |
223 | 0 | p += step; |
224 | 0 |
|
225 | 0 | sieve.step(step); |
226 | 0 |
|
227 | 0 | if(sieve.passes() == false) |
228 | 0 | continue; |
229 | 0 | |
230 | 0 | /* |
231 | 0 | * Check if p - 1 and coprime are relatively prime by computing the inverse. |
232 | 0 | * |
233 | 0 | * We avoid gcd here because that algorithm is not constant time. |
234 | 0 | * Modular inverse is (for odd modulus anyway). |
235 | 0 | * |
236 | 0 | * We earlier verified that coprime argument is odd. Thus the factors of 2 |
237 | 0 | * in (p - 1) cannot possibly be factors in coprime, so remove them from p - 1. |
238 | 0 | * Using an odd modulus allows the const time algorithm to be used. |
239 | 0 | * |
240 | 0 | * This assumes coprime < p - 1 which is always true for RSA. |
241 | 0 | */ |
242 | 0 | BigInt p1 = p - 1; |
243 | 0 | p1 >>= low_zero_bits(p1); |
244 | 0 | if(inverse_mod(coprime, p1).is_zero()) |
245 | 0 | { |
246 | 0 | BOTAN_DEBUG_ASSERT(gcd(p1, coprime) > 1); |
247 | 0 | continue; |
248 | 0 | } |
249 | 0 |
|
250 | 0 | BOTAN_DEBUG_ASSERT(gcd(p1, coprime) == 1); |
251 | 0 |
|
252 | 0 | if(p.bits() > bits) |
253 | 0 | break; |
254 | 0 | |
255 | 0 | if(is_prime(p, prime_test_rng, prob, true)) |
256 | 0 | return p; |
257 | 0 | } |
258 | 0 | } |
259 | 0 | } |
260 | | |
261 | | /* |
262 | | * Generate a random safe prime |
263 | | */ |
264 | | BigInt random_safe_prime(RandomNumberGenerator& rng, size_t bits) |
265 | 0 | { |
266 | 0 | if(bits <= 64) |
267 | 0 | throw Invalid_Argument("random_safe_prime: Can't make a prime of " + |
268 | 0 | std::to_string(bits) + " bits"); |
269 | 0 | |
270 | 0 | BigInt q, p; |
271 | 0 | for(;;) |
272 | 0 | { |
273 | 0 | /* |
274 | 0 | Generate q == 2 (mod 3) |
275 | 0 |
|
276 | 0 | Otherwise [q == 1 (mod 3) case], 2*q+1 == 3 (mod 3) and not prime. |
277 | 0 |
|
278 | 0 | Initially allow a very high error prob (1/2**8) to allow for fast checks, |
279 | 0 | then if 2*q+1 turns out to be a prime go back and strongly check q. |
280 | 0 | */ |
281 | 0 | q = random_prime(rng, bits - 1, 0, 2, 3, 8); |
282 | 0 | p = (q << 1) + 1; |
283 | 0 |
|
284 | 0 | if(is_prime(p, rng, 128, true)) |
285 | 0 | { |
286 | 0 | // We did only a weak check before, go back and verify q before returning |
287 | 0 | if(is_prime(q, rng, 128, true)) |
288 | 0 | return p; |
289 | 0 | } |
290 | 0 | } |
291 | 0 | } |
292 | | |
293 | | } |